DOI: 10.19812/j.cnki.jfsq11-5956/ts.20241212007

引用格式: 韦慧慰, 刘金明, 孙金影, 等. 高效液相色谱-串联质谱法测定野生蘑菇中毒样品中 5 种鹅膏肽类毒素[J]. 食品 安全质量检测学报, 2025, 16(9): 178–185.

WEI HW, LIU JM, SUN JY, *et al.* Determination of 5 kinds of peptide toxins in wild mushroom poisoning samples by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2025, 16(9): 178–185. (in Chinese with English abstract).

高效液相色谱-串联质谱法测定野生蘑菇中 毒样品中 5 种鹅膏肽类毒素

韦慧慰, 刘金明*, 孙金影, 唐 亮, 郑权东

(深圳市龙岗区疾病预防控制中心, 深圳 518172)

摘 要:目的 建立高效液相色谱-串联质谱法(high performance liquid chromatography-tandem mass spectrometry, HPLC-MS/MS)快速测定野生蘑菇中毒样品中 5 种鹅膏肽类毒素的分析方法。方法 剩余蘑菇和 患者尿液经甲醇提取, 250 mg N-丙基乙二胺(N-propyl ethylenediamine, PSA)吸附剂净化,采用 Waters CORTECS C₁₈⁺液相色谱柱分离待测物,以甲醇-2 mmol/L 乙酸铵(含 0.1%甲酸)为流动相,进行梯度洗脱。采用 HPLC-MS/MS 检测。结果 5 种鹅膏肽类毒素在 10.0~500.0 μ g/L 质量浓度范围内线性关系良好(*r*>0.997),蘑菇样品中 5 种毒素检出限(limits of detection, LODs)为 2.0~3.0 μ g/kg,定量限(limits of quantification, LOQs)为 5.0~10.0 μ g/kg,尿液样品中 5 种毒素 LODs 为 0.8~1.2 μ g/L, LOQs 为 2.0~4.0 μ g/L。方法回收率范围为 60.1%~94.9%,相对标准偏差为 2.0%~17.7% (*n*=6)。结论 该方法准确、快速,适用于食用野生蘑菇中毒事件 剩余蘑菇样品和患者尿液样品中鹅膏肽类毒素的检测。

关键词: 高效液相色谱-串联质谱法; 食物中毒; 鹅膏肽类毒素; 鹅膏毒肽; 鬼笔毒肽

Determination of 5 kinds of peptide toxins in wild mushroom poisoning samples by high performance liquid chromatography-tandem mass spectrometry

WEI Hui-Wei, LIU Jin-Ming^{*}, SUN Jin-Ying, TANG Liang, ZHENG Quan-Dong

(Longgang District Center for Disease Control and Prevention, Shenzhen 518172, China)

ABSTRACT: Objective To establish an analytical method for the rapid determination of 5 kinds of peptide toxins in samples from wild mushroom poisoning incidents by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). **Methods** The remaining mushrooms and patient urine samples were extracted by methanol, purified by 250 mg N-propyl ethylenediamine (PSA), and separated by Waters CORTECS C_{18}^+ liquid

收稿日期: 2024-12-12

基金项目: 深圳市龙岗区科技创新专项(LGWJ2023-002)

第一作者: 韦慧慰(1987—), 男, 硕士, 主管技师, 主要研究方向为食品安全检测。E-mail: 116878215@qq.com

^{*}通信作者: 刘金明(1987—), 男, 主管技师, 主要研究方向为食品安全检测。E-mail: 103964403@qq.com

chromatography column. The mobile phase consisted of methanol and 2 mmol/L ammonium acetate (containing 0.1% formic acid) under gradient elution. They were determined by HPLC-MS/MS. **Results** The 5 kinds of peptide toxins had a good linear relationship (r>0.997) at the concentration 10.0–500.0 µg/L. The limits of detection (LODs) of 5 kinds of peptide toxins in the mushroom samples were 2.0–3.0 µg/kg, the limits of quantification (LOQs) were 5.0–10.0 µg/kg. In the urine samples, the LODs of 5 kinds of peptide toxins were 0.8–1.2 µg/L, the LOQs were 2.0–4.0 µg/L. The recoveries of method were 60.1%–94.9%, and the relative standard deviations were 2.0%–17.7% (n=6). **Conclusion** This method is accurate and rapid, and suitable for determination of peptide toxins in residual mushroom and patient urine samples from wild mushroom poisoning incidents.

