陈仕佳,马 筝,付晓焰,胡文波,顾 菊,高 雪,杨 潇,代 娟.鱼肉中沙门氏菌生长预测模型的建立[J].食品安全质量检测学报,2022,13(8):2474-2481
鱼肉中沙门氏菌生长预测模型的建立
Establishment of prediction model for the growth of Salmonella in fish meat
投稿时间:2021-12-29  修订日期:2022-04-14
DOI:
中文关键词:  鱼肉  预测微生物学  沙门氏菌  生长曲线  预测模型
英文关键词:fish meat  predictive microbiology  Salmonella  growth curves  predictive model
基金项目:四川省科技厅基金项目(2020YFN0153)、四川省大学生创新创业计划项目(S201913705122)
作者单位
陈仕佳 成都医学院检验医学院 
马 筝 成都医学院检验医学院 
付晓焰 成都医学院检验医学院 
胡文波 成都医学院检验医学院 
顾 菊 成都医学院检验医学院 
高 雪 成都医学院检验医学院 
杨 潇 西华大学食品与生物工程学院 
代 娟 成都医学院检验医学院 
AuthorInstitution
CHEN Shi-Jia School of Laboratory Medicine, Chengdu Medical College 
MA Zheng School of Laboratory Medicine, Chengdu Medical College 
FU Xiao-Yan School of Laboratory Medicine, Chengdu Medical College 
HU Wen-Bo School of Laboratory Medicine, Chengdu Medical College 
GU Ju School of Laboratory Medicine, Chengdu Medical College 
GAO Xue School of Laboratory Medicine, Chengdu Medical College 
YANG Xiao School of Food and Bioengineering, Xihua University 
DAI Juan School of Laboratory Medicine, Chengdu Medical College 
摘要点击次数: 445
全文下载次数: 296
中文摘要:
      目的 研究沙门氏菌在鱼肉中的生长情况并拟合一级和二级生长预测模型。方法 以鱼肉样品为研究对象, 接种4种不同血清型的沙门氏菌混合菌, 并置于不同温度下培养。选择修正的SGompertz和修正的SLogistic的模型为一级模型, 用Origin 8.5软件拟合生长数据, 通过拟合的模型参数, 计算出最大比生长速率μmax和迟滞期λ。再选用二次多项式和平方根模型为二级模型, 分别拟合μmax和λ与温度之间的二级模型, 并使用参数相关系数R2、准确度(accuracy factor, Af)、偏差度(bias factor, Bf)进行模型验证。结果 SGompertz模型相关系数R2均在0.98以上。以平方根模型建立的二级模型中, μmax的R2、Bf和Af分别为0.9114、0.772和0.772, λ的R2、Bf和Af分别为0.8319、0.823和0.823; 以二次多项式模型建立的二级模型中, μmax的R2、Bf和Af分别为0.960、0.976和1.104, λ的R2、Bf和Af分别为0.962、1.111和1.111。结论 通过SGompertz模型建立的一级模型和二次多项式拟合的二级模型可对鱼肉样品中沙门氏菌的生长情况进行较好地模拟, 为掌握沙门氏菌在鱼肉样品中的生长繁殖规律以及为鱼肉样品的贮藏保鲜提供科学依据。
英文摘要:
      Objective To study the growth of Salmonella in fish meat and fit the primary and secondary growth prediction models. Methods Fish meat samples were taken as the object of study, inoculating 4 kinds of different serotypes of Salmonella mixed bacteria and culturing at different temperatures. The model with modified SGompertz and modified SLogistic was chosen as the primary model and the growth data were fitted with Origin 8.5 software to calculate the maximum specific growth rate μmax and hysteresis λ by the fitted model parameters. The quadratic polynomial and square root models were then chosen as the secondary models, and the models between μmax and λ and temperature were fitted respectively and validated using the parameter correlation coefficient R2, accuracy factor (Af) and bias factor (Bf). Results The correlation coefficient R2 of SGompertz model were all above 0.98. The R2, Bf and Af for μmax were 0.9114, 0.772 and 0.772, respectively, and the R2, Bf and Af for λ were 0.8319, 0.823 and 0.823, respectively in the secondary model built with the square root model, the R2, Bf and Af for μmax were 0.960, 0.976 and 1.104, respectively, and the R2, Bf and Af for λ were 0.962, 1.111 and 1.111, respectively in the secondary model built with a quadratic polynomial model. Conclusion The SGompertz model and the quadratic polynomial are used for fitting primary model and the secondary model respectively, this study establishes a model for the growth of Salmonella in fish meat samples to provide a scientific basis for understanding the growth and reproduction patterns of Salmonella in fish meat samples and for the storage and preservation of fish meat samples.
查看全文  查看/发表评论  下载PDF阅读器