倪淳宇,蒙庆华,吴哲锋,邱邹全,常洪娟,黄 森,褚家辉,房俊成,李 钰.基于高光谱成像技术对番石榴可溶性固形物的快速测定[J].食品安全质量检测学报,2024,15(11):116-124 |
基于高光谱成像技术对番石榴可溶性固形物的快速测定 |
Rapid determination of soluble solids content in Psidium guava fruit based on hyperspectral imaging technology |
投稿时间:2024-03-15 修订日期:2024-06-06 |
DOI: |
中文关键词: 高光谱成像 番石榴 可溶性固形物含量 支持向量回归 |
英文关键词:hyperspectral imaging Psidium guava soluble solids content support vector regression |
基金项目:广西高校中青年教师科研基础能力提升项目(2023KY0391)、广西学位与研究生教育改革项目(JGY2022220)、广西普通本科高校示范性现代 产业学院-南宁师范大学智慧物流产业学院建设项目示范性现代产业学院项目(6020303891823) |
作者 | 单位 |
倪淳宇 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
蒙庆华 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
吴哲锋 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
邱邹全 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
常洪娟 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
黄 森 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
褚家辉 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
房俊成 | 1. 南宁师范大学物理与电子学院, 2. 南宁师范大学, 广西信息功能材料与智能信息处理重点实验室 |
李 钰 | 3. 广西壮族自治区水果技术指导站 |
|
Author | Institution |
NI Chun-Yu | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
MENG Qing-Hua | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
WU Zhe-Feng | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
QIU Zou-Quan | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
CHANG Hong-Juan | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
HUAG Sen | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
CHU Jia-Hui | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
FANG Jun-Cheng | 1. College of Physics and Electronics, Nanning Normal University, 2. Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, |
LI Yu | 3. Guangxi Zhuang Autonomous Region Technical Instruction Office for Fruit |
|
摘要点击次数: 329 |
全文下载次数: 278 |
中文摘要: |
目的 研究基于高光谱成像技术对番石榴可溶性固形物(soluble solids content, SSC)的快速测定。方法 通过高光谱成像系统和全自动折光仪获得番石榴的表面反射光谱与SSC信息, 选择Savitzky-Golay平滑和标准正态变量变换作为预处理手段, 使用主成分分析评估预处理前后光谱的聚类变化。采用区间变量迭代空间收缩法、区间随机蛙跳法、自举软收缩法(bootstrapping soft shrinkage, BOSS)、变量组合集群分析提取特征波长, 用于建立比较支持向量回归(support vector regression, SVR)和偏最小二乘回归(partial least squares regression, PLSR)预测模型。结果 预处理后光谱数据主成分聚类进一步分散, PLSR整体在预测集的回归效果比SVR更好, BOSS-PLSR为最优预测模型, 预测集决定系数为0.9216, 均方根误差(root mean square error of prediction, RMSEP)为 0.2366, 剩余预测偏差(residual prediction deviation, RPD)为3.5710。结论 利用高光谱成像技术快速实现番石榴可溶性固形物测量是可行的。 |
英文摘要: |
Objective To study the rapid determination of soluble solids content (SSC) of Psidium guava based on hyperspectral imaging technology. Methods The hyperspectral imaging system and a fully automated refractometer were utilized to acquire surface reflectance spectra and SSC data of Psidium guava. Preprocessing techniques including Savitzky-Golay smoothing and standard normal variable transformation were applied. Principal component analysis was employed to evaluate the clustering variations in the spectra pre- and post-preprocessing. Interval variable iterative space shrinkage algorithms, interval random frog, bootstrapping soft shrinkage (BOSS), and variable combination population analysis were used to extract characteristic wavelengths for building and comparing support vector regression and partial least squares regression prediction models. Results The principal component clustering of the preprocessed spectral data was further dispersed, and the overall model performance of PLSR showed better regression in the prediction set than SVR. The BOSS-PLSR was the optimal prediction model, with
prediction set determination coefficients of 0.9216, root mean square error of prediction of 0.2366, and residual
prediction deviation (RPD) of 3.5710. Conclusion It is feasible to utilise hyperspectral imaging technology to rapidly achieve Psidium guava soluble solids measurements. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|