KEY WORDS: high performance liquid chromatography-tandem mass spectrometry; food poisoning; peptide toxins; amatoxins; phallotoxins

0 引 言

野生毒蘑菇种类繁多,形态与可食用蘑菇相似,日常 容易误采误食造成中毒^[1]。2010—2020年国内共发生1万 余起蘑菇中毒事件,导致超3万人中毒,788人死亡^[2]。蘑菇 中毒多种临床表现中以急性肝损型蘑菇中毒病死率最高^[3], 而造成急性肝损型的毒蘑菇中以鹅膏菌属最为常见^[4],该 菌属中可能含有毒性极强的鹅膏毒肽如 α-鹅膏毒肽 (α -amanitin, α -AMA)、 β -鹅膏毒肽(β -amanitin, β -AMA)、 γ -鹅膏毒肽(γ -amanitin, γ -AMA)及鬼笔毒肽如二羟鬼笔毒肽 (phalloidin, POD)和羧基二羟鬼笔毒肽(phallacidin, PCD), 是导致中毒患者死亡的主要蘑菇毒素。鹅膏毒肽和鬼笔毒 肽化学性质稳定,耐干燥、酸碱和高温,家庭普通烹饪加 工方式无法破坏其化学结构和毒性^[5-8]。

在患者生物样品中检测出蘑菇毒素, 可确立诊断蘑 菇中毒^[4], 摄入的蘑菇毒素可被消化道吸收进入血液, 以 及经过肾脏在尿液中以原型形式排出,在血液中浓度快速 下降, 而尿液蘑菇毒素检测窗口期较血液长, 在检测中更 具有实用价值^[9-13]。在误食毒蘑菇中毒事件中,快速对中 毒样品进行定性和定量分析,对于明确中毒原因和患者临 床救治具有重要意义。蘑菇毒素常见检测方法有生物传感 器法[14-16]、酶联免疫吸附法[17]、毛细管电泳法[18]、高效液 相色谱法^[19]及液相色谱-串联质谱法^[20-23]等。牛物传感器 法前处理简单,特异性强、检测灵敏度高,但稳定性有所 欠缺。酶联免疫吸附法具有便携、快速的优点,但易出现 假阴性或假阳性结果,且仅限于定性和半定量检测。此外 毛细管电泳法重现性差, 而高效液相色谱法灵敏度低, 且 均不具备准确定性能力,不适于突发中毒事件实验室快 速、准确定性和高灵敏定量要求。高效液相色谱-串联质谱 法兼具色谱分离和质谱准确定性、高灵敏定量优势,在误 食野生蘑菇中毒事件应急检测中具有举足轻重的作用。

针对蘑菇毒素检测,尚无尿液样品的国家标准检测 方法,目前研究多集中于单一野生蘑菇样品或生物样品, 未见针对突发蘑菇中毒事件实际剩余蘑菇样品和患者生物 样品同时检测的实验室应急检测方法报道。本研究建立测定 蘑菇样品和尿样中鹅膏肽类毒素的高效液相色谱-串联质谱 法,并对一起野生蘑菇中毒事件进行实验室应急检测,测定 结果可为相关中毒事件明确病因及患者临床救治提供依据。

1 材料与方法

1.1 材料与试剂

阴性蘑菇样品为市场售卖可食用的平菇, 阴性尿液 来自健康体检人员, 毒蘑菇样品来自中毒事件怀疑为鹅膏 菌属类的剩余野生蘑菇样品, 尿液样品采自中毒患者食用 野生蘑菇后 30 h。

甲醇(色谱纯,德国 MERCK 试剂公司);乙酸铵、甲酸(色谱纯,德国 CNW 公司);α-AMA、β-AMA、γ-AMA、POD、PCD 标准品(纯度≥90%,德国 Enzo 公司);C₁₈ (46~60 µm)、石墨化碳黑(graphitized carbon black, GCB) (120~400 目)、N-丙基乙二胺(N-propyl ethylenediamine, PSA) (46~60 µm) (上海博纳艾杰尔科技公司)。

1.2 仪器与设备

Agilent 1260 高效液相色谱仪(美国 Agilent 公司); API 4000 三重四极杆质谱仪(美国 AB SCIEX 公司); EVA32 型 多功能样品氮吹浓缩仪、UMV-2 型多管旋涡混合器(北京普 立泰科仪器有限公司); AG285 型电子天平(精度 0.01 mg)、 XSE205 DU 型电子天平(精度 0.1 g, 瑞士梅特勒-托利多公 司); ALLEGRA X-12R 型大容量台式低温高速离心机(美国 Beckman 公司); IQ7000 超纯水系统(美国密理博公司); Waters CORTECS C₁₈⁺色谱柱(100 mm×3.0 mm, 2.7 μm, 美 国 Waters 公司); 0.22 μm 有机微孔滤膜(天津津腾公司); 100~1000 μL 可调移液器(德国 BRAND 公司)。

1.3 实验方法

1.3.1 标准溶液配制

単标标准储备液(100 mg/L): 精密称量 10.0 mg(精确至 0.01 mg) α-AMA、β-AMA、γ-AMA、POD、PCD标准品分别置 于 5 个 100 mL 烧杯中,用适量甲醇溶解后,转移至 5 支 100 mL

