DOI: 10.19812/j.cnki.jfsq11-5956/ts.20241011001

引用格式: 杜远芳, 赵天宇, 平华, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定蔬菜废弃物中 70 种农药残留[J]. 食品安全质量检测学报, 2025, 16(3): 154–161.

DU YF, ZHAO TY, PING H, *et al.* Simultaneous determination of 70 kinds of pesticide residues in vegetable wastes by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2025, 16(3): 154–161. (in Chinese with English abstract).

QuEChERS-超高效液相色谱-串联质谱法同时 测定蔬菜废弃物中 70 种农药残留

杜远芳 1.2, 赵天宇 1.2, 平 华 1.2, 李 杨 1.2*

[1. 北京市农林科学院,北京 100097;2. 农业农村部农产品质量安全风险评估实验室(北京),北京 100097]

摘 要:目的 建立一种基于 QuEChERS (Quick Easy Cheap Effective Rugged and Safe)前处理技术和超高效 液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)同时 测定蔬菜废弃物中 70 种农药残留的分析方法。**方法** 蔬菜废弃物样品采用 QuChERS 方法提取净化, UPLC-MS/MS 测定,采用电喷雾电离源扫描,多反应监测模式检测,基质匹配标准曲线,外标法定量。**结果** 70 种农药在 2.0~200.0 µg/L 质量浓度范围内线性关系良好,相关系数均大于 0.99; 3 个添加水平(0.002、0.004 和 0.020 mg/kg)下的平均回收率为 61.7%~109.9%,相对标准偏差为 0.4%~9.7%;检出限为 0.0001~0.0020 mg/kg, 定量限为 0.0003~0.0060 mg/kg。**结论** 该方法简单、快速、准确、灵敏度高,可用于大批蔬菜废弃物中农药 残留快速检测。

关键词:蔬菜废弃物;农药残留;QuEChERS;超高效液相色谱-串联质谱法

Simultaneous determination of 70 kinds of pesticide residues in vegetable wastes by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry

DU Yuan-Fang^{1,2}, ZHAO Tian-Yu^{1,2}, PING Hua^{1,2}, LI Yang^{1,2*}

[1. Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 2. Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture P.R. China, Beijing 100097, China]

ABSTRACT: Objective To establish a method for the simultaneous determination of 70 kinds of pesticide residues in vegetable wastes by QuChERS (Quick Easy Cheap Effective Rugged and Safe) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). **Methods** Vegetable wastes samples were extracted

收稿日期: 2024-10-11

基金项目:国家重点研发计划项目(2022YFD2002101);北京市农林科学院科技创新能力建设专项(KJCX20230217)

第一作者: 杜远芳(1987—), 女, 工程师, 主要研究方向为农产品质量安全。E-mail: duyuanfang@baafs.net.cn

^{*}通信作者: 李杨(1986—), 女, 硕士, 副研究员, 主要研究方向为农产品质量安全。E-mail: liyang@baafs.net.cn

and purified by QuChERS method, then the samples were detected by UPLC-MS/MS, and the electrospray ionization source was used simultaneous scanning, detected under multiple reaction monitoring mode, matrix-matched calibration curve, and quantified by external standard method. **Results** The 70 kinds of target pesticides exhibited great linear relationships within the concentration range of $2.0-200.0 \ \mu g/L$, with linear correlation coefficients were all greater than 0.99. The average recoveries ranged from 61.7% to 109.9%, the relative standard deviations were 0.4%-9.7%, with 3 addition levels at 0.002, 0.004 and 0.020 mg/kg. The limits of detection were in the range of 0.0001 to 0.0020 mg/kg, and the limits of quantification were in the range of 0.0003–0.0060 mg/kg. **Conclusion** This method is easy operation, fast, accurate, and good sensitivity, which is suitable for the simultaneous detection of pesticide residues in a large number of vegetable wastes samples.

KEY WORDS: vegetable wastes; pesticide residues; QuEChERS; ultra performance liquid chromatography-tandem mass spectrometry

0 引 言

蔬菜产业的快速发展, 使得我国蔬菜种植面积和产 量逐渐增加。2020年我国蔬菜产量占世界总产量的 52%, 成为世界上蔬菜种植和生产最高的国家。2023年,我国蔬 菜产量达到 82868.11 万 t, 比 2020 年增加 7955.21 万 t^[1]。 然而蔬菜产业在快速发展的同时,也因其自身特性,在生 产、收获、储运等过程中产生大量蔬菜废弃物,包括植株 残株、废弃果实等。据统计,我国蔬菜废弃物的年产量已 超高 3.6 亿 t^[2]。我国大部分蔬菜废弃物在生产基地随意堆 放或者被焚烧,或者被当作生活垃圾进行集中掩埋。蔬菜 废弃物具有含水量高、易降解的特点,如果处理不当或随 意堆放将会产生臭气和大量的渗滤液,导致蚊蝇滋生,其 携带的病原菌会通过农业生产传播,对土壤和水体等造成 环境污染^[3-5]。蔬菜废弃物中含有较高的有机质、N、P、K 等营养物质^[6],将其资源化利用如直接还田、饲料化、肥 料化、基质化等,不仅可以增加农业经济效益,还可以变 废为宝,避免资源浪费[7-9]。但是,蔬菜生产过程中因病虫 害和杂草,会使用化学农药进行防治和防除。研究发现, 化学农药大部分会残留在蔬菜植株中,并且蔬菜植株中农 药含量高于其果实^[10]。张圆圆等^[11]在黄瓜秧中检出9种 (包括多菌灵、腐霉利、嘧菌酯、苯醚甲环唑、烯酰吗啉、 虫螨腈、吡虫啉、啶虫脒、哒螨灵)在黄瓜上常用农药,其 中多菌灵最高检出达25.0 mg/kg, 平均残留量11.2 mg/kg, 远高于黄瓜果实中的最大残留限量值(5 mg/kg), 其他 8 种农药残留量平均值为0.042~0.89 mg/kg。此外,将黄瓜秧 静态好氧发酵后堆肥产品中仍有较高的农药残留,说明 黄瓜秧中残留的农药对堆肥成品质量存在潜在威胁。和 丽忠等[12]发现好氧堆沤无害化处理虽然会促进蔬菜废弃 物中一部分农药的降解,但仍会有部分农药残留,而厌 氧堆沤无害化处理对蔬菜废弃物中农药的降解效果更是 有限。MAHMOUD 等^[13]和 ARCO 等^[14]分别在黄瓜和番 茄副产物青贮饲料中检出农药噻菌灵和毒死蜱。将蔬菜 废弃物直接还田,其中残留的农药可能进入土壤中。如蔬

