尹艳艳,杨军林,田栋伟,蒋力力,陈明学,尤小龙,程平言.非靶向代谢组学法判别酱香习酒质量等级[J].食品安全质量检测学报,2022,13(1):163-169
非靶向代谢组学法判别酱香习酒质量等级
Quality grade discrimination of Jiangxiang Xijiu by non-targeted metabolomics method
投稿时间:2021-09-10  修订日期:2021-12-30
DOI:
中文关键词:  超高效液相色谱-高分辨质谱法  非靶向代谢组学  酱香习酒  聚类分析  主成分分析
英文关键词:ultra performance liquid chromatography-high resolution mass spectrometry  non-targeted metabolomics  Jiangxiang Xijiu  cluster analysis  principal component analysis
基金项目:遵义市优秀青年科技创新人才培养项目([2019]1)、贵州省科技计划项目([2020]2Y042)、遵义市科技计划项目([2019]4)
作者单位
尹艳艳 贵州茅台酒厂(集团)习酒有限责任公司 
杨军林 贵州茅台酒厂(集团)习酒有限责任公司 
田栋伟 贵州茅台酒厂(集团)习酒有限责任公司 
蒋力力 贵州茅台酒厂(集团)习酒有限责任公司 
陈明学 贵州茅台酒厂(集团)习酒有限责任公司 
尤小龙 贵州茅台酒厂(集团)习酒有限责任公司 
程平言 贵州茅台酒厂(集团)习酒有限责任公司 
AuthorInstitution
YIN Yan-Yan Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
YANG Jun-Lin Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
TIAN Dong-Wei Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
JIANG Li-Li Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
CHEN Ming-Xue Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
YOU Xiao-Long Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
CHENG Ping-Yan Guizhou Maotai Distillery (Group) Xijiu Co., Ltd 
摘要点击次数: 702
全文下载次数: 330
中文摘要:
      目的 建立非靶向代谢组学法判别酱香习酒质量等级的方法。方法 采用超高效液相色谱-高分辨质谱法(ultra performance liquid chromatography-high resolution mass spectrometry, UPLC-HRMS)结合非靶向代谢组学技术分析不同质量等级酱香习酒, 筛选不同等级酒样的主要特征化合物, 并建立主成分分析(principal component analysis, PCA)模型判别酱香习酒质量等级。运用Compound Discoverer 3.2代谢组学分析软件处理检测数据并分析酒样中特征化合物信息。结果 主成分分析PC1和PC2累积方差贡献率之和为67.5%, 能够较全面反应酒样特征。聚类热图和主成分分析可明显区分不同质量等级酒样, 且4个不同等级酒样分类结果符合实际酒样信息。结论 非靶向代谢组学技术可用于区分酱香习酒的不同质量等级, 同时可反映出不同质量等级酒样的差异性及其相应特征化合物信息。
英文摘要:
      Objective To establish a non-targeted metabolomics method for identifying the quality grade of Jiangxiang Xijiu. Methods The different quality grades of Jiangxiang Xijiu were analyzed by ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) combined with non-targeted metabolomics technology, and different grades of liquor samples were screened, the quality grade of Jiangxiang Xijiu was distinguished by principal component analysis (PCA) model. The detection data was processed by Compound Discoverer 3.2 metabolomics analysis software and the characteristic compound information in the liquor samples was analyzed. Results The cumulative contribution rate of PC1 and PC2 in principal component analysis reached 67.5%, which could fully reflect the characteristics of samples. The results showed that the clustering heat map and principal component analysis could clearly distinguish the different grades of samples, and the classification results of 4 different grades of wine samples were consistent with the actual wine sample information. Conclusion Non-targeted metabolomics technology can be used to distinguish different quality grades of Jiangxiang Xijiu, which can also reflect the differences of different quality grades of liquor and the corresponding characteristic compound information.
查看全文  查看/发表评论  下载PDF阅读器