容量瓶中,并用甲醇溶解并定容至刻度。在--20℃下避光保存。

混合标准储备液(10 mg/L):准确移取上述单标标准储备液 1.0 mL 至 10 mL 容量瓶,以甲醇定容至刻度。

混合标准中间液(1.0 mg/L): 准确移取 1.0 mL 混合标 准储备液至 10 mL 容量瓶,以甲醇定容至刻度。

混合标准工作溶液:用 15%甲醇-水溶液逐级稀释混 合标准中间液,配制成质量浓度分别为 0、10、20、50、 200、500 μg/L 的混合标准工作溶液。

1.3.2 样品前处理

蘑菇样品:将蘑菇样品烘干、粉碎后,称取 2.0 g(精确 至 0.01 g)置于 15 mL 具塞塑料离心管中,加入 10.0 mL 甲 醇,涡旋振荡 1 min,超声 20 min,于 8000 r/min、4 ℃下离 心 5 min。吸取 7.0 mL 上清液转移至 15 mL 离心管中,加 入 250 mg PSA 吸附剂,涡旋振荡 5 min,于 8000 r/min、 4 ℃下离心 5 min,移取 5.0 mL 上清液转移至氮吹浓缩管 中 45 ℃氮吹至近干,加入 1.0 mL 初始流动相复溶,经有 机微孔滤膜过滤至样品瓶,样品待测。

尿液样品: 吸取 1.0 mL 尿液, 置于 15 mL 具塞塑料离 心管中,加入 9.0 mL 甲醇,涡旋振荡 1 min,超声 20 min,于 8000 r/min、4 ℃下离心 5 min。吸取 7.0 mL 上清液转移至 15 mL 离心管中,加入 250 mg PSA 吸附剂,涡旋振荡 5 min, 于 8000 r/min、4 ℃下离心 5 min,移取 5.0 mL 上清液转移至氮 吹浓缩管中 45 ℃氮吹至近干,加入 200 μL 初始流动相复溶, 于 10000 r/min、离心 5 min 取上清液至样品瓶,样品待测。

1.3.3 基质匹配标准溶液制备

采用未检出目标鹅膏肽类毒素的阴性蘑菇样品和尿 液各 6 份,按样品处理方法处理,以上述混合标准溶液系 列各 1.0 mL 复溶,经 0.22 µm 微孔滤膜过滤至样品瓶,得 到质量浓度分别为 0、10、20、50、200、500 µg/L 基质匹 配混合标准工作溶液系列。

1.3.4 仪器测定条件

液相色谱条件: 色谱柱: Waters CORTECS C₁₈⁺ (100 mm× 3.0 mm, 2.7 µm); 流速: 0.5 mL/min; 柱温: 40 °C; 进样量: 10 µL。流动相: A—甲醇, B—2 mmol/L 乙酸铵(含 0.1%甲 酸)溶液。梯度洗脱程序: 0~1.0 min, 15% A; 1.0~2.0 min, 15%~60% A; 2.0~4.0 min, 60%~85% A; 4.0~6.0 min; 85% A; 6.0~7.0 min, 85%~15% A; 7.0~10.0 min, 15% A。

质谱条件:离子源:电喷雾离子源(electron spray ionization, ESI),正离子模式;扫描方式:多反应监测

(multiple reaction monitoring, MRM);离子化电压: 5500 V;离子源温度: 550 ℃;雾化气压力: 55 psi;辅助气压力: 55 psi;气 帘气压力: 25 psi;碰撞池出口电压: 10 V。MRM 离子对、去簇电压及碰撞池能量见表 1。

1.4 数据处理

高效液相色谱-串联质谱仪所采集数据通过 AB SCIEX Analyst 1.7 软件处理并生成标准曲线,外标法定量。采用 Office Excel 2016 软件对数据进行统计、制表。采用 Origin 9.0 绘图处理。分析实验重复 6 次。

2 结果与分析

2.1 色谱条件优化

鹅膏肽类毒素鹅膏毒肽和鬼笔毒肽均为水溶性极性 化合物,本研究选择 Waters CORTECS C₁₈⁺色谱柱作为分 析柱,考察了甲醇-水、乙腈-水、甲醇-2 mmol/L 乙酸铵(含 0.1%甲酸)溶液、乙腈-2 mmol/L 乙酸铵(含 0.1%甲酸)溶液、 甲醇-2 mmol/L 甲酸铵(含 0.1%甲酸)溶液、乙腈-2 mmol/L 甲酸铵(含 0.1%甲酸)溶液 6 种不同流动相组成对峰响应和 分离效果的影响。结果显示甲醇作为有机相较乙腈灵敏度 略低,但甲醇分离效果更佳(因乙腈较甲醇具有更强的洗脱 能力,各组分峰型更尖锐,具有更强的灵敏度,但也因洗脱 能力,各组分峰型更尖锐,具有更强的灵敏度,但也因洗脱 能力更强,无法将离子对较接近的 α-AMA、β-AMA 分离, 影响定量结果的准确性)。此外,水相中添加乙酸铵较甲酸 铵更利于提高分离度、灵敏度以及改善峰形。综合考虑最终 选择甲醇-2 mmol/L 乙酸铵(含 0.1%甲酸)作为流动相。

