DOI: 10.19812/j.cnki.jfsq11-5956/ts.20241219008

引用格式:林强,申贇魁,杨超,等. 冷冻诱导液液萃取结合超高效液相色谱-串联质谱法同时检测水果中 12 种烟碱类农药[J]. 食品安全质量检测学报,2025,16(4):71-77.

LIN Q, SHEN YK, YANG C, *et al.* Simultaneous determination of 12 kinds of nicotine pesticides in fruits by ultra performance liquid chromatography-tandem mass spectrometry coupled with cold induced liquid-liquid extraction [J]. Journal of Food Safety & Quality, 2025, 16(4): 71–77. (in Chinese with English abstract).

冷冻诱导液液萃取结合超高效液相色谱-串联 质谱法同时检测水果中 12 种烟碱类农药

林强¹, 申贇魁¹, 杨超¹, 李美丽¹, 王佳¹, 蒋定国^{2*}, 范赛^{3*}

(1. 北京市延庆区疾病预防控制中心,北京 102100; 2. 国家食品安全风险评估中心,北京 100021;3. 北京市疾病预防控制中心,北京市预防医学研究中心,北京 100013)

摘 要:目的 建立冷冻诱导液液萃取结合超高效液相色谱-串联质谱法同时检测水果中12种烟碱类农药的检测 方法。**方法** 水果样品使用乙腈提取,经盐析、振荡、离心后,使用乙腈-水溶液进行冷冻诱导液液萃取,进一步富 集和净化,结合超高效液相色谱质谱联用仪,使用多反应监测模式采集数据,同位素内标法定量。**结果** 12种烟碱 类化合物在 1~500 ng/mL 线性范围内方法线性良好(*r*² > 0.999),检出限为 2.15~3.60 µg/kg,方法定量限为 7.11~13.01 µg/kg。12 种烟碱类化合物加标回收率为 73.1%~126.7%,相对标准偏差为 3.5%~13.3%。**结论** 该 方法操作简便、精密度高、稳定性好,适用于水果样品中烟碱类化合物的筛查检测工作。 关键词:超高效液相色谱-串联质谱法;水果;烟碱类农药

Simultaneous determination of 12 kinds of nicotine pesticides in fruits by ultra performance liquid chromatography-tandem mass spectrometry coupled with cold induced liquid-liquid extraction

LIN Qiang¹, SHEN Yun-Kui¹, YANG Chao¹, LI Mei-Li¹, WANG Jia¹, JIANG Ding-Guo^{2*}, FAN Sai^{3*}

 Beijing Yanqing District Center for Disease Control and Prevention, Beijing 102100, China;
 China National Center for Food Safety Risk Assessment, Beijing 100021, China;
 Beijing Center for Disease Prevention and Control, Beijing Center for Preventive Medicine Research, Beijing 100013, China)

ABSTRACT: Objective To establish a detection method for 12 kinds of nicotine pesticides in fruits by ultra performance liquid chromatography-tandem mass spectrometry coupled with cold induced liquid-liquid extraction. **Methods** Fruit samples were extracted using acetonitrile, and after salting out, shaking, and centrifugation, they were subjected to freeze

收稿日期: 2024-12-19

基金项目:北京市食品风险监测项目(BJSP2021101345)

第一作者: 林强(1986—), 男, 硕士, 副主任医师, 主要研究方向为卫生检验方向。E-mail: 412163050@qq.com

*通信作者: 蒋定国(1974—), 男, 博士, 研究员, 主要研究方向为食品安全。E-mail: jiangdingguo@cfsa.net.cn 范赛(1982—), 男, 博士, 研究员, 主要研究方向为食品安全。E-mail: fansai@163. com induced liquid-liquid extraction using acetonitrile water solution for further enrichment and purification. Combined with ultra performance liquid chromatography mass spectrometry, data was collected using a multi reaction monitoring mode, and quantified using isotope internal standard method. **Results** The linear range of 12 kinds of nicotine compounds was 1–500 ng/mL, and the method showed good linearity ($r^2>0.999$). The limits of detection were 2.15–3.60 µg/kg, and the method limits of quantification were 7.11–13.01 µg/kg. The recovery rates of 12 kinds of nicotine compounds were 73.1%–126.7%, and the relative standard deviations were 3.5%–13.3%. **Conclusion** This method is easy to operate, has high precision, and good stability, and is suitable for screening and detecting nicotine like compounds in fruit samples.

