李毛毛,郑喜群,任 健,赵丽影,杨 勇.近红外光谱法快速检测甜菜糖度的模型优化[J].食品安全质量检测学报,2015,6(8):3026-3029
近红外光谱法快速检测甜菜糖度的模型优化
Model optimization on rapid detection of beet sugar content by near infrared spectroscopy
投稿时间:2015-07-15  修订日期:2015-08-19
DOI:
中文关键词:  近红外光谱法  甜菜  糖度  偏最小二乘法
英文关键词:near infrared spectroscopy  sugar beet  sugar content  partial least squares
基金项目:黑龙江省自然科学基金项目(C201331)、齐齐哈尔市科技局农业攻关项目(NYGG-201206-3)、黑龙江省大学生创新创业训练计划项目(201410221040)
作者单位
李毛毛 1. 齐齐哈尔大学食品与生物工程学院; 2. 聚光科技(杭州)股份有限公司 
郑喜群 齐齐哈尔大学食品与生物工程学院, 农产品加工黑龙江省普通高校重点实验室 
任 健 齐齐哈尔大学食品与生物工程学院,农产品加工黑龙江省普通高校重点实验室 
赵丽影 博天糖业有限公司 
杨 勇 1. 齐齐哈尔大学食品与生物工程学院, 农产品加工黑龙江省普通高校重点实验室; 2. 东北农业大学食品学院 
AuthorInstitution
LI Mao-Mao 1. Key Laboratory of Processing Agricultural Products of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University ; 4. Focused Photonics (Hangzhou),Inc. 
ZHENG Xi-Qun Key Laboratory of Processing Agricultural Products of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University 
REN Jian Key Laboratory of Processing Agricultural Products of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University 
ZHAO Li-Ying Bo-Tian Sugar Limited Company 
YANG Yong 1. Key Laboratory of Processing Agricultural Products of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University; 2.College of Food Science, Northeast Agricultural University 
摘要点击次数: 1585
全文下载次数: 1428
中文摘要:
      目的 建立起近红外光谱技术关于甜菜糖度的最佳预测模型。方法 研究了Savitzky-Golay平滑处理、Savitzky-Golay导数、均值中心化、差分求导、净分析信号、去趋势校正、标准正态变量变换和多元散射校正等8种预处理方法的多方法联用处理进行光谱数据的预处理, 结合光谱波段优选, 建立甜菜糖度与近红外光谱的预测模型。结果 在进行模型的评价时, 以误差均方根(SEP)、校正标准误差(SEC)与交叉检验误差(SECV)作为评价指标。结论 发现经过光谱波段优选之后, 结合Savitzky-Golay平滑、Savitzky-Golay导数、去趋势校正及均值中心化进行光谱数据的预处理得到的模型效果最佳。
英文摘要:
      Objective To establish the optimal forecast model of beet sugar content based on near-infrared spectroscopy. Methods Eight kinds of methods as Savitzky-Golay smoothing, Savitzky-Golay derivative, mean centering, differential derivative, net analytic signal, to the tendency calibration, standard normal variable transformations and multiplicative scatter correction were associated and combined with pre-ferable spectral bands choice to build the beet sugar content and the near-infrared spectrum prediction model. Results SEP, SEC and SECV were set as the evaluation index when evaluating the models. Conclusion The results show after the preferred spectrum bands choice, the preprocessing that combines Savitzky-Golay smoothing, Savitzky-Golay derivative, to the trend correction and mean centering can obtain the optimal model.
查看全文  查看/发表评论  下载PDF阅读器