陈 珏,李佳琮,刘翠玲,孙晓荣,张善哲.荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量[J].食品安全质量检测学报,2023,14(13):134-140
荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量
Determination of imidacloprid in cabbage by fluorescence spectroscopy combined with machine learning algorithms
投稿时间:2023-04-12  修订日期:2023-07-03
DOI:
中文关键词:  荧光光谱  吡虫啉含量  二次波段选择  麻雀搜索算法  支持向量机
英文关键词:fluorescence spectroscopy  imidacloprid content  secondary band selection  sparrow search algorithm  support vector machine
基金项目:北京市自然科学基金项目(4222043)、北京工商大学2023科研能力提升计划项目
作者单位
陈 珏 北京工商大学人工智能学院 
李佳琮 北京工商大学人工智能学院;北京工商大学北京市食品安全大数据技术重点实验室 
刘翠玲 北京工商大学人工智能学院;北京工商大学北京市食品安全大数据技术重点实验室 
孙晓荣 北京工商大学人工智能学院;北京工商大学北京市食品安全大数据技术重点实验室 
张善哲 北京工商大学人工智能学院 
AuthorInstitution
CHEN Jue School of Artificial Intelligence, Beijing Technology and Business University 
LI Jia-Cong School of Artificial Intelligence, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University 
LIU Cui-Ling School of Artificial Intelligence, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University 
SUN Xiao-Rong School of Artificial Intelligence, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University 
ZHANG Shan-Zhe School of Artificial Intelligence, Beijing Technology and Business University 
摘要点击次数: 367
全文下载次数: 284
中文摘要:
      目的 建立荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量的方法。方法 采集400 nm激发下的130个农药残留光谱数据, 经过数据预处理、光谱特征筛选, 构建基于支持向量机(support vector machine, SVM)的吡虫啉残留含量预测模型, 并利用麻雀搜索算法(sparrow search algorithm, SSA)对SVM的参数进行寻优。结果 卷积平滑(Savitzky-Golay smooth, S-G)与标准正态变量校正(standard normal variable, SNV)联用的预处理效果最好; 利用连续投影算法(successive projections algorithm, SPA)对遗传算法(genetic algorithm, GA)提取的特征波长进行二次特征降维能获得最优特征波段; SSA寻优后构建的SVM模型精度最佳, 测试集决定系数为0.9234, 均方根误差为0.4129。结论 荧光光谱技术可以实现白菜中吡虫啉含量的检测, 为蔬菜中农药残留快速检测提供了新的思路。
英文摘要:
      Objective To establish a method for the determination of imidacloprid in cabbage by fluorescence spectroscopy combined with machine learning algorithm. Methods The spectral data of 130 agricultural residues under excitation at 400 nm were collected. After data preprocessing and spectral feature screening, the prediction model of imidacloprid residue content based on support vector machine (SVM) was constructed. The sparrow search algorithm (SSA) was used to optimize the parameters of SVM. Results The combination of Savitzky-Golay smooth (S-G) and standard normal variable (SNV) had the best pretreatment effect. The optimal feature band was obtained by secondary feature downscaling of genetic algorithm (GA) extracted feature wavelengths using the successive projections algorithm (SPA). The SVM model constructed after the SSA search achieved the best accuracy with a test set coefficient of determination of 0.9234 and a root mean square error of 0.4129. Conclusion Fluorescence spectroscopy enables the detection of imidacloprid in cabbage and provides a new idea for the rapid detection of pesticide residues in vegetables.
查看全文  查看/发表评论  下载PDF阅读器