KEY WORDS: ultra performance liquid chromatography-tandem mass spectrometry; fruits; nicotine pesticides

0 引 言

新烟碱类农药是一种新型的广谱类杀虫剂,主要通 过控制昆虫的神经系统烟碱乙酰胆碱酯酶受体(nAChRs), 麻痹昆虫的中枢神经系统,致使昆虫死亡^[1]。新烟碱类农 药在杀死害虫的同时,会对蜜蜂等非靶标生物造成的负面 影响,研究表明,亚致死剂量的新烟碱类农药会影响蜜蜂 的生殖、生长发育,从而影响农作物的授粉^[2],同时,新烟 碱类农药对陆生动物也会产生致死作用^[3]。2019 年,美国 环境保护署撤销了 13 种含有噻虫嗪和噻虫胺的农药产品 登记,2022 年,欧盟计划撤销噻虫嗪在所有农产品上的最 大残留限量^[4]。我国作为新烟碱类农药的生成和使用大国, 建立蔬菜、水果中新烟碱类农药的检测方法,对于开展残 留量限值提供数据支持,具有重要意义。

目前,新烟碱类农药的检测方法主要有液相色谱-串联 质谱法[5-10]、高效液相色谱法[11-15]、气相色谱-质谱法[16-19]、 气相色谱法^[20-21]、液相色谱法^[20-21]、分子印迹技术^[22]以及 快速检测方法^[23-25]等。液相色谱-串联质谱法灵敏度高、抗 干扰能力强,是新烟碱类农药的主要检测方法。相关研究 表明^[5,7,26],使用 QuEChERS 结合液相色谱-串联质谱法检 测蔬菜中新烟碱类农药时,需要使用除水剂和净化材料对 样品进行净化处理,操作相对复杂,同时样品净化效果不 佳,目标物出现基质抑制或增强效应,需使用基质匹配曲 线进行定量,在检测多种水果时,空白基质样品不易得 到。冷冻诱导液液萃取技术是在液液萃取技术基础上形成 的^[27]。在低温条件下,乙腈在水相中的溶解度逐渐下降,从 而诱导乙腈与水相分离。大量的目标化合物溶解在上层乙腈 相,进一步调节乙腈-水混合溶液中乙腈的比例,可以实现 目标物的富集和净化。冷冻诱导液液萃取无需使用其他化学 试剂,在低温条件下,样品便可达到富集和净化的效果,操 作相对简便、易行,适合水果中烟碱类农药的检测工作。

基于以上研究背景,本研究使用 QuEChERS 方法对 样品进行前处理,使用冷冻诱导液液萃取对样品进行富集 和净化,无需使用净化试剂耗材,结合超高效液相色谱-串 联质谱法,采用同位素内标法定量,无需寻找空白基质样 品建立基质匹配曲线。该方法的建立可以为后续开展新烟 碱类农药的检测提供支持。

1 材料与方法

1.1 材料、试剂与仪器

检测 200 份水果样本来源于 2024 年食品风险监测采 集样品。

甲醇、乙腈、甲酸、甲酸铵(色谱纯,美国 Fisher 公司); 硫酸镁、氯化钠、醋酸钠、柠檬酸钠、柠檬酸氢二钠(优级 纯,中国医药集团有限公司);陶瓷均质子(50 mL 管,美国 安捷伦公司)。12 种烟碱类农药混合标准物质:呋虫胺、烯 啶虫胺、噻虫嗪、环氧虫啶、噻虫胺、吡虫啉、氯噻啉、 啶虫脒、噻虫啉、哌虫啶、氟啶虫胺腈、氟吡呋喃酮(质量 浓度 100 mg/L,天津阿尔塔公司);9 种同位素内标:呋虫 胺-D3、噻虫胺-D3、烯啶虫胺-D3、吡虫啉-D4、氯噻啉-D4、 啶虫脒-D3、噻虫嗪-D3、爆虫啉-D4、氟啶虫胺腈-D3(质 量浓度 100 mg/L,天津阿尔塔公司)。

QTRAP 6500 超高效液相色谱仪(美国 SCIEX 公司); 艾卡 MS 3 Basic 旋涡振荡器(德国 IKA 公司); Centrifuge 5810 R 高速冷冻离心机(美国艾本德公司); Milli-Q IQ 7005 超纯水器(美国 Millipore 公司); DW-40L262 超低温冰箱(中国 海尔公司); Thermo Fisher TM Accucore aQ 色谱柱(150 mm× 2.1 mm, 2.6 µm)(美国 THERMO 公司)。

1.2 溶液的配制

流动相 A 相: 准确量取 979 mL 去离子水, 加入 1 mL 甲酸, 加入 0.315 g 甲酸铵, 超声溶解。再加入 20 mL 甲醇, 超声混匀, 过 0.22 μm 滤膜备用。

流动相 B 相: 准确量取 19 mL 去离子水, 加入 1 mL 甲酸, 加入 0.315 g 甲酸铵, 超声溶解。在 980 mL 甲醇中 加入上述液体, 超声混匀, 过 0.22 μm 滤膜备用。