2.2 质谱条件优化

分别采用 ESI 正、负离子模式对 5 种鹅膏肽类毒素进 行母离子全扫描,发现正离子模式下各蘑菇毒素响应更高, 与文献一致^[24-27]。采用 2 mmol/L 乙酸铵溶液稀释各毒素 单标储备液至质量浓度为 1.0 mg/L,在 ESI 正离子模式下 进行一级质谱全扫描,确定各毒素母离子,再对母离子进 行二级离子扫描确定子离子,最后采用 MRM 模式进一步 优化去簇电压、碰撞池能量等质谱参数。

保留时间及母离子、子离子、去簇电压、碰撞池能量 等质谱参数详见表 1。混合标准溶液典型总离子流图如图 1 所示,样品出峰顺序为 α-AMA、β-AMA、γ-AMA、POD 和 PCD, 5 min 内出峰完毕,分析时间适中。

Table 1 Mass spectrometry parameters of 5 kinds of peptide toxins					
分析物	保留时间/min	母离子(m/z)	子离子(m/z)	去簇电压/V	碰撞池能量/V
α-AMA	4.15	919.7	259.2*/339.3	140	65/70
β -AMA	4.31	920.6	259.2*/902.6	140	55/35
γ-ΑΜΑ	4.37	903.5	243.3*/323.4	130	55/65
POD	4.74	789.5	444.2*/330.1	115	50/55
PCD	4.86	847.6	157.2*/330.1	120	85/55

表1 5种鹅膏肽类毒素质谱参数

注:*为定量离子。

注: 1. α-AMA; 2. β-AMA; 3. γ-AMA; 4. POD; 5. PCD, 图 4 同。 图 1 5种鹅膏肽类毒素混合标准溶液总离子流图 Fig.1 Total ion chromatogram for mixed standard solution of 5 kinds of peptide toxins

2.3 样品前处理条件优化

2.3.1 提取条件优化

鹅膏肽类毒素水溶性好,极性溶剂如水、甲醇、乙腈 均能较好溶解,但提取液中含水多会延长氮吹浓缩时间。 本研究中考察了甲醇、乙腈、0.1%甲酸-甲醇、0.1%甲酸-乙腈4种提取溶剂对蘑菇和尿液样品中5种毒素的提取效 果,结果见图2。发现在蘑菇和尿液样品中,5种毒素在甲 醇中平均提取效率最高,分别达82%和81%,因此采用纯 甲醇作为提取溶剂。

图 2 提取溶剂优化结果 Fig.2 Optimization results of extraction solution

2.3.2 净化条件优化

蘑菇中含蛋白质、氨基酸、维生素和矿物质等,尿液 成分主要为水,同时含无机盐、尿素等其他成分。提取液 简单过滤后直接进样容易损坏色谱柱,同时基质效应大, 影响目标物灵敏度。与鹅膏肽类毒素常用的固相萃取净化 方式相比,分散固相萃取尽管主要使用手工操作,自动化 程度较低,但操作简单、快速,满足应急检测时效要求高 的特点^[28-29]。本研究考察了 PSA、C₁₈、GCB 3 种吸附剂 对蘑菇和尿样提取液的净化效果,分别加入 100~350 mg C₁₈和 GCB 在蘑菇和尿液样品中 5 种毒素平均回收率均小 于 70%,加入 250 mg PSA 时回收率最高,平均回收率均大 于 80%,继续增加用量后回收率无明显变化,趋势图见图 3, 因此选用添加 250 mg PSA 作为吸附剂。

2.4 基质效应

以基质匹配标准工作溶液曲线斜率与溶剂标准溶液 曲线斜率之比作为基质因子评价不同样本类别的基质效 应。结果显示蘑菇和尿液样品中基质效应范围分别为 95%~136%和 69%~156%,其中 3 种鹅膏毒肽在蘑菇和尿 样中均表现为基质增强效应,2 种鬼笔毒肽在尿样中表现 为基质抑制效应,在蘑菇样品中则几乎无基质效应。应急 检测时也可直接采用溶剂配制的标准溶液系列制作标准曲 线以满足快速定性定量要求。

