赵慧,雷玉洁,张永迪,孟创鸽,周良付,王云阳.基于计算机视觉的午餐肉颜色测定系统研究[J].食品安全质量检测学报,2015,6(6):2256-2261
基于计算机视觉的午餐肉颜色测定系统研究
Study on color detecting system of luncheon meat based on computer vision
投稿时间:2015-05-26  修订日期:2015-06-16
DOI:
中文关键词:  计算机视觉系统  色差计  回归模型  午餐肉
英文关键词:computer vision  color difference meter  luncheon meat  regression model
基金项目:国家自然科学基金项目(31171761, 31371854)、陕西省科学技术研究发展计划项目(2014K13-14)
作者单位
赵慧 西北农林科技大学食品科学与工程学院 
雷玉洁 西北农林科技大学食品科学与工程学院 
张永迪 西北农林科技大学食品科学与工程学院 
孟创鸽 西北农林科技大学食品科学与工程学院 
周良付 西北农林科技大学食品科学与工程学院 
王云阳 西北农林科技大学食品科学与工程学院 
AuthorInstitution
Zhao Hui College of Food Science Engineering,Northwest A F University,Yang ling 712100 
Lei Yu-Jie College of Food Science Engineering,Northwest A F University,Yang ling 712100 
Zhang Yong-Di College of Food Science Engineering,Northwest A F University,Yang ling 712100 
Meng Chuang-Ge College of Food Science Engineering,Northwest A F University,Yang ling 712100 
Zhou Liang-Fu College of Food Science Engineering,Northwest A F University,Yang ling 712100 
Wang Yun-Yang College of Food Science Engineering,Northwest A F University,Yang ling 712100 
摘要点击次数: 1574
全文下载次数: 1621
中文摘要:
      目的 建立一种对午餐肉样品物理特性要求较少, 能对物料表面整体颜色进行准确测量的无损检测方法。方法 采用计算机视觉系统对24色色彩测试板测定得L, a, b值, 使用色彩色差计对24色色彩测试板测得L*, a*, b*值, 对两组数据进行线性回归; 计算机视觉系统测定午餐肉的L, a, b值, 带入回归方程得到标准的L, a, b值, 色彩色差计对午餐肉测定得L*, a*, b*值, 用SPSS软件对得到的标准L, a, b值和L*, a*, b*值进行成对样本检验。结果 L, a, b值回归方程的相关系数r2分别为0.9900、0.9707和0.9801, 有高度相关性; 午餐肉标准L, a, b值和L*, a*, b*值成对样本检验得到的P值分别为0.146、0.087、0.109, 大于显著性水平0.05, 回归方程转换值与色差计测定结果无显著差异。结论 本文建立的基于计算机视觉的午餐肉颜色测定方法可以准确测定午餐肉颜色, 其效果可以代替色差计。
英文摘要:
      Objective To provide a nondestructive testing method with less requirement in physical characteristics of tested sample, which could measure the whole surface color of food accurately. Methods The data of L, a and b of 24 color test boards were measured by computer vision and color difference meter (CDM). Linear regression was done by the two groups of data. The two groups of data went through a paired-sample-test implemented by SPSS software. Results The correlation coefficient of L, a and b measured by computer vision system (CVS) and CDM were 0.9900, 0.9707 and 0.9801, respectively, which were highly correlated. P values of L, a and b through a paired-sample-test implemented by SPSS were 0.146, 0.087, and 0.109, respectively, which were bigger than the significant level 0.05. Thus these two methods had no obvious difference. Conclusion The CVS designed in this research can test the L, a and b values of luncheon meat accurately. CVS can replace the CDM for color detecting.
查看全文  查看/发表评论  下载PDF阅读器