昝佳睿,刘翠玲,凌彩金,郜礼阳,孙晓荣,吴静珠,张善哲,李佳琮,殷莺倩.基于高光谱技术的红茶茶多酚可视化研究[J].食品安全质量检测学报,2023,14(5):37-44
基于高光谱技术的红茶茶多酚可视化研究
Study on visualization of black tea polyphenols based on hyperspectral technology
投稿时间:2022-11-14  修订日期:2023-02-23
DOI:
中文关键词:  红茶  茶多酚  蒙特卡罗-高斯分布  最小二乘支持向量机  粒子群  可视化
英文关键词:black tea  tea polyphenols  Monte Carlo Gaussian distribution  least squares support vector machine  particle swarm  visualization
基金项目:北京市自然科学基金项目(4222043)、2021年度中国轻工业工业互联网与大数据重点实验室开放课题项目(IIBD-2021-KF09)、以农产品为单元的广东省现代农业产业技术体系创新团队建设项目(茶叶)(2022KJ120)、清远市科技计划项目(2022KJJH065)、2020年广东省农业科学院院长基金项目(202032)
作者单位
昝佳睿 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
刘翠玲 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
凌彩金 广东省农业科学院茶叶研究所, 广东省茶树种质资源创新利用重点实验室 
郜礼阳 广东省农业科学院茶叶研究所, 广东省茶树种质资源创新利用重点实验室 
孙晓荣 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
吴静珠 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
张善哲 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
李佳琮 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
殷莺倩 北京工商大学, 中国轻工业工业互联网与大数据重点实验室;北京工商大学, 北京市食品安全大数据技术重点实验室 
AuthorInstitution
ZAN Jia-Rui Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
LIU Cui-Ling Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
LING Cai-Jin Guangdong Key Laboratory for Innovative Utilization of Tea Germplasm Resources, Tea Research Institute, Guangdong Academy of Agricultural Sciences 
GAO Li-Yang Guangdong Key Laboratory for Innovative Utilization of Tea Germplasm Resources, Tea Research Institute, Guangdong Academy of Agricultural Sciences 
SUN Xiao-Rong Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
WU Jing-Zhu Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
ZHANG Shan-Zhe Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
LI Jia-Cong Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
YIN Ying-Qian Key Laboratory of China Light Industry Internet and Big Data, Beijing Technology and Business University;Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Business University 
摘要点击次数: 554
全文下载次数: 513
中文摘要:
      目的 利用高光谱技术实现对英红九号红茶茶多酚含量的快速无损、可视化检测。方法 采集128个红茶光谱数据并进行光谱预处理后, 引入蒙特卡罗-高斯分布方法寻找异常样本。经两次异常样本剔除, 各模型预测集决定系数r2均有0.2~0.4的大幅提升。为解决大样本模型训练时间长、数据冗余问题, 采用连续投影算法进行波长筛选, 共得到14个能反映红茶茶多酚含量的特征波长, 并比较了最小二乘回归、支持向量机回归、BP神经网路、粒子群优化最小二乘支持向量机回归(particle swarm optimization least squares support vector regression, PSO-LSSVR) 4种模型预测红茶茶多酚含量的精度。最后以最优模型建立茶多酚可视化模型。结果 合理剔除样本并以光谱特征为输入, 结合PSO-LSSVR方法建立的模型效果最佳, 其校正集决定系数为0.921, 预测集决定系数为0.903, 预测精度达到了90%以上, 基本实现了茶多酚含量可视化检测。结论 可视化算法有效地反映了红茶茶多酚分布情况, 适用于茶叶快速无损检测。
英文摘要:
      Objective To realize the rapid, nondestructive and visual detection of the polyphenol content in Yinghong No.9 black tea by hyperspectral technology. Methods After the spectral data of 128 black tea samples were collected and pretreated, the Monte Carlo Gaussian distribution method was introduced to search for abnormal samples. After 2 times of abnormal sample elimination, the determination coefficient r2 of each model prediction set had been greatly improved by 0.2?0.4. In order to solve the problems of long training time and data redundancy of large sample models, continuous projection algorithm was used to screen wavelengths, and 14 characteristic wavelengths that could reflect the polyphenol content of black tea were obtained. The accuracy of 4 kinds of models to predict the polyphenol content of black tea was compared, including least square regression, support vector machine regression, BP neural network, particle swarm optimization least squares support vector machine regression (PSO-LSSVR). Finally, the visual model of tea polyphenols was established with the optimal model. Results The model established by combining PSO-LSSVR method with reasonable sample removal and spectral characteristics as input had the best effect. The determination coefficient of the correction set was 0.921, the determination coefficient of the prediction set was 0.903, and the prediction accuracy reached more than 90%. The visual detection of tea polyphenol content was basically realized. Conclusion The visualization algorithm can effectively reflect the distribution of black tea polyphenols, and is suitable for rapid non-destructive testing of tea.
查看全文  查看/发表评论  下载PDF阅读器