2.5 方法学评价

2.5.1 线性范围、检出限与定量限

在优化分析条件下,对基质匹配标准工作溶液系列 进样分析,经线性拟合得到线性回归方程及相关系数。 结果显示,5种鹅膏肽类毒素在10.0~500.0 μg/L质量浓度 范围内具有良好线性关系,相关系数为0.9974~0.999。以 3倍信噪比作为检出限,10倍信噪比作为定量限,通过逐 渐降低加标浓度的方法获得5种毒素的检出限、定量限, 并按本方法操作计算最低检出浓度和最低定量浓度,方 法分析性能指标结果见表 2。蘑菇中 5 种毒素检出限为 2.0~3.0 μg/kg,定量限为5.0~10.0 μg/kg;尿样中5种毒 素检出限为0.8~1.2 μg/L,定量限为2.0~4.0 μg/L。蘑菇 中5种毒素检出限较文献[20,24–26,30]低,尿样中5种毒 素检出限与文献相当^[6-7,27]。

2.5.2 回收率与精密度

以不含 5 种鹅膏肽类毒素的样品(平菇、健康体检人员 尿液)为空白基质,加标浓度分别为 20.0、50.0、200.0 µg/kg (平菇样品)及 40.0、100.0、400.0 µg/L(尿样),每个水平 平行制备 6 份样品。5 种毒素加标回收率范围在 60.1%~94.9%之间,相对标准偏差(relative standard deviations, RSDs)介于 2.0%~17.7% (*n*=6)(结果见表 3)。加 标回收率和精密度均符合 GB/T 35655—2017《化学分析方 法验证确认和内部质量控制实施指南 色谱分析》及 GB/T 27404—2008《实验室质量控制规范 食品理化检测》中有 关回收率和精密度范围的要求(被测组分含量 <0.1 mg/kg, 回收率范围为 60%~120%; 被测组分含量 10 µg/kg,实验 室内精密度参考范围为 21%),可满足应急检测需要。

注: A-1. PSA 吸附剂净化的蘑菇样品; A-2. PSA 吸附剂净化的尿样; B-1. C₁₈吸附剂净化的蘑菇样品; B-2. C₁₈吸附剂净化的尿样; C-1. GCB 吸附剂净化的蘑菇样品; C-2. GCB 吸附剂净化的尿样。

图 3 吸附剂优化结果

Fig.3 Optimization results of absorbents

Tuble 2 That you performance indicators of 5 kinds of pepfide toxins								
分析物		蘑菇				尿样		
	回归方程	相关系数(r)	检出限 /(ug/kg)	定量限 /(ug/kg)	回归方程	相关系数(r)	检出限 /(ug/L)	定量限 /(ug/L)
			(µg/kg)	(µg/kg)			/(µg/L)	(µg/L)
α-AMA	<i>Y</i> =70 <i>X</i> +43.9	0.9999	3.0	10.0	<i>Y</i> =89 <i>X</i> +332	0.9981	1.2	4.0
β -AMA	<i>Y</i> =134 <i>X</i> +68.9	0.9998	3.0	10.0	<i>Y</i> =130 <i>X</i> +269	0.9994	1.2	4.0
γ-ΑΜΑ	<i>Y</i> =419 <i>X</i> +787	0.9999	3.0	10.0	<i>Y</i> =393 <i>X</i> +1320	0.9986	1.2	4.0
POD	<i>Y</i> =513 <i>X</i> +784	0.9994	2.0	5.0	<i>Y</i> =409 <i>X</i> +1100	0.9991	0.8	2.0
PCD	<i>Y</i> =303 <i>X</i> +3140	0.9976	3.0	10.0	<i>Y</i> =259 <i>X</i> +1860	0.9974	1.2	4.0

表 2 5 种鹅膏肽类毒素分析性能指标结果 Table 2 Analysis performance indicators of 5 kinds of peptide toxins

2.6 实际样品分析

用本研究建立的分析方法对辖区内一起毒蘑菇中毒事件 中的剩余蘑菇样品及患者尿样进行检测,均检出鹅膏肽类毒素, 色谱图见图 4,具体结果见表 4。3 份剩余蘑菇样品中除 POD 未检出外,其余 4 种毒素 α-AMA、β-AMA、γ-AMA 和 PCD 均有检出,其中 α-AMA、β-AMA 和 PCD 含量范围为 185.0~ 1100.0 mg/kg, γ-AMA 含量范围为 2.6~15.7 mg/kg。尿样中仅检 出 α-AMA 和 β-AMA,含量范围为 6.0~6.8 μg/L。剩余食品和 患者生物样品均检出高毒性鹅膏肽类毒素,结合患者临床症状, 明确本次中毒事件为鹅膏肽类毒素引起的食物中毒。蘑菇毒素 在野生有毒蘑菇样品中含量较高,可在前处理时将提取液用初 始流动相稀释 1000 倍后直接进样,快速完成定性筛查。

