DOI: 10.19812/j.cnki.jfsq11-5956/ts.20241218006

引用格式: 史晓梅, 张巍巍, 武进普, 等. 气相色谱-串联质谱法和液相色谱-串联质谱法快速测定葡萄中 45 种农药残留[J]. 食品安全质量检测学报, 2025, 16(12): 77-87.

SHI XM, ZHANG WW, WU JP, *et al.* Rapid determination of 45 kinds of pesticide residues in *Vitis vinifera* by gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2025, 16(12): 77–87. (in Chinese with English abstract).

气相色谱-串联质谱法和液相色谱-串联质谱法快 速测定葡萄中 45 种农药残留

史晓梅^{1,2}, 张巍巍^{1,2}, 武进普^{1,2}, 吕朝政^{1,2}, 高 曼^{1,2}, 蔡沅锟^{1,2}, 钱承敬^{1,2}, 丁子元^{1,2*}

(1. 中粮营养健康研究院, 北京 102209; 2. 北京市营养健康与食品安全重点实验室, 北京 102209)

摘 要:目的建立气相色谱-串联质谱法(gas chromatography-tandem mass spectrometry, GC-MS/MS)和液相 色谱-串联质谱法(liquid chromatography-tandem mass spectrometry, LC-MS/MS)快速检测葡萄中 45 种农药 残留的分析方法。方法 葡萄样品使用乙腈经振荡提取和超声辅助提取后,上清液用混合吸附填料进行分散固 相萃取净化,高速离心后过滤膜,分别用 GC-MS/MS 的选择反应监测(selected reaction monitoring, SRM)模式和 LC-MS/MS 的多反应监测(multiple reaction monitoring, MRM)模式进行检测。结果 溴氰菊酯在 0.1~1.0 mg/kg、 克菌丹在 0.2~3.0 mg/kg、甲霜灵等 28 种农药在 0.04~1.00 mg/kg、甲氨基阿维菌素苯甲酸盐等 15 种农药在 0.1~1.0 mg/kg 的浓度范围内具有良好的线性关系,相关系数达到 0.99 以上。检出限为 0.00020~0.05000 mg/kg, 定量限为 0.00050~0.15000 mg/kg。45 种农药在 3 个不同加标水平的平均加标回收率为 70.3%~117.0%,相对 标准偏差为 0.01%~14.30%。结论 本方法无需复杂样品前处理设备即可实现葡萄中 45 种农药残留的快速检 测,准确性好,操作简便,能够很好满足葡萄中多农药残留日常监测分析工作的要求。

关键词: 多农药残留; QuEChERS; 气相色谱-串联质谱法; 液相色谱-串联质谱法; 葡萄; 快速测定

Rapid determination of 45 kinds of pesticide residues in *Vitis vinifera* by gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry

SHI Xiao-Mei^{1,2}, ZHANG Wei-Wei^{1,2}, WU Jin-Pu^{1,2}, LV Chao-Zheng^{1,2}, GAO Man^{1,2}, CAI Yuan-Kun^{1,2}, QIAN Cheng-Jing^{1,2}, DING Zi-Yuan^{1,2*}

(1. COFCO Nutrition & Health Research Institute, Beijing 102209, China;2. Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China)

收稿日期: 2024-12-18

基金项目: 国家重点研发计划项目(2019YFC1604805)

第一作者: 史晓梅(1986—), 女,硕士,高级工程师,主要研究方向为粮食质量安全检测技术。E-mail: shi_xiaomei@cofco.com *通信作者: 丁子元(1984—), 男,博士,正高级工程师,主要研究方向为粮食储运与应用技术。E-mail: dingziyuan@cofco.com

ABSTRACT: Objective To establish a method for the rapid determination of 45 kinds of pesticides residues in *Vitis vinifera* by gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). **Methods** The *Vitis vinifera* samples were first extracted with acetonitrile by vibration and ultra-sonic. Then the mix adsorbents were used in dispersive solid phase extraction to purify the extract. After high speed centrifugation and filtration, the samples were detected by GC-MS/MS using selected reaction monitoring (SRM) mode, and LC-MS/MS using multiple reaction monitoring (MRM) mode. **Results** Deltamethrin exhibited good linearity within the concentration range of 0.1 to 1.0 mg/kg, while captan showed linearity within the concentration range of 0.1–1.0 mg/kg, while captan showed linearity within the concentration range of 0.1–1.0 mg/kg, with correlation coefficients reached 0.99 or above. The limits of detection were in the range of 0.00020–0.05000 mg/kg, the limits of quantitation were in the range of 0.00050–0.15000 mg/kg. The spiked recoveries at 3 levels of 45 kinds of pesticides were in range of 70.3%–117.0%, the relative standard deviations were in range of 0.01%–14.30%. **Conclusion** With features such as accuracy and easy operation, this method can be used to fast determination of 45 kinds of pesticides in *Vitis vinifera* without any special samples pretreatment apparatus, and also satisfies the requirement of pesticide routine analysis.

KEY WORDS: multiple pesticide residues; QuEChERS; gas chromatography-tandem mass spectrometry; liquid chromatography-tandem mass spectrometry; *Vitis vinifera*; rapid determination

0 引 言

葡萄(Vitis vinifera)是一种重要的鲜食和加工用水果, 富含可溶性糖、酸、维生素、类黄酮、多酚等营养物质和 抗氧化物质,具有改善心脑血管循环、提高抵抗力等重要 功能作用, 深受广大消费者喜爱[1]。在葡萄种植过程中, 农 药的施用是为了提高产量和保证质量, 然而农药的滥用误 用会造成环境的污染,同时也会威胁到人类的身体健康^[2]。 为了保障葡萄产品质量安全,我国制定了严格的农药残留 限量标准,即GB 2763—2021《食品安全国家标准 食品中 农药最大残留限量》。欧盟、国际食品法典委员会(Codex Alimentarius Commission, CAC)、日本、美国等国家或组织 也均对葡萄中的农药残留设定了严格的最大残留限量 (maximum residue limits, MRLs)^[3-4]。王俊玲等^[5]曾报道 67 批次葡萄样品中腐霉利检出率可达86.57%, 农药残留超标 率为 1.49%; 张仙等^[6]曾报道 124 个葡萄样品的农药残留 检出率为 46.8%, 氯氟氰菊酯和氯氰菊酯的超标率分别为 3.2%和 0.8%。因此, 建立快速准确的葡萄中多农药残留检 测方法具有重要意义,能够为保障我国葡萄安全生产和进 口葡萄的质量安全提供依据。

