郭培源,赵俊华,刘 硕,杨昆程,陈晓东.鸡肉中四环素残留量检测及健康风险评估[J].食品安全质量检测学报,2015,6(9):3614-3620
鸡肉中四环素残留量检测及健康风险评估
Detection of tetracycline residues in chicken and health risk assessment
投稿时间:2015-07-14  修订日期:2015-09-15
DOI:
中文关键词:  四环素,鸡肉,近红外光谱,食品安全指数,健康风险评估
英文关键词:Tetracycline  Chicken  Near infrared spectrum  Index of health food  
基金项目:国家自然科学(61473009)、北京市自然科学(4122020)、2015年研究生科研能力提升计划项目资助
作者单位
郭培源 北京工商大学计算机与信息工程学院 
赵俊华 北京工商大学计算机与信息工程学院 
刘 硕 北京工商大学计算机与信息工程学院 
杨昆程 北京工商大学计算机与信息工程学院 
陈晓东 北京工商大学计算机与信息工程学院 
AuthorInstitution
GUO Pei-Yuan College of Information Engineering,Beijing Technology and Business University;China; 
ZHAO Jun-Hua College of Information Engineering,Beijing Technology and Business University;China; 
LIU Shuo College of Information Engineering,Beijing Technology and Business University;China; 
YANG Kun-Cheng College of Information Engineering,Beijing Technology and Business University;China; 
CHEN Xiao-Dong College of Information Engineering,Beijing Technology and Business University;China; 
摘要点击次数: 1661
全文下载次数: 1626
中文摘要:
      摘 要:目的:随着人们生活品质的不断提高,人们越来越注重食品安全的相关问题。针对近年来市场上抗生素鸡肉事件的频繁发生,提出一种可以快速、准确的检测出鸡肉中四环素残留量的模型。并对其进行健康风险评估。方法:首先,利用近红外光谱仪采集肉鸡的光谱信息,通过多元散射校正法进行预处理。接着,使用区间偏最小二乘回归分析方法来建立预测模型,对四环素进行定量分析。然后,根据人体摄入四环素残留量数据计算出膳食的暴露量,从而引入食品安全指数指标,对鸡肉进行健康风险评估。最后,利用SOM人工神经网络对其实用性加以验证。结果:风险评估数学模型结合国家标准将鸡肉带来的风险分为:高、中、低3类,等级划分达到95.5%的正确率。结论:本实验研究方法,可以应用到其他相关的农产品检测和食品检测中,以保障食品安全。
英文摘要:
      ABSTRACT: Objective: With the improvement of people's living quality, more and more attention is paid to food safety issues. Antibiotic chicken events frequently occur on the market in recent years, putting forward a model to detect quickly and accurately so as to carry on the health risk assessment. Method : First, based on the multiple scattering correction method for pretreatment to collect chicken spectral information by near infrared spectrometer. Using interval partial least squares regression method to establish the forecast model to analyze the tetracycline quantitatively. Then According to the data of dietary with tetracycline residues, calculating the human body exposure introduces food safety index indicators to assess the health risk from the chicken. Finally, using SOM neural network verifies the practicality. Result: Risk assessment model combined with the national standard divides chicken risks into: high, medium and low. The accuracy rate of hierarchy can reach 95.5%.Conclusion: this study can be applied to test other related agricultural products and food industry to guarantee food security.
查看全文  查看/发表评论  下载PDF阅读器