9 种同位素内标使用液(1.0 mg/L):分别准确吸取 1.00 mL的呋虫胺-D3、噻虫胺-D3、烯啶虫胺-D3、吡虫 啉-D4、氯噻啉-D4、啶虫脒-D3、噻虫嗪-D3、噻虫啉-D4、 氟啶虫胺腈-D3 同位素内标溶液,用乙腈定容至10 mL,得到 质量浓度为10 mg/L的同位素内标储备液。吸取1.00 mL内 标储备液,用乙腈定容至10 mL,得到质量浓度为1.0 mg/L 的同位素内标使用液体。

12种烟碱类农药标准混合使用液(1.0 mg/L):吸取 1.0 mL 混合标准溶液,用乙腈稀释,得到质量浓度为 10 mg/L 的标准 混合溶液。使用乙腈将上述标准混合溶液稀释,得到质量 浓度为 1.0 mg/L 的 12 种烟碱标准混合使用液。

混合标准工作溶液:准确吸取上述标准混合使用液 和内标混合使用液,使用 40%乙腈水溶液为溶剂,得到质 量浓度分别为 0、1.00、5.00、10.00、50.00、100.00、200.00、 500.00 ng/mL 的 12 种烟碱类混合标准系列溶液,9 种同位 素内标质量浓度为 20.0 ng/mL。

1.3 样品前处理

1.3.1 样品的取样和保存

蔬菜和水果的取样量按照相关标准的规定执行。样品 取样部位按照 GB 2763—2021《食品安全国家标准 食品中 农药最大残留限量》的规定执行。对于个体较小的样品,取 样后全部处理;对于个体较大的基本均匀样品,可在对称 轴或对称面上分割或切成小块后处理;对于细长、扁平或 组分含量在各部分有差异的样品,可在不同部位切取小片 或截成小段后处理;取后的样品将其切碎,充分混匀,用 四分法取样或直接放入组织捣碎机中捣碎成匀浆,放入聚 乙烯瓶中。将样品保存置于-18 ℃冷藏保存。

1.3.2 样品提取

称取 10 g试样(精确至 0.01 g)于 50 mL 塑料离心管中, 先后加入 0.20 mL 同位素内标使用液、10 mL 乙腈,振荡 1 min,然后加入 4 g 硫酸镁、1 g 氯化钠、1 g柠檬酸钠、 0.5 g柠檬酸氢二钠及 1 颗陶瓷均质子,盖上离心管盖,剧烈 振荡 1 min 后,4 ℃、10000 r/min 离心 5 min。上清液待净化。 1.3.3 富集、净化

吸取1mL上清液至离心管中,加入1.5mL纯水,涡旋混匀。放置于-40℃冰箱中冷冻30min,取上层乙腈相200μL,放置于内衬管中,上机测定。

1.4 仪器条件

1.4.1 液相色谱条件

色谱柱: Thermo Fisher TM Accucore aQ (150 mm× 2.1 mm, 2.6 μm)。流动相: A 相为水:甲醇=98:2(含 5 mmol 甲酸铵和 0.1%甲酸), B 相为甲醇:水=98:2(含 5 mmol 甲酸 铵和 0.1%甲酸)。梯度洗脱程序: 0~4.0 min, 20% B; 4.0~5.5 min, 40% B; 5.5~10.5 min, 100% B; 10.5~13.9 min, 100% B; 13.9~15.0 min, 100% A; 15.0~20.0 min, 100% A。 流速: 0.4 mL/min。柱温: 35 ℃。进样量: 2 μL。

1.4.2 质谱参考条件

电喷雾离子源(正离子模式),喷雾电压: 5.5 kV。离子 源温度: 500 ℃。气帘气: 35 psi。喷雾气: 60 psi。辅助加热 气: 60 psi。碰撞气: Medium。扫描模式: 多离子反应监测 模式(multiple reaction monitoring, MRM)。具体参数见表 1。

