姚璐,丁亚明,马晓钟,郭如斌,尹中,王震,裘正军,沈立荣.基于高光谱成像技术的金华火腿无损分级检测研究[J].食品安全质量检测学报,2012,3(3):162-166
基于高光谱成像技术的金华火腿无损分级检测研究
Rapid non-destructive detection of grade classification in Jinhua ham by hyperspectral imaging technique
投稿时间:2012-06-18  修订日期:2012-07-13
DOI:
中文关键词:  高光谱成像技术  金华火腿  质量等级  无损分级  检测
英文关键词:hyperspectral imaging technique  Jinhua hams  quality grade  non-destructive classification  detection
基金项目:浙江省质监系统科研计划项目经费资助(20110238)
作者单位
姚璐 浙江大学生物系统工程与食品科学学院 
丁亚明 金华市质量技术监督检测院 
马晓钟 金华市汉邦食品有限公司 
郭如斌 金华市质量技术监督检测院 
尹中 金华市质量技术监督检测院 
王震 金华市质量技术监督检测院 
裘正军 浙江大学生物系统工程与食品科学学院 
沈立荣 浙江大学生物系统工程与食品科学学院 
AuthorInstitution
YAO Lu College of Biosystems Engineering and Food Science, Zhejiang University 
DING Ya-Ming Jinhua Quality and Technical Supervision Inspection Institute 
MA Xiao-Zhong Jinhua Hangban Food Co. Ltd. 
GUO Ru-Bin Jinhua Quality and Technical Supervision Inspection Institute 
YIN Zhong Jinhua Quality and Technical Supervision Inspection Institute 
WANG Zhen Jinhua Quality and Technical Supervision Inspection Institute 
QIU Zheng-Jun College of Biosystems Engineering and Food Science, Zhejiang University 
SHEN Li-Rong College of Biosystems Engineering and Food Science, Zhejiang University 
摘要点击次数: 3559
全文下载次数: 2500
中文摘要:
      目的 建立金华火腿的质量等级评判模型。 方法 采用高光谱成像仪检测不同质量等级的金华火腿样本, 结合数据分析软件对得到的图像信息作主成分分析(PCA)和偏最小二乘(PLS)分析。 结果 用PCA处理, 第一主成分(PC1)和第二主成分(PC2)的贡献率分别为86%和11%, 总贡献率为97%。PLS建立的判别模型中, 训练集和验证集的总体识别吻合率分别为96.19%和89.52%。 结论 将高光谱成像技术与一定的模式识别方法相结合建立评判模型, 是一种可行的金华火腿质量等级检验新技术。
英文摘要:
      Objective To establish an available method to evaluate the quality grades of Jinhua ham. Methods The samples of variety grades of Jihua ham were detected by hyperspectral imaging system, and the collected imaging informations were analyzed by using Principal Component Analysis (PCA) and Partial Least Squares (PLS) with data software. Results The PCA analysis results showed that the variances of PC1 and PC2 reached 86% and 11%, respectively, the total variance reached 98%. The detection model constructed with PCA showed that the total accuracy prediction of training set and prediction set for grade classification of Jinhua ham reached 96.19% and 89.52%, respectively. Conclusion Construction of detection model combined with hyperspectral imaging technique and suitable recognized methods is one of new practical techniques to detect Jinhua ham grade without destruction.
查看全文  查看/发表评论  下载PDF阅读器