金学波,张雨雷,白玉廷,王小艺,张维农,刘配莲.基于宽度回声状态网络的菜籽油加工参数自动决策方法研究[J].食品安全质量检测学报,2023,14(5):16-22
基于宽度回声状态网络的菜籽油加工参数自动决策方法研究
Study on automatic decision-making method of processing parameters of rapeseed oil based on broad echo state network
投稿时间:2022-11-17  修订日期:2023-02-23
DOI:
中文关键词:  菜籽油加工  参数辨识  自动决策  宽度回声状态网络
英文关键词:rapeseed oil processing  parameter identification  automatic decision-making  broad echo state network
基金项目:国家重点研发计划项目(2020YFC1606801)
作者单位
金学波 北京工商大学人工智能学院 
张雨雷 北京工商大学人工智能学院 
白玉廷 北京工商大学人工智能学院 
王小艺 北京服装学院 
张维农 武汉轻工大学食品科学与工程学院 
刘配莲 费县中粮油脂工业有限公司 
AuthorInstitution
JIN Xue-Bo College of Artificial Intelligence, Beijing Technology and Business University 
ZHANG Yu-Lei College of Artificial Intelligence, Beijing Technology and Business University 
BAI Yu-Ting College of Artificial Intelligence, Beijing Technology and Business University 
WANG Xiao-Yi Beijing Institute of Fashion Technology 
ZHANG Wei-Nong School of Food Science and Engineering, Wuhan Polytechnic University 
LIU Pei-Lian COFCO Oil and Grains Industry (Feixian) Co., Ltd 
摘要点击次数: 494
全文下载次数: 319
中文摘要:
      目的 实现菜籽油生产过程中加工参数的自动给定, 研究基于人工神经网络的自动决策方法。方法 利用菜籽油加工过程的检测数据, 建立一种宽度回声状态网络模型对加工参数与危害物的内在映射关系进行建模; 在危害物含量要求下, 利用此模型可实现加工过程参数的自动给定。结果 以脱臭工序为例的实验表明, 所提方法能够有效利用已知变量自动计算出加工参数, 宽度回声状态网络的计算精度优于其他几种典型循环神经网络模型。结论 所提方法可有效提升菜籽油加工过程危害物的自动控制水平, 进而提升加工过程的科学性和规范性。
英文摘要:
      Objective To realize the automatic setting of processing parameters in rapeseed oil production, and study the automatic decision-making method based on artificial neural network. Methods Using the detection data of rapeseed oil processing, a broad echo state network model was established to model the internal mapping relationship between processing parameters and hazards. Under the requirements of hazardous substance content, the automatic setting of process parameters could be realized using this model. Results Taking the deodorization process as an example, it showed that the proposed method could effectively use the known variables to automatically calculate the processing parameters, and the calculation accuracy of the broad echo state network was better than that of several other typical recurrent neural network models. Conclusion The proposed method can effectively improve the automatic control level of hazards in rapeseed oil processing, thereby improving the scientificity and standardization of the processing.
查看全文  查看/发表评论  下载PDF阅读器