Table 1	Mass spectrum	parameters	of target con	npound	
物质名称	母离子	子离子	碰撞能量	去簇电压	
	(m/z)	(<i>m</i> / <i>z</i>)	/V	/V	
呋虫胺	203.1	139.0*	17	- 40	
		157.0	13		
烯啶虫胺	271.1	225.1*	16	30	
		136.0	40		
噻虫嗪	292.0	211.1*	18	- 20	
	_,	181.1	31		
		136.0*	50	-	
环氧虫啶	323.2	151.1	30	40	
		277.0	20		
噻中胺	250.0	169.1*	19	- 10	
陸山成	250.0	132.0	24		
吡中啉	256.1	175.1*	25	20	
"HL-14"/IF	250.1	209.1	22	20	
复噻啉	262.0	181.0*	20	20	
来心至小作	202.0	132.1	40	20	
腔山唑	222.1	136.0*	28	20	
贬玉叶	223.1	56.2	20	- 20	
確市職	252.0	136.0*	30	20	
噬虫师	255.0	90.1	50	- 20	
底山底 1	2/7.2	321.2*	18	20	
哌虫啶Ⅰ	367.2	263.1	22	- 20	
底中吃 。	2/7.2	306.1*	35	20	
哌虫啶 2	367.2	137.1	31	20	
复吃古时	± 270.0	173.9*	13		
 ,東	頁 278.0	153.9	40	- 20	
每山中中	iii 2 00 0	136.1*	25	- 20	
弗 吡 呋 唎 P	问 289.0	90.0	60		
呋虫胺-D	3 206.0	132.0	17	20	
噻虫胺-D	3 253.0	172.1	17	10	
烯啶虫胺-I	03 274.0	228.1	17	10	
吡虫啉-D4	4 260.1	213.1	21	20	
氯噻啉-D	4 266.0	185.0	21	10	
啶虫咪-D	3 226.0	136.2	30	10	
噻虫嗪-D	3 295.0	214.2	17	20	
噻虫啉-D-	4 257.1	136.1	30	20	
氟啶虫胺腈·	-D3 281.2	177.1	14	20	

表1 目标化合物质谱参数

注:带*为定量离子。

1.5 数据处理

本研究使用 OriginPro 2021 (64-bit),版本号: 9.8.0.200,对相关数据进行绘图。使用 SPSS 19.0 中文修改 版对数据进行统计分析。

2 结果与分析

2.1 提取试剂的优化

本研究在文献^[28,29]的基础上,对提取试剂进行了优化。分别考察了乙腈、30%乙腈-水、50%乙腈-水、80%乙腈-水作为提取溶剂进行实验分析,结果见图 1。实验结果 表明,当使用纯乙腈作为提取溶剂时,目标化合物的提取 效率最高,因此选择乙腈作为提取溶剂。

2.2 样品净化方式的优化

本研究考察了 12 种烟碱类农药在 40%、50%、60%、 70%和 80%乙腈含量(乙腈-水溶液)下进行冷冻诱导液液萃 取时的富集倍数,结果见图 2。检测结果表明,随着乙腈水 溶液中乙腈比例的不断降低,12 种烟碱类农药(除烯啶虫胺 外)富集倍数逐渐增加。当乙腈比例降低至 30%时,乙腈和 水相分离消失。因此选择 40%乙腈水溶液进行冷冻诱导液

图 2 12 种农药在不同比例乙腈水的富集倍数分布 Fig.2 Distribution of enrichment factors for 12 kinds of pesticides under different proportions of acetonitrile water solution

液萃取,对样本进行净化和富集。

本研究对比了不同冷冻温度下,12种烟碱类农药在乙 腈水溶液中发生冷冻诱导液液萃取的时间。实验结果表明, 在-40℃时,30 min 出现分层现象。在-20℃时,70 min 出 现分层。但是如果长时间放置于低温冰箱(-20℃、-40℃) 中,整个试管会出现结冰现象。为提升工作效率,本研究 选用-40℃作为冷冻温度对样品进行处理。

为解决烯啶虫胺等中等极性化合物富集在水相层的 情况,本研究使用 40%乙腈-水溶液稀释标准物质,同时按 照上述条件进行冷冻诱导液液萃取处理。

2.3 质谱条件的优化

分别配制 12 种烟碱类农药混合标准溶液和 9 种烟碱 类混合同位素内标溶液,在正离子扫描模式下,分别将两 种混合溶液通过针泵注入质谱,通过母离子全扫描,确定 定量离子和定性离子,在 MRM 模式下,分别优化质谱的 碰撞能量、去簇电压、雾化气、气帘气,具体数值见表 1。

2.4 流动相的选择

本研究分别对比了乙腈、甲醇和 5 mmol 甲酸铵、0.1% 甲酸作为流动相对目标化合物的分离程度,研究结果表明, 使用 A 相为水:甲醇=98:2(含 5 mmol 甲酸铵和 0.1%甲酸),B 相为甲醇:水=98:2(含 5 mmol 甲酸铵和 0.1%甲酸)为流动 相时,12 种目标化合物能够分离,且色谱峰峰形对称。12 种目标化合物色谱图见图 3。