葡萄中农药残留含量属于痕量范围,葡萄基质特别复杂,干扰较为严重^[7-8]。农药残留分析的主流方法是气相色 谱法(gas chromatography, GC),由于气相色谱法受到基质干 扰的影响较大,因而检测结果经常会出现假阳性问题^[9]。近 年来,随着质谱技术的发展与进步,气相色谱-串联质谱法 (gas chromatography-tandem mass spectrometry, GC-MS/MS)和 液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry, LC-MS/MS)可以将色谱出色的定量 功能和质谱优异的定性功能相结合,能够有效解决葡 萄检测中的假阳性问题^[10-13]。葡萄中农药残留检测前 处理方法包括固相萃取^[14-15]、基质固相分散^[16-18]、分 散固相萃取^[19-20]、固相微萃取^[21]、超临界流体色谱^[22] 等。固相萃取法等需要预处理、上样、洗脱等多个步 骤,消耗溶剂较多,成本较高;超临界流体色谱法则需 要较为昂贵的仪器设备。2003 年美国农业部的研究人员 开发出一种具有快速(quick)、简单(easy)、经济(cheap)、高 效(effective)、可靠(rugged)和安全(safe)等优点的分散固相 萃取法,即 QuEChERS 方法^[23-27],它利用在提取液中充分 涡旋的分散吸附填料,去除待测样品基质中色素、糖类、 有机酸等干扰物^[28-32],从而实现复杂样品中多农药残留快 速、高效、准确的测定^[33-37]。

本研究将超声提取技术与 QuEChERS 方法相结合, 建立 GC-MS/MS 和 LC-MS/MS 技术快速检测葡萄中 45 种 农药化合物,以期广泛应用于葡萄的农药残留分析中,能 够满足实验室日常检测需求。

1 材料与方法

1.1 材料与试剂

葡萄样品购自当地市场。

45 种农药标准品和内标化合物环氧七氯(纯度均大于 95%,德国 Dr.Ehrenstorfer GmbH 公司);乙腈、正己烷、 丙酮(色谱纯,美国 Fisher 试剂公司);无水硫酸镁、无水氯 化钠、无水乙酸钠、乙酸(分析纯,国药集团化学试剂有限 公司);C₁₈、石墨化碳(graphitized carbon black, GCB)、伯仲 胺(primary secondary amine, PSA)(粒径 55 μm, 天津博纳艾 杰尔科技有限公司)。

1.2 仪器与设备

TQ8030 气相色谱-串联质谱仪(日本岛津公司); AB Secix 5500 液相色谱-串联质谱仪(上海 SCIEX 分析仪器贸 易有限公司); TG 16-II 台式高速离心机(长沙平凡仪器仪表 有限公司); BSA 224S-CW 电子天平(感量 0.1 mg, 德国赛 多利斯公司); SB-3200 DTDN 超声波清洗机(宁波新芝生物 科技股份有限公司); HGC-24A 氮吹仪(天津恒奥科技发展 有限公司); QL-902 旋涡混合器(海门其林贝尔仪器制造有 限公司); DB-5 MS 色谱柱(30 m×0.25 mm, 0.25 μm)(美国安 捷伦公司); Capcell Pak C₁₈柱(2.0 mm×100 mm, 3.0 μm)(日 本资生堂 Shiseido 公司)。

1.3 实验方法

1.3.1 样品前处理

试样制备:取代表性葡萄样品,经缩分后,将其切碎,充 分混匀放入食品加工器粉碎,均匀分散,制成待测样,备用。

提取:称取试样 10 g(精确至 0.01 g)于 50 mL 离心管中,加入 20 mL 乙腈,同时加入 1 g(精确至 0.01 g)乙酸钠和 4 g(精确至 0.01 g)氯化钠,用手摇动 0.5 min。将离心管在超声波发生器中超声提取 20 min。提取过程中,超声波发生器中需放入冰袋,防止水温上升。超声结束后,将 6 g(精确至 0.01 g)无水硫酸镁加入 50 mL 离心管中,快速剧烈振摇,防止无水硫酸镁结块,大约需 3 min。将离心管放入离心机中,在 8000 r/min离心 5 min。取上清液 5 mL,待净化。

净化: 于预称量好的 10 mL 净化管(含有 25 mg GCB、 125 mg PSA 和 500 mg 无水硫酸镁)中加入上述 5 mL 提取 液, 拧紧盖子, 剧烈振荡 3 min, 使净化剂在溶液中均匀充 分的运动。将离心管放入离心机中, 在 8000 r/min 离心 5 min, 然后使用 0.22 μm 滤膜过滤上清液待用。

定容: 往样品瓶中加入质量浓度为 35 mg/L 的环氧七 氯标准溶液 40 µL, 加入 960 µL 上述净化上清液, 混匀, 待 GC-MS/MS 分析。

另将上述净化上清液直接装样品瓶中,进行 LC-MS/MS分析。

1.3.2 GC-MS/MS 条件

色谱柱: DB-5 MS (30 m×0.25 mm, 0.25 µm); 程序升温条 件: 50 ℃保持 1 min, 以 25 ℃/min 升至 125 ℃, 10 ℃/min 升至 300 ℃; 后运行温度 300 ℃, 后运行时间 10 min; 总运行时间 31.5 min; 载气: 高纯氦气, 纯度≥99.999%, 恒流模式, 流 速为 1.0 mL/min; 进样口温度: 280 ℃; 进样方式: 不分流 进样; 进样量: 1.0 µL; 质谱检测器: 接口温度 280 ℃, 离 子源温度 230 ℃, 质谱电离方式为电子轰击电离源 (electron ionization, EI), 电离能量为 70 eV, 碰撞气为高纯 氩 气, 扫 描 模 式 为 选 择 反 应 监 测 (selected reaction monitoring, SRM)模式。 1.3.3 LC-MS/MS 条件

色谱条件: 色谱柱 Capcell Pak C₁₈柱(2.0 mm×100 mm, 3.0 μm); 柱温 30 °C; 进样体积 10 μL。流动相 A 为含 0.1% 甲酸水溶液, 流动相 B 为乙腈, 梯度洗脱程序见表 1, 流速 为 0.2 mL/min。

表1 流动相梯度洗脱条件

Table 1	Gradient elution condition	s for mobile phase
时间/min	A/%	B/%
0	90	10
0.5	90	10
2.0	70	30
5.0	20	80
5.5	5	95
7.0	5	95
7.1	90	10
13.0	90	10

