顾丰颖,丁雅楠,朱金锦,张巧真,邵之晓,王迎秋,王 锋.基于稻谷X射线荧光光谱测定快速识别糙米和精米中的镉含量[J].食品安全质量检测学报,2021,12(20):8018-8025
基于稻谷X射线荧光光谱测定快速识别糙米和精米中的镉含量
Rapid identification of cadmium content in brown and polished rice based on X-ray fluorescence spectroscopy detection of paddy rice
投稿时间:2021-07-12  修订日期:2021-10-28
DOI:
中文关键词:  稻谷  糙米  精米    回归模型  定量识别  X射线荧光光谱
英文关键词:paddy rice  brown rice  polished rice  cadmium  regression model  quantitative identification  X-ray fluorescence spectroscopy
基金项目:国家重点研发计划项目(2017YFC1600602)、科技基础性工作专项项目(2015FY111300)、河南省重大公益专项项目(201300110200)、国家食用菌加工技术研发专业中心开放性课题项目(20200105)
作者单位
顾丰颖 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
丁雅楠 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
朱金锦 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
张巧真 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
邵之晓 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
王迎秋 北京农学院食品科学与工程学院 
王 锋 中国农业科学院农产品加工研究所/农业农村部农产品加工综合性重点实验室 
AuthorInstitution
GU Feng-Ying Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
DING Ya-Nan Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
ZHU Jin-Jin Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
ZHANG Qiao-Zhen Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
SHAO Zhi-Xiao Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
WANG Ying-Qiu Food Science and Engineering College, Beijing University of Agriculture 
WANG Feng Institute of Food Science and Technology, Chinese Academy of Agricultural Science/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs 
摘要点击次数: 546
全文下载次数: 295
中文摘要:
      目的 基于稻谷镉的X射线荧光光谱测定, 建立糙米、精米镉的快速定量识别模型, 简化入仓稻谷重金属检测的砻谷、碾米等预处理步骤。方法 采用X射线荧光光谱法一一对应分析26组稻谷-糙米-精米样品中镉含量。根据线性、对数、逆、二次、三次、幂、指数等函数关系分别拟合稻谷-糙米、稻谷-精米、糙米-精米镉含量之间的回归模型。采用另外4组样品对决定系数(r2)大于0.95的模型准确性进行验证, 根据决定系数、误差值等筛选最优拟合模型。结果 稻谷-糙米-精米镉含量之间存在较强的相关性, 在此基础上建立的3个可食用米镉含量快速识别模型分别为: 稻谷-糙米三次函数回归模型Y=0.0131+0.7178X+0.5722X2-0.3492X3 (r2=0.9859); 稻谷-精米三次函数回归模型Y=0.0284+0.3779X+1.5500X2-1.2046X3 (r2=0.9855); 糙米-精米幂函数回归模型Y=0.9412×X1.0233 (r2=0.9902), 3个模型预测结果的绝对误差分别为8.91%、8.57%和10.24%。结论 本研究建立的回归模型具有良好的稻米镉含量相互预测性能, 该法有望简化稻谷镉检测前的砻谷、碾米等预处理流程, 提高检测效率。
英文摘要:
      Objective To establish a rapid quantitative identification model of cadmium in brown rice and polished rice based on the determination of cadmium in paddy-rice by X-ray fluorescence spectrometry to simplify the pretreatment steps such as hulling and milling of stored rice for heavy metal detection. Methods X-ray fluorescence spectrometry was used to analyze the cadmium content in 26 groups of paddy-brown-polished rice samples in one-to-one correspondence. The regression models of cadmium content in paddy-brown rice, paddy-polished rice, and brown-polished rice were fitted respectively according to the linear, logarithmic, inverse, quadratic, cubic, power, exponential functional relationships. Another 4 groups of samples were used to verify the accuracy of the model whose coefficient of determination (r2) was greater than 0.95, and the best fit models were screened according to the coefficient of determination and error value of the verification experiment. Results There were strong correlations among paddy-brown-polished rice in cadmium content, based on this, the rapid identification models of cadmium content in edible rice were shown as follow: Paddy-brown rice cubic function regression model Y=0.0131+0.7178X+0.5722X2-0.3492X3 (r2=0.9859); paddy-polished rice cubic function regression model Y=0.0284+0.3779X+1.5500X2-1.2046X3 (r2=0.9855); brown-polished rice power function regression model Y=0.9412×X1.0233 (r2=0.9902), the absolute errors of the prediction results of the 3 models were 8.91%, 8.57% and 10.24%, respectively. Conclusion The regression models established in this study have good mutual prediction performance of cadmium content in rice, which is expected to simplify the pretreatment process of rice hulling and milling before cadmium detection and improve detection efficiency.
查看全文  查看/发表评论  下载PDF阅读器