2.5 基质效应

按照上述处理方法处理水果样品(苹果、葡萄、梨),上 机检测若无目标物,则为空白基质提取液。使用该空白基质 提取液配制质量浓度范围在 1.0~100 µg/L 的基质混合标准 溶液, 与纯溶剂配制的标准曲线同时上机检测, 以目标化 合物的峰面积为纵坐标(Y),质量浓度为横坐标(X, μg/L)绘 制标准曲线。根据基质溶液标准曲线的斜率与纯溶剂配制 的标准曲线(不含同位素内标)斜率的比值来评价基质效应, 若斜率比值介于 0.8~1.2 之间,则认为基质效应不明显,对 检测结果没有影响; 若斜率比值超过上述范围, 则表明存在 基质效应,影响检测结果^[30]。实验结果表明,12种烟碱类农 药的 ME 值在 78.5%~132.1%之间, 表明部分目标化合物存 在基质效应, 为降低基质效应对检测结果的影响, 本研究采 用同位素内标校准工作曲线,可有效降低基质效应带来的 影响。本研究有9种目标物使用对应的9种同位素内标定量, 其余3种目标物通过加标回收率实验,确定同位素内标进行 定量,具体见表 2。按照上述评价基质效应的方法,计算基 质溶液标准曲线的斜率与纯溶剂配制的标准曲线(含同位素 内标)的斜率的比值,实验结果表明,12种烟碱类农药的基 质效应值在 85.2%~115.6%之间,满足实验要求。根据以上 基质效应评估的结果,在进行实际样品定量检测时,可以用 标准曲线(含同位素内标)代替基质匹配标准工作曲线。

注: FCA. 呋虫胺; XDCA. 烯啶虫胺; SCQ. 噻虫嗪; HYCD. 环氧虫啶; SCA. 噻虫胺; PCL. 吡虫啉; LSL. 氯噻啉; FPFNT. 氟吡呋喃酮; FDCAJ. 氟啶虫胺腈; DCM. 啶虫咪; SCL. 噻虫啉; PCD1. 哌虫啶 1; PCD2. 哌虫啶 2。 图 3 12 种烟碱类农药的 MRM 色谱图

1 1g.5	wikiw enrollatograms of 12 kinds of meotine pesticides	

	表 2	12 种烟碱类化合物的线性范围、相关系数、LODs 和 LOQs
Table 2	Linear rang	ge, correlation coefficients, LODs and LOQs of 12 kinds of nicotine pesticides

	9	/	,	1	
化合物	线性范围/(µg/L)	相关系数(r)	LODs/(µg/kg)	LOQs/(µg/kg)	同位素内标
呋虫胺	1~500	0.9961	2.50	8.28	呋虫胺-D3
烯啶虫胺	1~500	0.9992	3.13	10.30	烯啶虫胺-D3
噻虫嗪	1~500	0.9995	2.60	8.84	噻虫嗪-D3
环氧虫啶	1~500	0.9999	3.01	9.93	烯啶虫胺-D3
噻虫胺	1~500	0.9992	2.15	7.10	噻虫胺-D3
吡虫啉	1~500	0.9975	2.20	7.36	吡虫啉-D4
氯噻啉	1~500	0.9991	3.10	10.36	氯噻啉-D4
啶虫咪	1~500	0.9992	2.25	7.43	啶虫脒-D3
噻虫啉	1~500	0.9961	2.30	7.79	噻虫啉-D4
哌虫啶1	1~500	0.9995	2.45	8.09	噻虫啉-D4
哌虫啶 2	1~500	0.9985	3.40	11.45	噻虫啉-D4
氟啶虫胺腈	1~500	0.9992	3.60	13.01	氟啶虫胺腈-D3
氟吡呋喃酮	1~500	0.9975	2.54	8.38	氟啶虫胺腈-D3

注: 检出限(limit of detection, LOD); 定量限(limit of quantitation, LOQ)。

2.6 线性范围、检出限和定量限

按照 1.2 方法配制 12 种烟碱类农药化合的同位素内标标准工作曲线。12 种烟碱类化合物的线性范围、相关系数见表 2。选取空白水果样品,添加 12 种烟碱类化合物混合标准溶液,按照 1.3 前处理方法处理,以 *S/N=*3 确定各目标化合物的 LOD,以 *S/N=*10 确定各目标化合物的 LOQ。实验结果表明,12 种烟碱类化合物在 1~500 ng/mL 线性范围内方法线性良好(*r*² > 0.999), LOD 为 2.15~3.60 μg/kg, LOQ 为 7.10~13.01 μg/kg。

2.7 方法的精密度和准确度

选取草莓、香瓜、葡萄3种水果样品添加低、中、高

3 种浓度的 12 种烟碱类农药标准物质,每类样品检测 8 次 平行加标回收实验,计算加标回收率和测定结果的相对标 准偏差(relative standard deviation, RSD),实验结果表明(具 体见表 3),3 类样品中 12 种烟碱类农药的平均回收率为 73.1%~126.7%, RSDs 为 3.5%~13.3%,表明该检测方法的 准确度高,稳定性好,适合开展水果样品中 12 种烟碱类农 药的检测。