质 谱 条 件: 采 用 电 喷 雾 离 子 源 (electron spray ionization, ESI), ESI 正离子模式,毛细管电压: 5.0 kV; ESI 源温度: 500 ℃;雾化气压力(GS1): 60 Psi;加热辅助气压 力(GS2): 60 Psi; 帝气压力(curtain gas, CUR): 20 Psi;碰撞 气压力: Medium;碰撞室入口电压(entrance potential, EP): 10 V;碰撞室出口电压(collision cell exit potential, CXP): 13 V; 驻留时间: 100 ms。

ESI 负离子模式, 毛细管电压: -4.5 kV; 离子源温度: 500 ℃; 雾化气压力(GS1): 60 Psi; 加热辅助气压力(GS2): 60 Psi; CUR: 20 Psi; 碰撞气压力: Medium; EP: -10 V; CXP: -13 V; 驻留时间: 100 ms。扫描方式: 多反应监测(multiple reaction monitoring, MRM)模式。

1.4 数据处理

前处理过程中平行样品测定 3 次,方法学验证采用 5 次重复验证实验。应用 TQ8030 和 AB Secix 5500 自带软件 工作站及 Office Excel 2019 进行数据处理和谱图处理。

2 结果与分析

2.1 仪器方法优化

2.1.1 GC-MS/MS 条件优化

在进行 GC-MS/MS 条件优化时,不同种类的目标化 合物经气相色谱柱分离、离子源电离后进入质谱检测器, 首先通过全扫描模式选择特征母离子,再通过子离子扫描 模式选择响应较高的子离子,这些离子不能与样品基质中 干扰物电离产生的离子相同。采用 SRM 模式,每个农药化 合物选择1对定量离子,1对定性离子,30种农药化合物的 质谱参数优化结果见表2。通过使用 SRM 方式可以准确定 性气相色谱上不容易分离的农药化合物,并有效降低葡萄 样品基质对于农药化合物的干扰。

Ta	ble 2 Retention time	and SRM characterist	ic ions for the determ	ination of 30 kinds of	pesticide residues by	GC-MS/MS
序号	名称	保留时间/min	定量离子对	碰撞能量/eV	定性离子对	碰撞能量/eV
1	霜霉威	8.36	188.2>173.2	4	188.2>72.0	4
2	嘧霉胺	9.77	198.1>183.1	14	198.1>118.1	28
3	甲霜灵	10.84	249.2>190.1	8	206.1>132.1	20
4	毒死蜱	11.44	196.9>168.9	14	313.9>257.9	14
5	三氯杀螨醇	11.72	139.0>111.0	16	139.0>75.0	28
6	噻虫嗪	11.95	212.0>139.0	12	212.0>125.0	10
内标	环氧七氯	12.21	352.8>262.9	14	354.8>264.9	20
7	克菌丹	12.40	149.0>105.0	6	149.0>70.0	20
8	腐霉利	12.44	283.0>96.0	10	285.0>96.0	10
9	百菌清	12.87	265.8>133.0	36	228.8>168.0	24
10	己唑醇	13.16	214.0>159.0	20	214.0>172.0	20
	缬霉威1	13.38	100 0 110 0	-	124.0: 02.0	15
11 -	缬霉威 2	13.55	158.0>116.0	5	134.0>93.0	15
12	腈菌唑	13.42	179.1>125.0	14	179.1>152.0	8
13	氟硅唑	13.62	233.1>165.1	14	233.1>152.1	14
14	烯唑醇	14.04	268.0>232.0	12	270.0>234.0	10
15	肟菌酯	14.65	222.1>190.1	4	222.1>130.1	12
16	戊唑醇	15.08	250.1>125.1	22	125.1>89.0	18
17	氯氟氰菊酯-1	15.25		0	197.0>141.0	10
17 -	氯氟氰菊酯-2	15.48	197.0>161.0	8		12
18	异菌脲	15.57	314.0>245.0	12	314.0>56.0	22
19	联苯菊酯	15.71	181.1>166.1	12	181.1>179.1	12
20	甲氰菊酯	15.90	181.1>152.1	22	265.1>210.1	12
21	氟丙菊酯	16.66	289.1>93.0	14	289.1>77.0	26
22	氯氟氰菊酯	16.68	181.1>152.1	24	163.1>127.0	14
23	螺螨酯	17.35	312.0>109.0	20	312.0>277.0	6
24	腈苯唑	18.01	198.1>129.1	10	129.1>102.1	18
	氯氰菊酯-1	18.35				
-	氯氰菊酯-2	18.45	1(2,1), 107,1	1	1(2.1) 01.0	14
25 -	氯氰菊酯-3	18.50	163.1>127.1	0	163.1>91.0	14
-	氯氰菊酯-4	18.55				
26	吡唑醚菌酯	19.33	164.1>132.1	14	164.1>77.0	28
27	苯醚甲环唑	19.68	323.0>265.0	14	265.0>202.0	20
20	溴氰菊酯-1	19.82	100 0: 151 0	22	252.0-02.0	20
28 -	溴氰菊酯-2	20.07	180.9>151.9	22	252.9>93.0	20
29	茚虫威	19.83	264.0>176.0	14	264.0>232.0	6
30	嘧菌酯	20.14	344.1>183.1	24	344.1>329.1	16

表 2 GC-MS/MS 测定 30 种农药的保留时间、SRM 特征离子

2.1.2 LC-MS/MS 条件优化

本研究依据 15 种农药化合物的分子结构特征,采用 针泵进样模式优化农药化合物的 LC-MS/MS 条件,分别选 择在正模式和负模式下进行全扫描确定母离子条件。通过 全扫描模式获得的结果包括乙基磷酸、芸苔素内酯和噁唑 菌酮很容易产生稳定的[M-H]分子离子,以上 3 种农药化 合物采用负离子模式,其他 12 种农药化合物采用正离子 模式。在产物离子(product ion, PI)扫描模式下,通过改变碰 撞电压(collision energy, CE),确定每种农药化合物的特征 碎片离子,最后优化 MRM 模式的其他参数,包括去簇电

81

压(declustering potential, DP)、EP和CXP等, 以获得更高的灵敏度, 最终优化的结果见表 3。

2.2 前处理方法优化

2.2.1 提取方法的优化

由于目标农药化合物的物化性质差异很大,需要建 立通用性高的样品前处理技术。QuEChERS 是本研究中 农药残留快速筛查的首选方法。实验过程利用超声波辅 助提取增强溶剂提取效率和重复性,减少人为因素干 扰。利用氯化钠和乙酸钠的盐析作用提高农药萃取效率, 利用无水硫酸镁脱除提取溶液中的水分^[38]。现在 QuEChERS 技术已经得到非常成熟的使用和改进,文献报 道乙腈溶剂中加一点酸能够提高有些农药的提取效率^[39], 因此本研究中比较了乙腈和加酸乙腈(1.0%甲酸乙腈)的 提取效果(图 1),结果显示大部分农药使用乙腈提取时比 使用 1.0%甲酸乙腈提取效果更好,说明对于葡萄基质来 说乙腈作为提取溶液更适合。

