周昊宇,朱倩莹,钟玉鸣,刘袆帆,谢 曦,肖更生,马路凯,刘东杰,王 琴.基于线性回归分析法预测李果实干制后果干糖酸比[J].食品安全质量检测学报,2023,14(20):200-208 |
基于线性回归分析法预测李果实干制后果干糖酸比 |
Prediction of sugar-acid ratio of Prunus salicina L. fruit after drying based on linear regression analysis method |
投稿时间:2023-08-15 修订日期:2023-10-25 |
DOI: |
中文关键词: 糖酸比 李果干 多元线性回归 |
英文关键词:sugar-acid ratio dried Prunus salicina L. fruit multiple linear regression |
基金项目:广东省重点领域研发计划项目(2021B0707010004-03);广东省岭南特色食品科学与技术重点实验室项目(2021B1212040013);广东省普通高校特色创新类项目(2022KTSCX053) |
作者 | 单位 |
周昊宇 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
朱倩莹 | 岭南现代农业科学与技术广东省实验室茂名分中心 |
钟玉鸣 | 仲恺农业工程学院资源与环境学院 |
刘袆帆 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
谢 曦 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
肖更生 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
马路凯 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
刘东杰 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
王 琴 | 仲恺农业工程学院轻工食品学院, 农业农村部岭南特色食品绿色加工与智能制造重点实验室, 广东省岭南特色食品科学与技术重点实验室 |
|
Author | Institution |
ZHOU Hao-Yu | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
ZHU Qian-Ying | Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture |
ZHONG Yu-Ming | College of Resources and Environment, Zhongkai University of Agriculture and Engineering |
LIU Hui-Fan | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
XIE Xi | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
XIAO Geng-Sheng | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
MA Lu-Kai | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
LIU Dong-Jie | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
WANG Qin | Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering |
|
摘要点击次数: 461 |
全文下载次数: 212 |
中文摘要: |
目的 基于线性回归分析法建立一种科学地预测鲜李制作成李干后糖酸比的预测模型。方法 以11种李果为实验材料, 利用相关性分析、多元线性回归分析的方法, 探究鲜果的22项具有代表性的理化品质指标与制作成果干后果干糖酸比的关系。结果 以果干糖酸比为因变量Y, 鲜果22项指标为自变量X, 经过逐步筛选挑选出5个重要影响因素: 总糖(X1)、a* (X2)、镁(X3)、可滴定酸(X4)以及可食率(X5), 获得可以用于预测李子果干糖酸比的多元线性回归方程。回归方程决定系数(R2)为0.962, 显著性F检验对应P为0, 有极显著影响(P<0.01)。回归标准化残差分析结果显示, 该方程符合正态分布, 具有较高拟合度。经验证发现, 模型预测值与实际检测值平均相对误差为0.14%, 误差较低。结论 采用多元线性回归模型预测果干糖酸比可行性较高, 预测结果较为精确, 误差较低。 |
英文摘要: |
Objective To establish a scientific predictive model for the sugar-acid ratio of Prunus salicina L. fruit after being processed into dried Prunus salicina L. fruit based on linear regression analysis method. Methods Eleven kinds of Prunus salicina L. fruits were used as experimental materials. Correlation analysis and multiple linear regression analysis were employed to explore the relationship between 22 physicochemical quality indicators of fresh fruit and the sugar-acid ratio after drying. Results Taking the sugar-acid ratio of dried fruit as the dependent variable (Y) and the 22 indicators of fresh fruit as the independent variables (X), 5 important influencing factors were selected through stepwise screening: Total sugar (X1), a* (X2), magnesium (X3), titratable acidity (X4), and edible rate (X5). Multiple linear regression equations could be obtained to predict the sugar-acid ratio of dried Prunus salicina L. fruit. The coefficient of determination (R2) of the regression equation was 0.962, and the significance F-test corresponding to the P was 0, indicating a highly significant impact (P<0.01). The regression standardized residuals analysis showed that the equation followed a normal distribution and had a high degree of fit. After verification, it was found that the average relative error between the predicted value of the model and the actual detection value was 0.14%, which was relatively low. Conclusion The feasibility of using multiple linear regression models to predict the sugar-acid ratio of dried fruit is relatively high, the prediction results are more accurate, and the error is low. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|