2.8 实际样品测定

利用本研究建立的方法对 200 份水果样本进行检测, 12 种烟碱类农药检出率为 35.5%, 其中, 噻虫嗪的浓度为 <2.60~56.3 μg/kg, 噻虫胺的浓度为<2.15~86.7 μg/kg, 啶虫 脒的浓度为<2.25~35.9 µg/kg,其他化合物检出率较低。

表 3 加标回收率与 RSDs(%, n=6) Table 3 Spiked recoveries and RSDs (%, n=6)

	15 µg/kg		100 µg/kg		800 µg/kg	
化合物	平均 回收率	RSDs	平均 回收率	RSDs	平均 回收率	RSDs
呋虫胺	83.2	11.7	93.6	8.9	101.6	3.5
烯啶虫胺	86.7	10.9	90.5	8.5	96.7	7.6
噻虫嗪	84.9	9.9	94.9	7.1	97.9	6.8
环氧虫啶	84.3	9.7	85.6	8.0	90.7	5.4
噻虫胺	85.1	11.0	91.6	7.4	94.2	3.8
吡虫啉	85.7	10.9	92.5	6.4	95.8	6.9
氯噻啉	73.1	8.7	89.0	8.5	93.5	8.1
啶虫咪	88.8	10.2	93.2	8.3	98.8	5.8
噻虫啉	85.7	10.5	98.3	8.1	97.6	7.2
哌虫啶1	80.6	9.7	99.3	5.5	90.2	3.5
哌虫啶 2	91.4	11.7	89.3	7.2	96.4	6.7
氟啶虫胺腈	83.3	11.4	97.7	6.3	94.6	5.5
氟吡呋喃酮	126.7	13.3	94.6	8.9	102.6	3.8

使用食品风险监测标准操作规章中 12 种烟碱类农药 检验方法对上述 200 份水果样品进行检测。对两种分析方 法的检测结果使用配对 t 检验分析, 双侧检验, 检验水准: a=0.05, 结果表明 P>0.05, 不能拒绝两种分析方法检测结 果存在差异。表明本研究建立的方法检测结果一致, 适用 于开展水果中烟碱类农药检测工作。同时, 该方法的 LOD、 LOQ 均低于品风险监测标准操作规章中烟碱类农药检测 方法,满足水果中烟碱类农药检测需求。

3 结 论

本研究使用冷冻诱导液液萃取技术对样品进行富集 和净化,结合超高效液相色谱-串联质谱法进行检测,采用 同位素内标法准确定量,建立了水果样品中多种烟碱类化 合物的检测方法。与其他检测方法相比,该方法操作简便、 灵敏度高、稳定性好,适用于水果样品中多种烟碱类农药 的快速筛查和检测工作。

参考文献

 [1] 谭海军. 中国创制新烟碱类杀虫剂的研究与开发进展[J]. 世界农药, 2023, 45(1): 1–12, 55.
 TAN HJ. Research and development progress on the creation of new

nicotine insecticides in China [J]. World Pesticide, 2023, 45(1): 1–13, 55.
[2] 吕冰,辛少鲲,陈达炜,等. 盐析辅助液液萃取交联聚维酮净化靶向单
一离子监测/高分辨质谱法测定蜂蜜中新烟碱类农药残留[J]. 分析测
试学报, 2018, 37(6): 639–645.

LV B, XIN SK, CHEN DW, et al. Determination of neonicotinoid residues in honey by target single ion monitoring/high resolution mass

spectrometry combined with salting-out assisted liquid liquid extraction and PVPP cleanup [J]. Journal of Instrumental Analysis, 2018, 37(6): 639–645.

- [3] 张琪,赵成,卢晓霞,等.新烟碱类杀虫剂对非靶标生物毒性效应的研究进展[J]. 生态毒理学报,2020,15(1): 56-71. ZHANG Q, ZHAO C, LU XX, et al. Advances in research on toxic effects of neonicotinoid insecticides on non-target organisms [J]. Asian Journal of
- Ecotoxicology, 2020, 15(1): 56-71.
 [4] 郭林宇,袁龙飞,崔素娟,等. 欧盟新烟碱类农药噻虫嗪管理政策调整及应对建议[J]. 农产品质量与安全, 2022(6): 87-93.
 GUO LY, YUAN LF, CUI SJ, *et al.* EU new nicotine pesticide thiamethoxam management policy adjustment and response suggestions [J]. Quality and Safety of Agro-Products, 2022(6): 87-93.
- [5] 黄丁宁, 缪丹施,赵巧灵,等. QuEChERS 结合超高效液相色谱-串联 质谱法同时测定果蔬中 13 种新烟碱类农药残留[J]. 食品安全质量检 测学报, 2023, 14(9): 186–194.