表 3 LC-MS/MS 测定 15 种农药残留的保留时间和相关 MS 参数 Table 3 Retention time and parameters of MS for the determination of 15 kinds of pesticide residues by LC-MS/MS

	-				-	-	
序号	名称	电离模式	保留时间/min	母离子	子离子	DP/V	CE/V
1	田氨其阿维蒂麦莱田硷也	EGL	4.00	886.6	158.15*	100.00	24.00
I	中気茲阿坦困系本中敗益	ESI+	4.96	886.6	126.30	100.00	28.00
2	业应告论	ESI	(12	276.2	149.00*	210.30	47.13
Z	唑雷困灰	E21+	0.43	276.2	176.20	203.92	51.84
2	フ甘磷酸	ESI	1.40	108.6	78.90*	-27.92	-20.98
3	乙至明阳	E31-	1.40	108.6	62.90	-28.23	-59.82
4 氟吡菌	复业黄融胺	ESI	6.55	397.1	173.10	75.00	21.00
	弗氏叩比 团 印兀 历女	E21+	0.55	397.1	208.10*	75.00	18.00
5	腔黄晒幽	ESI	4.52	289.3	120.00*	72.90	28.97
3	处困心性	E21+	4.55	289.3	92.00	76.00	47.66
(阿维古妻	ESI	9.72	890.5	305.20*	90.00	30.00
0	0 門北西永	E21+	8.72	890.5	567.35	90.00	25.00
7 芸苔素内	世艺妻内祀	ESI	5.00	479.2	128.90*	-209.01	-36.06
	云百杀内钼	E31-	5.99	479.2	331.20	-203.63	-36.29
8 烯酰吗啉	烧融四啦	ESI	6.14	388.1	301.00*	115.00	29.00
	개막 단그러 기타되	E21+	0.14	388.1	165.00	115.00	43.00
9 霜脲氰		EQL	4.96	199.1	128.10*	50.00	15.00
	相加不肯、	ESI+		199.1	111.10	50.00	20.00
	메노 라 매부	Tot.		256.1	209.00*	80.00	23.00
10 吡虫啉		ESI+	4.65	256.1	175.00	80.00	26.00
				411.1	125.10	67.00	20.00
11	亚胺唑	ESI+	7.46	411.1	171.00	67.00	18.00
				411.1	342.00*	75.00	22.00
12	复走nth	EQ.	(02	325.0	108.00*	75.00	23.00
12	 乱相唑	ESI+	6.92	325.0	261.00	80.00	17.00
12	海 时 注时	EQ.	7.60	465.0	372.85*	80.00	17.00
13		ESI+	7.69	465.0	338.00	78.00	21.00
1.4	西一庄	EQL	0.60	161.3	84.10*	81.96	84.00
14	芯 栄	E21+	8.09	161.3	69.00	75.05	69.00
				373.1	282.05	-78.00	-10.00
15	噁唑菌酮	ESI-	7.04	373.1	77.05	-67.00	-28.00
				373.1	328.90*	-67.00	-20.00

注:*为定量离子对。

2.2.2 净化填料的优化

QuEChERS 技术中常规使用的净化剂填料包括 GCB 和 PSA,对于葡萄这种色素和糖分含量都很高的样品,GCB 和 PSA 可以起到较好的净化效果。在净化步骤,使用 GCB 和 PSA 混合吸附填料的协同作用,能够有效去除葡萄基质中的干扰物质,如糖、长链脂类和类胡萝卜素等干扰物质。GCB 会造成某些平面结构农药的吸附,因而回收率无法达到要求。通过优化 GCB 用量发现(图 2),百菌清、嘧菌酯、 噁唑菌酮和联苯菊酯的加标回收率总体上随着 GCB 用量增加而降低。当 GCB 用量为 25 mg/mL 时,百菌清和嘧菌酯的加标回收率仅有 29.6%和 57.6%。因此净化步骤采用 5 mg/mL 的 GCB 用量净化处理样品提取溶液,既能有效去除葡萄基质中色素类干扰,再加上 PSA 的同时使用保证 45 种农药加标回收率在合理范围之内。通过使用以上净化填料条件,葡萄基质得到充分净化,嘧霉胺、氟吡菌

2.3 线性范围、检出限和定量限

在1.3.1和1.3.2的条件下,GC-MS/MS测定30种农药 化合物总离子流图(total ion chromatogram, TIC)见图 4, LC-MS/MS测定15种农药化合物TIC图见图 5。空白样品 是指经检测不含本研究测定45种农药化合物的葡萄样品, 用空白样品制备样品空白提取液,作为基质匹配标准溶液 的稀释液。将混合标准储备液逐级稀释为不同浓度的基质 匹配混合标准溶液进行测定,GC-MS/MS测定时以30种农 药的质量浓度对相应的定量离子对峰面积与内标环氧七氯 B定量离子对峰面积之比绘制标准曲线,求得线性方程及 相关系数。LC-MS/MS测定时以15种农药的质量浓度对 相应的定量离子对峰面积求得线性方程及相关系数。以10 倍信噪比计算方法的定量限(limit of quantitation, LOQ), 以3倍信噪比计算方法的检出限(limit of detection, LOD)详 见表4。在相应的线性范围内,45种农药的线性关系良好,

图 4 GC-MS/MS 测定 30 种农药组分基质匹配标准溶液的 TIC (0.5 mg/kg) Fig.4 TIC of 30 kinds of pesticides matrix-match standard solutions by GC-MS/MS (0.5 mg/kg)

图 5 LC-MS/MS 测定 15 种农药组分基质匹配标准溶液的 TIC (0.5 mg/kg) Fig.5 TIC of 15 kinds of pesticides matrix-match standard solutions by LC-MS/MS (0.5 mg/kg)