	1	able e Results of s	pikeu recovery ruc	es and precision (n o)	
分析物	加标量/(µg/kg)	蘑菇		抽左阜///[)	尿样	
		回收率/%	RSDs/%	— 加孙里/(µg/L) -	回收率/%	RSDs/%
α-AMA	20.0	65.9	11.2	40.0	61.0	17.7
	50.0	85.1	7.1	100.0	74.8	5.4
	200.0	94.9	2.7	400.0	83.6	10.1
β-ΑΜΑ	20.0	82.2	12.6	40.0	63.3	10.2
	50.0	81.7	9.5	100.0	79.2	10.8
	200.0	90.6	2.9	400.0	85.9	11.5
	20.0	74.9	6.2	40.0	60.4	12.8
γ-ΑΜΑ	50.0	83.6	4.6	100.0	83.6	8.6
	200.0	93.5	2.0	400.0	85.9	11.5
	20.0	83.8	9.4	40.0	66.8	11.7
POD	50.0	81.6	4.2	100.0	84.7	9.5
	200.0	88.8	2.2	400.0	90.3	9.2
PCD	20.0	69.7	3.4	40.0	60.1	12.8
	50.0	76.6	7.2	100.0	80.9	10.8
	200.0	89.9	2.5	400.0	88.2	7.8

表 4 实际样品中 5 种鹅膏肽类毒素检测结果 Table 4 Detection results of 5 kinds of peptide toxins in real samples

i cai sampies						
分析物	1号蘑菇	2 号蘑菇	3号蘑菇	尿液		
23-01-02	/(mg/kg)	/(mg/kg)	/(mg/kg)	/(µg/L)		
α-AMA	747.0	925.0	185.0	6.0		
β -AMA	609.0	1100.0	300.0	6.8		
γ-ΑΜΑ	4.2	15.7	2.6	未检出		
POD	未检出	未检出	未检出	未检出		
PCD	357.0	490.0	190.0	未检出		

3 结 论

受地理位置和气候影响,深圳市野生蘑菇种类繁多, 每年春夏之交野生蘑菇大量生长之际,误食有毒蘑菇中毒 事件时有发生,轻者引起肝损伤,重者导致死亡,且鹅膏 肽类毒素中毒死亡率极高。剩余蘑菇样品和尿样是误食蘑 菇中毒事件最重要的检材,而血液样品检测窗口期短,不 适宜作为检材。本研究建立的高效液相色谱-串联质谱检测 方法可用于突发野生毒蘑菇中毒事件中剩余蘑菇和尿液样 品中5种鹅膏肽类毒素的测定,3h内完成定性定量。一旦 检出鹅膏肽类毒素如鹅膏毒肽和鬼笔毒肽,要引起高度重 视,及时采取对症治疗措施及防止后续可能产生的迟发性 肝损伤。因鹅膏肽类毒素中毒无特效解药,中毒后果严重、 预后差,故加强野生蘑菇中毒科普宣传,勿采食野生蘑菇 是最重要的预防途径。

参考文献

 高洁, 王楠, 谢瑞斌, 等. 常见有毒蘑菇毒素检测方法研究进展[J]. 中 国食品学报, 2022, 22(9): 406-413.

GAO J, WANG N, XIE RB, *et al.* Research progress on detection methods for common toxic mushroom toxins [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(9): 406–413.

- [2] LI W, PIRES SM, LIU ZT, et al. Mushroom poisoning outbreaks-China, 2010–2020 [J]. China CDC Weekly, 2021, 3(24): 518–522.
- [3] 刘润卿,孙洁芳,牛字敏,等. 鹅膏毒肽检测方法的研究进展[J]. 分析 测试学报, 2021, 40(4): 503-509.
 LIU RQ, SUN JF, NIU YM, *et al.* Research progress in detection methods for amatoxin [J]. Journal of Instrumental Analysis, 2021, 40(4): 503-509.
- [4] 卢中秋, 洪广亮, 孙承业, 等. 中国蘑菇中毒诊治临床专家共识[J]. 临床急诊杂志, 2019, 20(8): 583–598.
 LU ZQ, HONG GL, SUN CY, *et al.* Consensus of clinical experts in the diagnosis and treatment of mushroom poisoning in China [J]. Journal of Clinical Emergency, 2019, 20(8): 583–598.
- [5] 薛康,胡江涛,陈佳玥,等.分散固相萃取-超高效液相色谱-串联质谱 法同时测定野生菌中 6 种鹅膏毒肽和鬼笔毒肽毒素[J].食品安全质量 检测学报,2021,12(22):8695-8702.

XUE K, HU JT, CHEN JY, *et al.* Simultaneous determination of 6 kinds of amatoxins and phallotoxins in wild mushrooms by dispersive solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(22): 8695-8702.

