王博远,刘 杨,肖革新,陈夏威,何彬洪,黎卓章,刘佳慧.基于“健康中山区域平台”的食源性疾病信息监测挖掘体系设计研究[J].食品安全质量检测学报,2019,10(20):7064-7070
基于“健康中山区域平台”的食源性疾病信息监测挖掘体系设计研究
Design and research of foodborne disease information monitoring and mining system based on “healthy Zhongshan regional platform”
投稿时间:2019-07-12  修订日期:2019-09-19
DOI:
中文关键词:  食源性疾病  风险监测  健康中山区域平台  自动监测
英文关键词:foodborne diseases  risk monitoring  healthy Zhongshan regional platform  automatic monitoring
基金项目:中山市社会公益科技研究项目(2019B1106)
作者单位
王博远 中山市疾病预防控制中心 
刘 杨 国家食品安全风险评估中心;贵州科学院 
肖革新 国家食品安全风险评估中心 
陈夏威 中山市疾病预防控制中心 
何彬洪 中山市疾病预防控制中心 
黎卓章 创业软件股份有限公司 
刘佳慧 创业软件股份有限公司 
AuthorInstitution
WANG Bo-Yuan Zhongshan Center for Disease Control and Prevention 
LIU Yang China National Center for Food Safety Risk Assessment;Guizhou Academy of Sciences 
XIAO Ge-Xin China National Center for Food Safety Risk Assessment 
Chen Xia-Wei Zhongshan Center for Disease Control and Prevention 
HE Bin-Hong Zhongshan Center for Disease Control and Prevention 
Li Zhuo-Zhang Entrepreneurship Software Co., Ltd 
LIU Jia-Hui Entrepreneurship Software Co., Ltd 
摘要点击次数: 698
全文下载次数: 570
中文摘要:
      目的 研究建立基于“健康中山区域平台”的食源性疾病信息监测挖掘体系。方法 在健康中山和粤港澳大湾区智慧医疗卫生政策指导下, 以2018年底正式上线的健康中山区域平台为基础, 以食源性疾病医师诊断为主体, 国际疾病分类第10版(ICD-10分类)为辅助的诊断字典库, 实现全市疑似食源性疾病患者的快速识别和深入挖掘。结果 基于“健康中山区域平台”的食源性疾病信息监测挖掘体系, 应用“互联网+食源性疾病”整体体系架构模式进行设计, 利用数据挖掘技术自动获取食源性疾病患者数据, 并通过机器学习模型的分析推理, 组成科学、规范、平稳和高效的自动监测识别和早期暴发预测体系。结论 本研究设计的信息监测挖掘体系框架有助于解决旧模式中过度依赖哨点医院手工上报的漏报和延误瓶颈问题, 提升政府部门预防和控制食源性疾病的主动监测能力。
英文摘要:
      Objective To establish a food-borne disease information monitoring and mining system based on “Healthy Zhongshan Regional Platform”. Methods Guided by the wisdom medical and health policy of healthy Zhongshan and Dawan district of Guangdong, Hong Kong and Macao, based on the healthy Zhongshan regional platform officially launched at the end of 2018, taking the diagnosis of foodborne diseases physicians as the main body and the 10th edition of International Classification of Diseases (ICD-10) as the auxiliary diagnostic dictionary database, the rapid matching and in-depth excavation of suspected foodborne diseases patients in the whole city were realized. Results The food-borne disease information monitoring and mining system based on the “Healthy Zhongshan Regional Platform” was designed by using the “Internet + Foodborne Diseases” overall system architecture model, using data mining technology to automatically obtain data on patients with foodborne diseases, and learning through machine learning. The analysis and reasoning of the model finally led to the establishment of a scientific, standardized, stable and efficient automatic monitoring and identification and early outbreak prediction system. Conclusion The information monitoring and mining system framework designed in this study can help to solve the problem of under-reporting and delay bottlenecks in the old model, which is over-reliant on sentinel hospitals, and improve the active monitoring ability of government departments to prevent and control food-borne diseases.
查看全文  查看/发表评论  下载PDF阅读器