相关系数(r²)均大于 0.99。方法检测灵敏度好, 45 种农药的 LOQs 均小于国家标准限量规定。

2.4 加标回收率和精密度实验

称取 10 g 经粉碎混匀的葡萄样品,添加混合标准溶 液使样品的添加浓度分别为 0.05、0.10、0.50 mg/kg, 按 1.3 的实验方法进行分析,各添加水平下的平均回收率为 70.3%~117.0%、相对标准偏差(relative standard deviations, RSDs)为 0.01%~14.30%,具体见表 5。在低、中、高 3 水 平添加实验中,回收率能够满足国家标准要求,而且RSDs 均小于 15%,说明该方法的准确度和重复性能够满足实际 检测需求。

表 4 45 种农药的线性范围、线性方程、相关系数、LODs 和 LOQs Table 4 Linear ranges, linear equations, correlation coefficients, LODs and LOQs of 45 kinds of pesticides

					-	
序号	农药名称	线性范围/(mg/kg)	线性方程	相关系数(r ²)	LODs/(mg/kg)	LOQs/(mg/kg)
1	甲霜灵	0.04~1.00	<i>Y</i> =28.71 <i>X</i>	0.9999	0.00170	0.00500
2	毒死蜱	0.04~1.00	<i>Y</i> =20.65 <i>X</i>	0.9999	0.00170	0.00500
3	腐霉利	0.04~1.00	<i>Y</i> =20.89 <i>X</i>	0.9999	0.00170	0.00500
4	腈菌唑	0.04~1.00	<i>Y</i> =71.49 <i>X</i>	0.9999	0.00170	0.00500
5	联苯菊酯	0.04~1.00	<i>Y</i> =90.31 <i>X</i>	0.9999	0.00330	0.01000
6	戊唑醇	0.04~1.00	<i>Y</i> =47.73 <i>X</i>	0.9996	0.00170	0.00500
7	氯氰菊酯	0.04~1.00	<i>Y</i> =9.96 <i>X</i>	0.9986	0.03300	0.10000
8	溴氰菊酯	0.10~1.00	<i>Y</i> =1.12 <i>X</i>	0.9983	0.01700	0.05000
9	三氯杀螨醇	0.04~1.00	<i>Y</i> =28.89 <i>X</i>	0.9915	0.00330	0.01000
10	己唑醇	0.04~1.00	Y=18.81X	0.9989	0.00170	0.00500
11	甲氰菊酯	0.04~1.00	<i>Y</i> =6.17 <i>X</i>	0.9998	0.00170	0.00500
12	嘧霉胺	0.04~1.00	<i>Y</i> =69.94 <i>X</i>	0.9999	0.00170	0.00500
13	烯唑醇	0.04~1.00	Y = 65.35X	0.9984	0.00170	0.00500
14	氟丙菊酯	0.04~1.00	<i>Y</i> =58.14 <i>X</i>	0.9983	0.01670	0.05000
15	氯氟氰菊酯	0.04~1.00	<i>Y</i> =4.65 <i>X</i>	0.9994	0.00670	0.02000

						表 4(续)
序号	农药名称	线性范围/(mg/kg)	线性方程	相关系数(r ²)	LODs/(mg/kg)	LOQs/(mg/kg)
16	苯醚甲环唑	0.04~1.00	<i>Y</i> =21.90 <i>X</i>	0.9982	0.03300	0.10000
17	腈苯唑	0.04~1.00	<i>Y</i> =149.36 <i>X</i>	0.9994	0.00670	0.02000
18	噻虫嗪	0.04~1.00	<i>Y</i> =10.98 <i>X</i>	0.9972	0.03300	0.10000
19	克菌丹	0.20~3.00	<i>Y</i> =8.56 <i>X</i>	0.9963	0.00670	0.02000
20	肟菌酯	0.04~1.00	<i>Y</i> =67.80 <i>X</i>	0.9992	0.00670	0.02000
21	异菌脲	0.04~1.00	<i>Y</i> =1.00 <i>X</i>	0.9984	0.00670	0.02000
22	螺螨酯	0.04~1.00	<i>Y</i> =2.14 <i>X</i>	0.9997	0.01700	0.05000
23	霜霉威	0.04~1.00	<i>Y</i> =10.01 <i>X</i>	0.9997	0.00330	0.01000
24	缬霉威	0.04~1.00	<i>Y</i> =9.69 <i>X</i>	0.9980	0.01700	0.05000
25	茚虫威	0.04~1.00	<i>Y</i> =5.42 <i>X</i>	0.9984	0.03300	0.10000
26	嘧菌酯	0.04~1.00	<i>Y</i> =3.04 <i>X</i>	0.9965	0.00330	0.01000
27	吡唑醚菌酯	0.04~1.00	<i>Y</i> =2.16 <i>X</i>	0.9971	0.05000	0.15000
28	氟硅唑	0.04~1.00	<i>Y</i> =4.71 <i>X</i>	0.9991	0.00170	0.00500
29	氯氟氰菊酯	0.04~1.00	<i>Y</i> =8.54 <i>X</i>	0.9999	0.01700	0.05000
30	百菌清	0.04~1.00	<i>Y</i> =17.12 <i>X</i>	0.9965	0.00170	0.00500
31	甲氨基阿维菌素苯甲酸盐	0.10~1.00	$Y = 4.22 e^4 X$	0.9968	0.00030	0.00100
32	唑嘧菌胺	0.10~1.00	$Y = 4.02 e^5 X$	0.9923	0.00020	0.00050
33	乙基磷酸	0.10~1.00	<i>Y</i> =4622.74 <i>X</i>	0.9929	0.00670	0.02000
34	氟吡菌酰胺	0.10~1.00	$Y = 1.64 e^5 X$	0.9978	0.00020	0.00050
35	啶菌噁唑	0.10~1.00	$Y = 6.19 e^4 X$	0.9983	0.00030	0.00100
36	阿维菌素	0.10~1.00	<i>Y</i> =733.52 <i>X</i>	0.9991	0.00330	0.01000
37	芸苔素内酯	0.10~1.00	<i>Y</i> =55.69 <i>X</i>	0.9955	0.01700	0.05000
38	烯酰吗啉	0.10~1.00	$Y = 6.32 e^5 X$	0.9913	0.00020	0.00050
39	霜脲氰	0.10~1.00	$Y = 5.98 \mathrm{e}^4 X$	0.9991	0.00030	0.00100
40	吡虫啉	0.10~1.00	$Y = 1.01 e^5 X$	0.9931	0.00030	0.00100
41	亚胺唑	0.10~1.00	<i>Y</i> =14680.18 <i>X</i>	0.9959	0.00030	0.00100
42	氰霜唑	0.10~1.00	$Y = 1.17 e^5 X$	0.9974	0.00030	0.00100
43	氟啶胺	0.10~1.00	<i>Y</i> =274.54 <i>X</i>	0.9979	0.00670	0.02000
44	噁二嗪	0.10~1.00	<i>Y</i> =587.96 <i>X</i>	0.9986	0.01300	0.04000
45	噁唑菌酮	0.10~1.00	<i>Y</i> =677.75 <i>X</i>	0.9956	0.00330	0.01000