- [6] 阳硕, 普山柏, 郑粉双,等. 基于液相色谱-串联质谱技术快速检测 6 种蘑菇毒素及临床应用探讨[J]. 中国急救医学, 2023, 43(9): 673–678. YANG S, PU SB, ZHENG FS, *et al.* Rapid detection of six mushroom toxins in human body fluids by LC-MS/MS and its application in clinical poisoning cases [J]. Chinese Journal of Critical Care Medicine, 2023, 43(9): 673–678.
- [7] 方力, 邱凤梅, 余新威. TurboFlow 在线净化-液相色谱-串联质谱法快速检测人尿种鹅育肽类毒素[J]. 色谱, 2021, 39(3): 338–345.
 FANG L, QIU FM, YU XW. Determination of amanita peptide toxins in human urine by TurboFlow online clean-up-liquid chromatography tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2021, 39(3): 338–345.
- [8] 林子豪, 罗鼎峰, 戚平, 等. QuEChERS-液相色谱-四级杆飞行时间质 谱法测定毒蘑菇中 5 种鹅膏肽类毒素[J]. 食品安全导刊, 2021(30): 78-80, 82.

LIN ZH, LUO DF, QI P, *et al.* QuEChERS-liquid chromatographyquadrupole time-of-flight mass spectrometry for the determination of 5 kinds of peptide toxins in poisonous mushrooms [J]. China Food Safety Magazine, 2021(30): 78–80, 82.

[9] 余成敏,李海蛟.中国含鹅膏毒肽蘑菇中毒临床诊断治疗专家共识[J]. 中华危重症医学杂志,2020,13(1):20-28.

YU CM, LI HJ. Expert consensus on clinical diagnosis and treatment of mushroom poisoning with amanita toxin peptide in China [J]. Chinese Journal of Critical Care Medicine, 2020, 13(1): 20–28.

[10] 柳洁,黄海燕,曾灼祥,等.大鼠血清和尿液中4种鹅膏肽类毒素代谢 特征的超高效液相色谱-四级杆飞行时间串联质谱分析[J].中国卫生 检验杂志,2018,28(16):1941-1946.

LIU J, HUANG HY, ZENG ZX, *et al.* Analysis of four amatoxins and phallotoxins content in rat serum and urine by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry [J]. Chinese Journal of Health Laboratory Technology, 2018, 28(16): 1941–1946.

- [11] BARBORO M, PETER O, MARIE S, *et al.* Determination of muscarine in human urine by electrospray liquid chromatographic-mass spectrometric [J]. Journal Chromatography B, 2011, 879(25): 2549–2553.
- [12] JANE T, PETER O, IVO V. Simultaneous determination of mushroom toxins α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry [J]. Forensic Science International, 2015, 251: 209–213.
- [13] PAVLINA G, BARBORA S, PETER O, et al. Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry [J]. Talanta, 2014, 125: 242–247.
- [14] GAO JL, PENG ZM, ZHANG JY, *et al.* Truncated DNA aptamer for rapid ffuorometric detection of the lethal toxin α-amanitin [J]. Food Bioscience, 2023, 55(103064): 1–10.
- [15] GAO JL, LIU NY, ZHANG XM, et al. Utilizing the DNA aptamer to determine lethal-amanitin in mushroom samples and urine by magnetic bead-ELISA (MELISA) [J]. Molecules, 20 22, 27(538): 1–16.
- [16] 杨人香,王巍,马怡,等.正电性金纳米-核酸适配体纳米生物传感器 快速检测野生菌中的 α-鹅膏毒肽[J].食品安全质量检测学报,2023,

14(10): 76-83.

YANG RX, WANG W, MA Y, *et al*. Rapid detection of α-amanitin in wild mushroom based on electropositive gold nanoparticles-aptamer nanobiosensor [J]. Journal of Food Safety & Quality, 2023, 14(10): 76–83.

- [17] 刘河冰,秦誉,邢维维,等. 蘑菇中鹅膏毒肽间接竞争 ELISA 检测方 法的建立[J]. 食品工业科技, 2022, 43(5): 294–301.
 LIU HB, QIN Y, XING WW, *et al.* Establishment of indirect competitive ELISA method for detecting amanitin in mushroom [J]. Science and Technology of Food Industry, 2022, 43(5): 294–301.
- [18] JAN R, MICHAEL P, UTE P. Identification of toxic oligopeptides in amanita fungi employing capillary electrophoresis electrospray ionization-mass spectrometry with positive and negative ion detect [J]. Electrophoresis, 2008, 29(10): 2094–2100.
- [19] 张秀尧,蔡欣欣,张晓艺,等. 超高效液相色谱-二极管阵列检测法快速测定毒蘑菇中 5 种毒肽[J]. 浙江预防医学, 2016, 28(2): 214-216. ZHANG XY, CAI XX, ZHANG XY, et al. Rapid determination of five toxic peptides in poisonous mushrooms using ultra performance liquid chromatography coupled with diode array detection method [J]. Zhejiang Preventive Medicine, 2016, 28(2): 214-216.
- [20] 瞿广胜,李显娱,蔡贵香,等. QuEChERS-超高效液相色谱-串联质谱 法测定野生菌中的 15 种蘑菇毒素[J]. 食品安全质量检测学报, 2024, 15(18): 239–251.
 QU GS, LI XY, CAI GX, *et al.* Determination of 15 kinds of mushroom toxins in wild mushrooms based on QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety &

 Quality, 2024, 15(18): 239–251.