HUANG DN, LIAO DN, ZHAO QL, *et al.* Simultaneous determination of 12 kinds of neonicotinoid pesticides in fruits and vegetables by QuEChERS combined with ultra performance liquid chromatographytandem mass spectrometry [J]. Journal of Food Safety & Quality, 2023, 14(9): 186–194.

- [6] 陈慧斐,阳曦,刘玮,等. QuEChERS-液相色谱-串联质谱法同时测定 枸杞干果中新烟碱类农药残留[J]. 食品安全导刊, 2022(28): 62–64. CHEN HF, YANG X, LIU W, *et al.* Simultaneous determination of neonicotinoid pesticide residues in dried lycium by QuEChERS-liquid chromatography-tandem mass spectrometry [J]. China Food Safety Magazine, 2022(28): 62–64.
- [7] 吴洁珊,林俊燕,倪清泉,等. 高效液相色谱-串联质谱法测定中草药 中多种新烟碱类农药的残留量[J]. 食品安全质量检测学报, 2019, 10(13): 4003-4008.

WU JS, LIN JY, NI QQ, *et al.* Determination of residues of various neonicotinoid insecticides in Chinese herbal medicine by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(13): 4003–4008.

[8] 王霞,张维谊,王敏,等.分散固相萃取-超高效液相色谱-串联质谱法 同时测定蔬菜中10种新烟碱类农药残留[J].分析试验室,2023,42(7): 897–902.

WANG X, ZHANG WY, WANG M, *et al.* Simultaneous determination of ten neonicotinoid pesticides in vegetables by dispersed solid-phase extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2023, 42(7): 897–902.

[9] 吴洁珊, 倪清泉, 徐日文, 等. 高效液相色谱-串联质谱法测定陈皮中 7 种新烟碱类农药残留[J]. 食品安全质量检测学报, 2021, 13(11): 4622-4627.

WU JS, NI QQ, XU RW, *et al*. Determination of 7 kinds of neonicotinoid pesticide residues in pericarpium citri reticulatae by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 13(11): 4622–4627.

[10] 李娜,黄海智,俞晓平,等.基于金属有机骨架的分散固相萃取-高效 液相色谱法测定麦冬等样品中6种新烟碱类农药残留[J].分析试验室, 2024,43(3):355-363.

LI N, HUANG HZ, YU XP, et al. Determination of six neonicotinoid

pesticides residues in *Ophiopogonis* samples by dispersed solid phase extraction combined with high performance liquid chromatography based on metal-organic frameworks [J]. Chinese Journal of Analysis Laboratory, 2024, 43(3): 355–363.

[11] 段丽村, 徐芳, 夏清海, 等. QuEChERS-高效液相色谱法测定云南省食用花卉中 4 种烟碱农药残留[J]. 现代预防医学, 2016, 43(20): 3780-3784.
 DUAN LC, XU F, XIA OH, *et al.* Determination of 4 neonicotinoid

pesticides residues in edible flowers in Yunnan by QuEChERS-HPLC [J]. Modern Preventive Medicine, 2016, 43(20): 3780–3784.

- [12] 卢海博,魏东,王素利,等. 分散固相萃取结合 HPLC 法测定张杂谷 中新烟碱类杀虫剂的残留[J]. 农药, 2018, 57(7): 511–515.
 LU HB, WEI D, WANG SL, *et al.* Determination of neonicotinoid insecticides in hybrid millet using dispersive solid-phase extraction and HPLC [J]. Agrochemicals, 2018, 57(7): 511–515.
- [13] WATANABE E, IWAFUNE T, BABA K, et al. Organic solvent-saving sample preparation for systematic residue analysis of neonicotinoid insecticides in agricultural products using liquid chromatography-diode array detection [J]. Food Analytical Methods, 2016, 9(1): 245–254.
- [14] HUI D, WANG RY, WEI L, et al. A spherical metal-organic coordination polymer for the microextraction of neonicotinoid insecticides prior to their determination by HPLC [J]. Microchimica Acta, 2019, 186(2): 1–8.
- [15] 侯如燕, 卞红正, 赵秀霞, 等. 固相萃取-液相色谱测定复杂基质蔬菜 中9 种烟碱类残留[J]. 分析测试学报, 2011, 30(1): 58-63.
 HOU RY, BIAN HZ, ZHAO XX, et al. Determination of nicotinoid residues in complicated matrix vegetables by solid phase extraction and HPLC method [J]. Journal of Instrumental Analysis, 2011, 30(1): 58-63.
- [16] 郑娣, 叶延东, 鲁芳. 气相色谱-三重四级杆串联质谱法测定茶叶中茚 虫威、溴虫腈、啶虫脒残留[J]. 食品安全质量检测学报, 2016, 7(12): 4919-4924.