表 5 45 种农药添加实验的平均回收率和 RSDs (n=5) Table 5 Average recoveries and RSDs of 45 kinds of pesticide addition experiments (n=5)

农药夕称	0.05 mg/kg		0.10 mg	/kg	0.50 mg/kg	
	平均回收率/%	RSDs/%	平均回收率/%	RSDs/%	平均回收率/%	RSDs/%
甲霜灵	70.4	3.3	85.7	4.70	90.4	0.70
毒死蜱	109.7	6.2	85.8	0.01	86.4	2.80
腐霉利	84.0	4.8	81.7	3.70	85.4	4.80
腈菌唑	87.9	8.8	76.0	8.40	88.3	9.70
联苯菊酯	112.9	7.9	82.6	4.90	102.8	6.00
戊唑醇	102.0	2.8	95.1	7.60	109.4	4.90
氯氰菊酯	106.2	11.6	80.1	0.10	82.6	12.90
溴氰菊酯	110.3	2.9	104.8	1.90	82.0	10.10
三氯杀螨醇	110.5	5.4	107.5	11.80	83.5	7.60
己唑醇	107.5	1.6	107.4	6.50	107.9	4.30

RSDs/%

4.70

12.20

0.05 mg/kg

平均回收率/%

93.9

108.2

			表 5(续)
0.10 mg	/kg	0.50 mg	/kg
平均回收率/%	RSDs/%	平均回收率/%	RSDs/%
107.3	1.20	102.4	7.90
79.8	7.90	105.5	1.50
104.4	14.30	102.9	4.00
112.8	3.30	103.1	2.00
108.3	3.40	79.7	3.90
88.4	3.60	106.7	1.40
107.5	5.00	113.2	4.50
112.3	0.70	105.7	5.40
102.5	1 20	111 5	0.02

烯唑醇	104.6	5.00	104.4	14.30	102.9	4.00
氟丙菊酯	108.0	3.40	112.8	3.30	103.1	2.00
氯氟氰菊酯	117.0	1.60	108.3	3.40	79.7	3.90
苯醚甲环唑	109.2	2.40	88.4	3.60	106.7	1.40
腈苯唑	113.1	2.50	107.5	5.00	113.2	4.50
噻虫嗪	111.1	2.80	112.3	0.70	105.7	5.40
克菌丹	109.6	1.40	103.5	1.30	111.5	0.02
肟菌酯	110.2	2.40	108.9	10.60	107.8	7.60
异菌脲	107.6	4.80	96.8	4.50	114.5	6.30
螺螨酯	103.0	8.20	96.5	3.60	110.4	2.20
霜霉威	110.9	7.70	85.1	9.60	109.0	2.80
缬霉威	108.9	4.60	107.4	5.40	100.6	5.40
茚虫威	97.8	4.70	85.9	0.70	111.7	6.40
嘧菌酯	77.5	8.20	74.4	10.80	114.3	3.60
吡唑醚菌酯	105.4	1.60	85.7	2.20	101.7	4.80
氟硅唑	114.0	3.00	73.3	10.30	103.1	3.00
氯氟氰菊酯	115.1	2.40	96.3	2.40	92.9	10.00
百菌清	114.6	6.60	75.7	11.80	107.2	1.60
甲氨基阿维菌素苯甲酸盐	111.7	0.01	113.3	3.20	94.8	3.50
唑嘧菌胺	114.0	6.20	82.9	1.10	111.1	5.10
乙基磷酸	109.0	4.70	106.3	11.80	98.4	0.30
氟吡菌酰胺	107.5	1.20	85.8	1.30	103.3	0.80
啶菌噁唑	105.8	4.60	93.9	10.20	100.2	5.50
阿维菌素	105.4	9.60	70.3	9.30	101.6	1.70
芸苔素内酯	94.3	6.60	87.7	3.80	103.8	5.40
烯酰吗啉	104.2	4.50	87.0	2.20	100.9	6.80
霜脲氰	105.7	5.30	84.0	5.80	108.7	4.30
吡虫啉	115.2	2.00	108.5	13.80	105.6	2.90
亚胺唑	113.3	3.40	83.1	4.60	103.6	5.80
氰霜唑	109.6	4.90	76.5	9.80	100.1	4.60
氟啶胺	114.0	0.60	105.6	6.20	109.6	10.30
噁二嗪	103.4	5.00	81.2	5.90	110.1	5.10
噁唑菌酮	113.3	6.00	86.0	1.00	77.0	3.80

2.5 实际样品检测

农药名称

甲氰菊酯

嘧霉胺

利用本研究所开发的检测方法,对市场上销售的5批 次葡萄样品进行上述 45 种农药的筛查检测,结果见表 6。 实验结果表明,这5批次葡萄样品中检出嘧霉胺、氟吡菌 酰胺、吡虫啉和烯酰吗啉,但检出值远低于 GB 2763—2021 中对葡萄中农药最大残留限量的规定, 其中嘧 霉胺的 MRL 为 4.0 mg/kg, 氟吡菌酰胺的 MRL 为 2.0 mg/kg, 吡虫啉的 MRL 为 1.0 mg/kg, 烯酰吗啉的 MRL 为 5.0 mg/kg。 这 4 种农药的检出频率较高, 应当引起相关企业和监管部 门的重视,避免葡萄样品中农药残留的污染超标现象。

表 6 实际葡萄样品检测结果(mg/kg) Table 6 Detection results of real Vitis vinifera samples (mg/kg)

宏苏夕致			葡萄批议	κ		MDI
	1	2	3	4	G5	WIKL
嘧霉胺	0.010	ND	ND	ND	0.3600	4.0
氟吡菌酰胺	ND	0.0066	ND	ND	ND	2.0*
吡虫啉	ND	ND	0.0026	ND	ND	1.0
烯酰吗啉	ND	ND	ND	0.0011	ND	5.0

注:*代表临时限量规定,ND表示样品中没有检出该种农药。

3 结 论

本研究建立了 QuEChERS-GC-MS/MS 和 LC-MS/MS 快速检测葡萄中 45 种农药残留的分析方法,该方法在 0.05、0.10、0.50 mg/kg 的添加水平下,45 种农药的加标回 收率在 70.3%~117.0%之间, RSDs (*n*=5)小于 15%,45 种农 药的 LOQs 为 0.00050~0.15000 mg/kg, LODs 为 0.00020~0.05000 mg/kg。本方法操作简便快速,准确性好,无需特 殊的前处理装置,成本低廉,适合于葡萄农药残留的日常 检测。

