曾 山,王海滨,张凤兵,白 俊.基于流形模糊聚类算法的高光谱图像猪肉品质分类研究[J].食品安全质量检测学报,2015,6(4):1421-1428
基于流形模糊聚类算法的高光谱图像猪肉品质分类研究
Study on Hyperspectral Image Technology Based onManifold Fuzzy Clustering for Pork Quality Classification
投稿时间:2015-03-10  修订日期:2015-04-15
DOI:
中文关键词:  高光谱图像  模糊C均值聚类  等距映射  猪肉品质
英文关键词:hyperspectral image  fuzzy C-mean clustering algorithm  isometric mapping  pork quality
基金项目:湖北省教育厅项目资助:基于高光谱图像的猪肉品质无损检测技术
作者单位
曾 山 武汉轻工大学数学与计算机学院 
王海滨 武汉轻工大学食品科学与工程学院 
张凤兵 武汉轻工大学食品科学与工程学院 
白 俊 武汉纺织大学数学与计算机学院 
AuthorInstitution
ZENG Shan College of Mathematics and Computer Science, Wuhan Polytechnic University 
WANG Hai-Bin College of Food Science and Engineering, Wuhan Polytechnic University 
ZHANG Feng-Bing College of Food Science and Engineering, Wuhan Polytechnic University 
BAI Jun Department of Mathematics and Computer Science,Wuhan Textile University 
摘要点击次数: 1852
全文下载次数: 1723
中文摘要:
      目的 以基于高光谱图像技术的冷鲜肉、解冻肉和变质肉的分类为研究对象, 针对特征维数过高的问题, 构建了一种基于流形模糊聚类算法的分类模型。方法 首先采用二维Gabor小波变换分别提取反应猪肉滴水损失、pH、颜色三种品质指标的14个特征波长下图像的8个纹理特征, 组成一个112维的特征变量作为猪肉品质的特征; 然后采用基于等距映射降维的模糊C均值聚类算法来构建猪肉品质分类模型。结果 通过猪肉品质分类实验得出, 二维Gabor小波变换能较好地提取猪肉的纹理特征; 与传统模糊C均值聚类算法相比, 基于等距映射降维的模糊C均值聚类算法能较好地解决高维样本聚类问题, 能准确地区分冷鲜肉、解冻肉和变质肉。结论 高光谱图像技术可应用于对猪肉品质分类。
英文摘要:
      Objective The classification of fresh chilled meat, frozen-thawed meat and spoiled meat based on the hyperspectral image technology as research object, and aiming at the problem of high feature dimension, a classification model based on manifold fuzzy clustering algorithm was established. Methods The 2D Gabor wavelet transform was used to extract the 8 texture features of image respectively under 14 characteristic wavelengths reflecting 3 kinds of quality index: drip loss, pH and color and thus forms a 112-dimensional feature variables as the feature of pork quality. Then the pork quality classification model was established through the fuzzy C-means clustering algorithm (FCM) based on Isometric Mapping (ISOMAP) dimensional reduction. Results The experiment of pork quality classification showed that 2D Gabor wavelet transform could effectively extract texture feature of pork. Compared with the traditional FCM clustering algorithm, FCM clustering algorithm based on ISOMAP dimensional reduction could better resolve the clustering problem of high dimensional samples and accurately distinguish the fresh chilled meat, frozen-thawed meat and spoiled meat. Conclusion The hyperspectral image technology could be used for pork quality classification.
查看全文  查看/发表评论  下载PDF阅读器