ZHENG D, YE YD, LU F. Determination of indoxacarb, chlorfenapyr and acetamiprid residues in tea by gas chromatography-triple quadrupole mass spectrometry [J]. Journal of Food Safety & Quality, 2016, 7(12): 4919–4924

- [17] 许秀莹,施海燕,王鸣华. 气相色谱-质谱联用测定大米中 6 种烟碱类 农药残留[J]. 质谱学报, 2012, 33(2): 99.
 XU XY, SHI HY, WANG MH. Determination of six neonicotinoid pesticides residue in rice by GC/MS [J]. Journal of Chinese Mass Spectrometry Society, 2012, 33(2): 99.
- [18] GAWEL M, KILJANEK T, NIEWIADOWSKA A, et al. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry [J]. Food Chemistry, 2019, 282: 36–47.
- [19] 方丽,林晨,王李平,等. 气质联用法测定叶菜类蔬菜中的氟虫腈及其 代谢物残留量[J]. 安徽农业科学, 2020, 48(17): 206-209.
 FANG L, LIN C, WANG LP, *et al.* Determination of fipronil and its metabolite residues in leafy vegetables by gas chromatography-mass spectrometry [J]. Journal of Anhui Agricultural Sciences, 2020, 48(17): 206-209
- [20] 潘永波,张艳玲. 气相色谱法测定香蕉中的噻嗪酮和吡虫啉[J]. 农药, 2013, 52(12): 903.

PAN YB, ZHANG YL. Gas chromatography method for determination of

buprofezin and imidacloprid in bananas [J]. Agrochemicals, 2013, 52(12): 903.

- [21] 李广领,姜金庆,王自良,等. 气相色谱法检测卷心菜中啶虫脒和吡虫 啉残留[J]. 西北农业学报, 2010, 19(9): 71–74.
 LI GL, JIANG JQ, WANG ZL, *et al.* Determination of acetamiprid and imidacloprid residue in cabbage by gas chromatography [J]. Acta Agriculturae Boreali-occidentalis Sinica. 2010, 19(9): 71–74.
- [22] 买迪,陈聪宇,郁婧仪,等.分子印迹技术在新烟碱类杀虫剂残留检测中的应用[J].理化检验(化学分册), 2020, 56(12): 1332–1339.
 MAI D, CHEN XY, YU JY, et al. Molecular imprinting technology in neonicotinoid insecticides application in residue detection [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1332–1339.
- [23] 马明. 氯噻啉免疫分析方法研究[D]. 南京: 南京农业大学, 2016.
 MA M. The development of immunoassays for imidaclothiz [D]. Nanjing: Nanjing Agricultural University, 2016.
- [24] 丁葵英, 许文娟, 郭礼强, 等. 液相色谱-串联质谱法测定蔬菜中烟碱 类化合物的基质效应研究[J]. 食品安全质量检测学报, 2019, 10(10): 2949–2954.
 DING KY, XU WJ, GUO LQ, *et al.* Matrix effects of neonicotinoid

pesticides in vegetables with liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(10): 2949–2954.

- [25] 施海燕,盛恩泽,马明,等. 氯噻啉胶体金增强免疫层析分析方法的建立[J]. 分析化学, 2017, 45(3): 403–408.
 SHI HY, SHENG ENZ, MA M, *et al.* Development of an enhanced colloidal gold immunochromatographic assay for detection of imidalothiz [J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 403–408.
- [26] 周然锋,彭茂民,刘丽,等. 金属卤化物 CH₃NH₃PbBr₃ 钙钛矿量子点 快速检测新烟碱类农药[J]. 发光学报, 2024, 45(4): 688–698.
 ZHOU RF, PENG MM, LIU L, *et al.* Rapid detection of neonicotinoids by metal halide CH₃NH₃PbBr₃ perovskite quantum dots [J]. Chinese Journal of Luminescence, 2024, 45(4): 688–698.
- [27] LI SH, REN J, ZHANG YP, et al. A highly-efficient and cost-effective pretreatment method for selective extraction and detection of perchlorate in tea and dairy products [J]. Food Chemistry, 2020, 328: 127113.
- [28] LI XT, CHEN JH, HE XP, et al. Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 234: 224–231.
- [29] MA LF, WANG YF, LI HP, et al. Development of QuEChERS-DLLME method for determination of neonicotinoid pesticide residues in grains by liquid chromatography-tandem mass spectrometry [J]. Food Chemistry, 2020, 331: 127190.
- [30] MATUSZEWSKI BK, CONSTANZER ML, CHAVEZ-ENG CM, et al. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS [J]. Analytical Chemistry, 2003, 75: 3019–3030.

(责任编辑: 蔡世佳 安香玉)