参考文献

- 柳采秀,陈丽萍,吴长兴,等. 葡萄质量安全隐患与生产对策[J]. 浙江 农业科学, 2019, 60(11): 2089–2093.
 LIU CX, CHEN LP, WU CX, *et al.* Hidden dangers of grape quality and production countermeasures [J]. Zhejiang Agriculture Science, 2019, 60(11): 2089–2093.
- [2] 王念平,努尔孜亚·亚力买买提,陈浩宇,等.新疆葡萄园化学农药使用现状及存在问题和对策[J].东北农业科学,2024,49(4):35-40.
 WANG NP, NUERZIYA YLMMT, CHEN HY, *et al.* Investigation report on the use of chemical pesticides in grape cultivation and production in Xinjiang [J]. Journal of Northeast Agricultural Sciences, 2024, 49(4): 35-40.
- [3] 国际食品法典委员会. 食品中农兽药最大残留限量(MRLs)和风险管理 建议(RMRs)[EB/OL]. (2023-01-01) [2024-12-18]. https://www.fao.org/ fao-who-codexalimentarius/en/

Codex Alimentarius Commission. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods [EB/OL]. (2023-01-01) [2024-12-18]. https://www.fao.org/ fao-who-codexalimentarius/en/

- [4] 欧洲委员会. 2020 年欧盟关于食物农药残留的报告[EB/OL]. (2022-02-24) [2024-12-18]. https://food.ec.europa.eu/plants/pesticides_en European Commission. The 2020 European Union report on pesticide residues in food [EB/OL]. (2022-02-24). [2024-12-18]. https://food.ec.europa.eu/ plants/pesticides_en
- [5] 王俊玲,何晓露,贾斌,等. 2022年西昌市鲜食葡萄农药残留情况及膳 食摄入风险评估[J]. 实验室检测, 2023, 1(8): 45–53. WANG JL, HE XL, JIA B, *et al.* Pesticide residues and dietary intake risk assessment of fresh *Vitis vinifera* in Xichang City in 2022 [J]. Laboratory Testing, 2023, 1(8): 45–53.
- [6] 张仙, 彭西甜, 胡西洲, 等. 葡萄中 43 种农药残留的快速分析方法与 膳食暴露风险评估[J]. 食品科技, 2023, 48(11): 296–304.
 ZHANG X, PENG XT, HU XZ, *et al.* Rapid analysis method and dietary exposure risk assessment of 43 Kinds of pesticide residues in grapes [J].
 Food Science and Technology, 2023, 48(11): 296–304.
- [7] 丁静, 汪锦, 张晓敏, 等. 鲜食葡萄中农药残留检测及分析[J]. 化工管理, 2023, 12(35): 18–20.
 DING J, WANG J, ZHANG XM, *et al.* Detection and analysis of pesticide residues in table grapes [J]. Chemical Engineering Management, 2023, 12(35): 18–20.
- [8] 赵珊珊,李敏敏,肖欧丽,等.葡萄及其制品中农药残留现状及检测方 法的研究进展[J].食品安全质量检测学报,2020,11(18):6639-6655.

ZHAO SS, LI MM, XIAO OUL, *et al.* Research progress on the status and detection methods of pesticide residues in grapes and their products [J]. Journal of Food Safety & Quality, 2020, 11(18): 6639–6655.

- [9] TSUCHIYAMA T, KATSUHARA M, SUGIURA J, et al. Combined use of a modifier gas generator, analyte protectants and multiple internal standards for effective and robust compensation of matrix effects in gas chromatographic analysis of pesticides [J]. Journal of Chromatography A, 2019, 1589: 122–133.
- [10] 刘俊,杨飞,粟有志,等.QuEChERS-气相色谱-串联质谱法测定葡萄 干中的 80 种农药残留[J].分析科学学报,2020,36(1):88–94.
 LIU J, YANG F, SU YZ, et al. Determination of 80 pesticide residues in raisin by QuEChERS-gas chromatography-tandem mass spectrometry [J]. Journal of Analytical Science, 2020, 36(1): 88–94.
- [11] DU YT, WANG Q, YANG GL, et al. Determination of 43 pesticide residues in intact grape berries (*Vitis vinifera* L.) by using an ultrasound-assisted acetonitrile extraction method followed by LC-MS/MS [J]. Food Control, 2022, 140(109123): 1–8.
- [12] 余巍, 桂英爱, 毛希琴, 等. 气相色谱-串联质谱法测定葡萄中 78 种农 药残留的定量校准方法评估[J]. 农药学学报, 2022, 24(1): 189–196. YU W, GUI YAI, MAO XQ, *et al.* Evaluation of the calibration method on quantification of 78 kinds of pesticides in grape by gas chromatography- tandem mass spectrometry [J]. Chinese Journal of Pesticide Science, 2022, 24(1): 189–196.
- [13] FARAG M, AYMAN NS, ANWAR H, et al. Dissipation pattern, terminal residues, and risk assessment of flutriafol and cyflufenamid in grapes under egyptian field conditions [J]. ACS Agricultural Science & Technology, 2024, 4(12): 1292–1300.
- [14] 张霞, 王琳琳, 江曾杰, 等. 氟菌唑及其代谢物在葡萄中的动态残留分析及膳食风险评估[J]. 食品安全质量检测学报, 2024, 15(17): 74-82. ZHANG X, WANG LL, JIANG ZJ, et al. Dynamic residue analysis and dietary risk assessment of fluconazole and its metabolites in *Vitis vinifera* [J]. Journal of Food Safety & Quality, 2024, 15(17): 74-82.
- [15] 丰东升,王霞,李雪颖,等. 气相色谱-四极杆/飞行时间质谱法非靶向 快速筛查葡萄中农药多残留[J]. 农产品质量与安全, 2022, 5: 31–37. FENG DS, WANG X, LI XY, *et al.* Non-targeted rapid screening of multi-pesticide residues in grapes by gas chromatography-quadrupole-time of flight mass spectrometry [J]. Quality and Safety of Agro-Products, 2022, 5: 31–37.
- [16] ZHANG XZ, WANG XR, LUO FJ, et al. Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry [J]. Ecotoxicology and Environmental Safety, 2019, 172: 530–537.
- [17] LIAN YJ, PANG GF, SHU HR, et al. Simultaneous determination of 346 multiresidue pesticides in grapes by PSA-MSPD and GC-MS-SIM [J]. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9428–9453.
- [18] MAGALI K, MARISA D, GABRIELI B, et al. Balls-in-tube matrix solid phase dispersion (BiT-MSPD): An innovative and simplified technique for multiresidue determination of pesticides in fruit samples [J]. Journal of Chromatography A, 2020, 1612(460640): 1–8.
- [19] YERKANAT S, MEREKE A, PEDRO AG, et al. Greenness evaluation of sample preparation methods by GAPI for the determination of pesticides in grape: A review [J]. Trends in Environmental Analytical Chemistry,

2023, 39(e00206): 1-26.