 [21] 蒋云露, 吴文林, 黄弋耘, 等. 超高效液相色谱-四级杆/静电场轨道肼

高分辨质谱法快速检测菌类中鹅膏毒肽毒素[J]. 粮食储藏, 2024, 53(4): 40-45, 61.

JIANG YL, WU WL, HUANG YY, *et al.* Rapid determination of amanita peptide toxins in mushrooms by ultra performance liquid chromatographyqexactive orbitrap high-resolution mass spectrometry [J]. Grain Storage, 2024, 53(4): 40–45, 61.

- [22] 李启,徐俊卿,钱佳清,等. 超高效液相色谱质谱法快速测定血浆中 6 种蘑菇毒素[J]. 中国现代医生, 2024, 62(19): 8–12.
 LI Q, XU JQ, QIAN JQ, *et al.* Rapid determination of six mushroom toxins in plasma by ultra performance liquid chromatography-mass spectrometry [J]. China Modern Doctor, 2024, 62(19): 8–12.
- [23] 曾豪威, 威平, 彭明军, 等. UPLC-MS/MS 法测定蘑菇、科研用人血清和尿液中 5 种鹅膏肽类毒素的方法研究[J]. 食品与发酵科技, 2024, 60(3): 117–123.
 ZENG HW, QI P, PENG MJ, *et al.* Determination of 5 amanita peptide toxins in mushrooms, human serum and urine for scientific research by

UPLC-MS/MS [J]. Food and Fermentation Sciences & Technology, 2024, 60(3): 117–123.

[24] 徐小民,郑熠斌,黄百芬,等.液相色谱-串联质谱法快速测定野生菌中9种蘑菇毒素[J].中国食品卫生杂志,2022,34(2):262-269.
 XU XM, ZHENG YB, HUANG BF, *et al.* Fast determination of 9

mushroom toxins in wild fungus by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Food Hygiene, 2022, 34(2): 262-269.

[25] 许欣欣,陈春晓,仲岳桐,等.超高效液相色谱-串联质谱法测定毒蘑菇中5种强毒性蘑菇毒素含量[J].食品安全质量检测学报,2020,11(9): 6936-6941.

XU XX, CHEN CX, ZHONG YT, et al. Determination of 5 kinds of virulent mushroom toxins in poisonous mushroom by ultra performance liquid chromatography tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2020, 11(9): 6936–6941.

[26] 叶小莉,岳亚军,赖璟琦,等.高效液相色谱-三重四级杆串联质谱法 测定深圳梧桐山野生蘑菇中5种鹅膏肽类毒素含量[J].理化检验-化学 分册,2022,58(8):909-913.

YE XL, YUE YJ, LAI JQ, *et al.* Determination of 5 amanita toxoids in wild mushrooms from Wutong mountain in Shenzhen by high performance liquid chromatography-triple quadrupole tandem mass spectrometry [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(8): 909–913.

- [27] 魏佳会,陈佳,吴弼东,等. 高效液相色谱/三重四级杆质谱联用法测定血浆和尿液中鹅膏肽类毒素[J]. 分析化学, 2020, 48(3): 405-412. WEI JH, CHEN J, WU BD, et al. Determination of amanita peptides in human plasma and urine by high performance liquid chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2020, 48(3): 405-412.
- [28] 罗苹,刘小红,孔芳,等.基于高分辨质谱及三重四级杆质谱的蘑菇中 7 种蘑菇毒素的筛查及定量分析[J].农产品质量与安全,2022,6: 15-20.

LUO P, LIU XH, KONG F, *et al.* Screening and quantitative analysis of seven mushroom toxins in mushrooms based on high-resolution mass spectrometry and triple quadrupole mass spectrometry [J]. Quality and Safety of Agro-products, 2022, 6: 15–20.

[29] 薛荣旋,刘国平,黄莹偲,等.分散固相萃取结合超高效液相色谱-串 联质谱法快速测定毒蘑菇中的 6 种野生蘑菇毒素[J]. 食品安全质量检 测学报, 2021, 12(17): 6918–6923. XUE RX, LIU GP, HUANG YS, *et al.* Rapid determination of 6 kinds of

wild mushroom toxins in poisonous mushrooms by dispersive solid phase extraction combined with ultra performance liquid chromatographytandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(17): 6918–6923.

[30] 邹淼, 李延升, 韩晓欧, 等. 超高效液相色谱-串联质谱法快速测定 蘑菇中 5 种鹅膏肽类毒素[J]. 食品安全质量检测学报, 2024, 15(24): 18-23.

ZOU M, LI YS, HAN XOU, *et al.* Rapid determination of 6 kinds of wild mushroom toxins in poisonous mushrooms by dispersive solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2024, 15(24): 18–23.

(责任编辑:于梦娇 韩晓红)