何海珊,白 洁,李嘉怡,林琦杰,陈凯风,陈泽銮,瞿孝云,刘海霞,梁玉岑,彭钧豪,廖 明,张建民.屠宰过程黄羽肉鸡弯曲菌的定量风险评估[J].食品安全质量检测学报,2022,13(18):6017-6025
屠宰过程黄羽肉鸡弯曲菌的定量风险评估
Quantitative risk assessment of Campylobacter in yellow-feathered broilers during slaughter
投稿时间:2022-07-06  修订日期:2022-09-14
DOI:
中文关键词:  黄羽肉鸡  屠宰过程  弯曲菌  风险评估
英文关键词:yellow-feathered broilers  slaughtering process  Campylobacter  risk assessments
基金项目:国家重点研发计划项目(2017YFC1600101)、沃尔玛国际合作项目(SA1703162)、广东省科技创新战略专项(pdjh2021a0071)、广东省普通高校特色创新项目(2020KTSCX276)、广州市基础研究计划基础与应用基础研究项目(202102080576)
作者单位
何海珊 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
白 洁 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
李嘉怡 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
林琦杰 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
陈凯风 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
陈泽銮 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
瞿孝云 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
刘海霞 广东农工商职业技术学院热带农林学院 
梁玉岑 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
彭钧豪 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
廖 明 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
张建民 华南农业大学兽医学院, 人兽共患病防控制剂国家地方联合工程实验室, 农业农村部人畜共患病重点实验室, 广东省动物源性人兽共患病预防与控制重点实验室 
AuthorInstitution
HE Hai-Shan National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
BAI Jie National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
LI Jia-Yi National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
LIN Qi-Jie National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
CHEN Kai-Feng National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
CHEN Ze-Luan National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
QU Xiao-Yun National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
LIU Hai-Xia Tropical Crops Department, Guangdong AIB Polytechnic 
LIANG Yu-Cen National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
PENG Jun-Hao National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
LIAO Ming National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
ZHANG Jian-Min National and Regional Joint Engineering Laboratory for Medicament for Zoonoses Prevention and Control, Key Laboratory of Zoonoses of Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University 
摘要点击次数: 737
全文下载次数: 299
中文摘要:
      目的 检测屠宰过程黄羽肉鸡弯曲菌阳性率和污染水平, 建立屠宰过程黄羽肉鸡弯曲菌的定量风险评估模型, 探明其污染的关键风险点。方法 用传统分离鉴定方法和最近似数法(most probable numbers, MPN)对屠宰不同环节弯曲菌阳性率和污染水平进行检测, 然后运用描述函数对数据进行拟合, 并采用@Risk软件进行重复性检验和敏感性分析。结果 弯曲菌阳性率和污染水平以活鸡肛拭环节最高(53.600%, 1.8300 logMPN/m2), 其次为打毛和开膛环节(27.500%, 0.5000 logMPN/m2和18.100%, 0.0270 logMPN/m2)。根据函数拟合结果建立弯曲菌污染定量风险评估模型, 蒙特卡洛(Monte Carlo)模拟分析显示肛拭环节弯曲菌阳性率和污染水平最高(52.920%, 1.8896 logMPN), 其次是打毛和开膛环节(27.460%, 0.4680 logMPN和14.740%, 0.4910 logMPN), 各个模拟环节数值与分离鉴定结果误差较小(P<0.05), 表明模型具有良好的准确性; 敏感性分析获得黄羽肉鸡屠宰过程弯曲菌污染的关键风险点为打毛和开膛环节, 相关系数分别为0.77和-0.39, 高于其他环节。结论 本研究以屠宰过程黄羽肉鸡弯曲菌为研究对象进行风险评估, 成功建立弯曲菌暴露评估模型, 且模型具有较好的准确性, 同时揭示了屠宰过程弯曲菌防控的关键风险点, 为黄羽肉鸡弯曲菌的防控和风险评估奠定基础。
英文摘要:
      Objective To detect the positive rate and contamination level of Campylobacter in yellow-feathered broilers during slaughtering, establish a quantitative risk assessment model for Campylobacter in yellow-feathered broilers during slaughtering, and identify the key risk points of Campylobacter contamination. Methods Traditional isolation, identification methods and the most probable numbers (MPN) method were used to detect the positive rate and contamination level of Campylobacter in different parts of slaughter. Then the description function was used to fit the data, and the repeatability test and sensitivity analysis were carried out by @Risk software. Results The positive rate and contamination level of Campylobacter were highest in the anal swab section of live chickens (53.600%, 1.8300 logMPN/m2), followed by the defeathering and evisceration links (27.500%, 0.5000 logMPN/m2 and 18.100%, 0.0270 logMPN/m2). The quantitative risk assessment model of Campylobacter contamination was established according to the function fitting results. Monte Carlo simulation analysis showed that the positive rate and contamination level of Campylobacter in the anal swab link were the highest (52.920%, 1.8896 logMPN), followed by the defeathering and evisceration links (27.460%, 0.4680 logMPN and 14.740%, 0.4910 logMPN). The error between the numerical value of each simulation link and the result of separation identification was small (P<0.05), indicating that the model had good accuracy. Sensitivity analysis showed that the key risk points of Campylobacter contamination in the slaughtering process of yellow-feathered broilers were the defeathering and evisceration links, with correlation coefficients of 0.77 and ?0.39, respectively, which were higher than other links. Conclusion In this study, Campylobacter of yellow-feathered broilers during slaughtering is used as the research object for risk assessment, and the exposure assessment model of Campylobacter is successfully established. The model has good accuracy and reveals the key risk points of Campylobacter prevention and control during slaughter, which lays a foundation for the prevention and control of Campylobacter and risk assessment of yellow-feathered broilers.
查看全文  查看/发表评论  下载PDF阅读器