- [20] TOHID O, HOSSEIN D, MIR AF, et al. Development of a continuous magnetic dispersive solid phase extraction method for the extraction of seven widely used pesticides from fruit juices [J]. Microchemical Journal, 2024, 98(110163): 1–9.
- [21] CHENG YP, ZHENG YQ, DONG FS, et al. Stereoselective analysis and dissipation of propiconazole in wheat, grapes, and soil by supercritical fluid chromatography-tandem mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 2017, 65(1): 234–243.
- [22] DENG HM, JI Y, TANG S, et al. Application of chiral and achiral supercritical fluid chromatography in pesticide analysis: A review [J]. Journal of chromatography A, 2020, 1634(461684): 1–15.
- [23] VARELA-MARTÍNEZ DA, GONZÁLEZ-CURBELO MÁ, GONZÁLEZ-SÁLAMO J, et al. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry [J]. Food Chemistry, 2019, 297: 124961.
- [24] WANG J, MOU ZL, DUAN HL, et al. A magnetic hyperbranched polyamide amine-based quick, easy, cheap, effective, rugged and safe method for the detection of organophosphorus pesticide residues [J]. Journal of Chromatography A, 2019, 1585: 202–206.
- [25] VARGAS-PÉREZ M, DOMÍNGUEZ I, GONZÁLEZ FJE, et al. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities [J]. Journal of Chromatography A, 2020, 1622(461118): 1–13.
- [26] RODRÍGUEZ-RAMOS R, SOCAS-RODRÍGUEZ B, SANTANA-MAYOR Á, et al. A simple, fast and easy methodology for the monitoring of plastic migrants in alcoholic and non-alcoholic beverages using the QuEChERS method prior to gas chromatography tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2020, 412(7): 1551–1561.
- [27] ZHENG Y, YU Y, ZHENG Y, et al. Simultaneous determination and dissipation behaviour of thifluzamide and difenoconazole in grapes using a QuEChERS method with ultra high-performance liquid chromatography and tandem mass spectrometry [J]. International Journal of Analytical Chemistry, 2019, 99(1-5):101–111.
- [28] MANUEL GV, CRISTINA P, PATRICIA P, et al. Development of QuEChERS-based multiresidue analytical methods to determine pesticides in corn, grapes and alfalfa [J]. Food Chemistry, 2023, 405(134870): 1–11.
- [29] LIU WG, SU YZ, LIU J, et al. Determination of cyflufenamid residues in 12 foodstuffs by QuEChERS-HPLC-MS/MS [J]. Food Chemistry, 2021, 362(130148): 1–8.
- [30] DIONYSIA LS, EPAMEINONDAS PT, CHAROULA ST, et al. Optimization and validation of analytical methodology for determination of pesticides in grape, must and wine samples with QuEChERS extraction and gas chromatography-mass spectrometry [J]. Beverages, 2024, 10(3):

53-53.

- [31] ZHOU ZE, ZHANG SJ, CHEN J, et al. Development and application of a new QuEChERS method coupled with UPLC-QTOF-MS/MS for analysis of tiafenacil and its photolysis products in water [J]. Journal of Agricultural and Food Chemistry, 2024, 72(48): 27007–27018.
- [32] KIM YK, BAEK EJ, NA TW, et al. LC-MS/MS and GC-MS/MS cross-checking analysis method for 426 pesticide residues in agricultural products: A method validation and measurement of uncertainty [J]. Journal of Agricultural and Food Chemistry, 2024, 72(41): 22814–22821.
- [33] LEE H, CHO Y, JUNG GH, et al. Comparison of recovery efficiency and matrix effect reduction in pesticide residue analysis: QuEChERS with d-SPE, SPE, and FaPEx in apples and Korean cabbage [J]. Analytical Methods, 2023, 15(30): 3709–3716.
- [34] QI PP, WANG J, LIU ZZ, et al. Fabrication of poly-dopamine-modified magnetic nanomaterial and development of integrated QuEChERS method for 122 pesticides residue analysis in fruits [J]. Journal of Chromatography A, 2023, 1708: 464336.
- [35] SABRIYE S, ÖZTURK EE, İKBAL K. Development of an analytical method for the determination of pesticides in tropical fruits by LC-QTOF-MS/MS after QuEChERS extraction sample cleanup and DLLME preconcentration [J]. Methods and Applications in Fluorescence, 2024, 12(1): 1–12.
- [36] CRISTIAN V, CARLOS MSN, CLAUDIO S, et al. What can insects tell us about the use of pesticides? The detection and quantification of chlorpyrifos via QuEChERS and head space-SPME methods using GC/MS/MS [J]. Agronomy, 2023, 14(1): 1–12.
- [37] LV SJ, LIU SY, ZANG CL, et al. Optimized QuEChERS method in determination of multiresidues on high-risk leafy vegetables and monitoring data analysis from 2021 to 2023 [J]. Microchemical Journal, 2024, 207: 112152.
- [38] 王柄钧,史晓梅,张巍巍,等. QuEChERS-超高效液相色谱-三重四极 杆质谱法快速检测主要原粮与油料中 101 种农药残留[J]. 食品安全质 量检测学报, 2021, 12(18): 7272–7280.
 WANG BJ, SHI XM, ZHANG WW, et al. Rapid determination of 101 kinds of pesticide residues in main raw grain and oil by QuEChERS-ultra performance liquid chromatography triple quadrupole mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(18): 7272–7280.
- [39] 苏漪玲, 吴延灿, 戚传勇, 等. QuEChERS-超高效液相色谱-串联质谱 法测定葡萄中 100 种农药及其代谢物[J]. 食品安全质量检测学报, 2021, 12(16): 6528-6536.

SU YL, WU YC, QI CY, *et al.* Determination of 100 kinds of pesticides and their metabolites in grapes by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(16): 6528–6536.

(责任编辑:于梦娇 安香玉)