王 燕,付 琪,李 颖,罗 芳,林振宇.近红外光谱分析技术快速检测藕粉品质[J].食品安全质量检测学报,2022,13(15):5026-5034
近红外光谱分析技术快速检测藕粉品质
Rapid detection of lotus root starch quality based on near infrared spectroscopy
投稿时间:2022-04-11  修订日期:2022-07-20
DOI:
中文关键词:  藕粉  近红外光谱  聚类算法  产地鉴别  掺假
英文关键词:lotus root starch  near infrared spectroscopy  clustering algorithm  geographical origins discrimination  adulteration
基金项目:国家重点研发计划项目(2019YFC1604701)、福建省中青年教师教育科研项目(JAT191298)
作者单位
王 燕 福建卫生职业技术学院药学院 
付 琪 福州大学生物科学与工程学院 
李 颖 厦门海洋职业技术学院海洋生物学院 
罗 芳 福州大学生物科学与工程学院;福州大学食品安全与生物分析教育部重点实验室, 福建省食品安全分析与检测技术重点实验室 
林振宇 福州大学食品安全与生物分析教育部重点实验室, 福建省食品安全分析与检测技术重点实验室 
AuthorInstitution
WANG Yan College of Pharmacy, Fujian Health College 
FU Qi College of Biological Science and Engineering, Fuzhou University 
LI Ying College of Marine Biology, Xiamen Ocean Vocational College 
LUO Fang College of Biological Science and Engineering, Fuzhou University;Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University 
LIN Zhen-Yu Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University 
摘要点击次数: 480
全文下载次数: 259
中文摘要:
      目的 基于近红外光谱技术鉴别不同产地的藕粉样品与检测藕粉的掺假问题。方法 采集不同产地藕粉样品的近红外光谱, 在光谱预处理后采用相关系数法提取特征波长, 以提取的特征波长变量构建支持向量机(support vector machine, SVM)、偏最小二乘法判别分析(partial least squares discriminant analysis, PLS-DA)与线性判别分析(linear discriminant analysis, LDA) 3种模型, 实现对不同产地藕粉的鉴别分析。同时, 采集掺假地瓜粉、玉米粉、木薯粉的藕粉样品的近红外光谱, 在掺假样品类别数已知情况下, 运用K-means聚类分析鉴别3种掺假类型的藕粉样品, 在掺假类别数未知下, 运用基于局部密度判别的聚类算法进行判别。结果 以相关系数法提取的特征波长变量构建的SVM、LDA和PLS-DA 3种模型对于不同产地藕粉样品的判别准确率均为100%。对于不同掺假类型的藕粉检测, 在掺假样品类别数已知情况下, K-means聚类分析能有效识别出掺假藕粉, 识别精度为98.33%。在掺假样品类别数未知的情况下, 基于局部密度判别的聚类算法可以有效识别出2%掺假率的藕粉样品。结论 近红外光谱技术是一种快速、高效、无损检测的分析方法, 能实现不同产地莲藕粉的快速鉴别, 检测藕粉的掺假问题, 为藕粉的质量控制提供一定的理论基础。
英文摘要:
      Objective To identify lotus root starch samples from different geographical origins and detect adulteration of lotus root starch based on near infrared spectroscopy. Methods The spectra of lotus root starch samples from different geographical origins were collected. The characteristic wavelengths were extracted by correlation coefficient method after spectral preprocessing. Based on the extracted characteristic wavelength variables, the models of support vector machine (SVM), partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) were constructed. In order to detect the adulteration of lotus root starch, the spectra of lotus root starch samples adulterated with sweet potato flour, corn flour and cassava flour were collected. When the sample category was known, the K-means clustering analysis was used to identify 3 kinds of adulterated lotus root starch samples. When the adulteration category was unknown, the clustering algorithm based on local density discrimination was utilized. Results SVM, PLS-DA and LDA models based on the characteristic wavelength variables extracted by the correlation coefficient method had a discrimination accuracy of 100% for lotus root starch samples from different geographical origins. For the detection of different adulterated lotus root starch, when the sample category was known, the K-means cluster analysis could effectively identify the adulterated lotus root starch and the recognition accuracy was 98.33%. When the sample category was unknown, the clustering algorithm based on local density discrimination could effectively identify the lotus root starch samples with 2% adulteration rate. Conclusion The near infrared spectroscopy is a fast, efficient and non-destructive analysis method to rapidly identify lotus root starch samples from different geographical origins and detect the adulteration of lotus root starch. It provides a theoretical basis for quality control of lotus root starch.
查看全文  查看/发表评论  下载PDF阅读器