菜上常用的吡虫啉、噻虫嗪、多菌灵等其在土壤中半衰 期较长,不仅会影响土壤微生物,也会被后茬作物吸收, 造成蔬菜果实中残留污染[15-16]。蔬菜废弃物中含有的农 药残留对其再利用存在安全风险,其中残留的农药可能 会造成二次污染。但是,目前尚无关于蔬菜废弃物特别是 蔬菜植株中农药残留的检测方法相关标准,并且对其中 残留的农药安全风险意识认识有限。因此,本研究从样品 前处理、质谱参数及基质效应等方面进行优化,建立了 QuEChERS 净化结合超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)测定蔬菜废弃物中70种农药 残留的方法, 以期为蔬菜废弃物再利用质量安全监管提 供快速、可靠的检测技术。

1 材料与方法

1.1 材料、试剂与仪器

蔬菜废弃物采集于北京郊区蔬菜种植基地,包括番 茄秧和土豆秧等。

70种农药标准品名称:阿特拉津、二甲戊灵、灭多威、 异丙威、西维因、呋虫胺、涕灭威、涕灭威亚砜、涕灭威 砜、敌敌畏、克百威、3-羟基克百威、啶虫脒、久效磷、 甲基硫环磷、乐果、杀线威、灭线磷、地虫硫磷、噻虫胺、 噻虫啉、硫环磷、吡虫啉、敌百虫、烯啶虫胺、水胺硫磷、 噻虫嗪、倍硫磷、倍硫磷亚砜、倍硫磷砜、甲基立枯磷、 噻嗪酮、除虫脲、氯唑磷、三唑磷、毒死蜱、虫酰肼、增 效醚、蝇毒磷、哒螨灵、醚菊酯、虫螨腈、联苯菊酯、氯 虫苯甲酰胺、氟酰脲、多杀霉素、甲氨基阿维菌素苯甲酸 盐(甲维盐)、霜霉威、三环唑、多菌灵、噻菌灵、乙霉威、 敌菌灵、甲霜灵、腈菌唑、灭菌丹、戊唑醇、己唑醇、烯 唑醇、苯霜灵、氟吗啉、恶唑酮菌、咪鲜胺、吡唑醚菌酯、 烯酰吗啉、嘧菌酯、苯醚甲环唑、氯吡脲、多效唑、氯苯 胺灵(质量浓度为 100 mg/L, 上海安谱试验科技股份有限 公司);将 70 种标准品分别配成标准储备液,实验时用乙 腈配制成混合标准储备液,并用初始流动相配制成不同质

量浓度的标准工作液。

无水硫酸镁(分析纯,北京亚太龙兴化工有限公司); 氯化钠(优级纯,北京化工厂); 键合硅胶固相萃取吸附剂 C₁₈、N-丙基乙二胺吸附剂 (primary secondary amine, PSA)(天津博纳艾杰尔科技有限公司); 乙腈、甲醇、甲酸 铵(色谱纯,美国 Thermo Fisher Scientific 公司); 乙酸(优级 纯,国药集团化学有限公司)。

无水硫酸镁用前马弗炉 500 ℃加热 5 h, 贮于干燥器 中, 冷却后备用。

ACQUITY 高效液相色谱仪、Waters ACQUITY UPLC HSS T3 色谱柱(100 mm×2.1 mm, 1.8 μ m)(美国 Waters 公司); Xevo TQ 三重四极杆质谱仪[配有电喷雾离子源 (electrospray ionization, ESI), 美国 Waters 公司]; 3K15 高速 冷冻离心机(美国 Sigma 公司); HZQ-C 空气浴振荡器(哈尔 滨市东联电子技术开发有限公司); SCIENTZ-18N 冷冻干 燥机(宁波新芝生物科技股份有限公司); BS200S-WEI 分析 天平(感量 0.1 mg, 北京赛多利斯天平有限公司)。

1.2 样品前处理

将采集的土豆秧(地上部分)和番茄秧(整株,根部 去除土壤和杂物)切成小段,冷冻干燥后研磨成份。准确 称取土豆秧和番茄秧样品 5.0 g(精确至 0.001 g)于 50 mL 塑料离心管中,加入 10 mL 纯水,涡旋混匀,静置 30 min, 加入 15 mL 1%乙酸乙腈溶液,振荡提取 30 min,在离 心管中加入 6.0 g无水硫酸镁和 2.0 g氯化钠,剧烈振荡 1 min,混匀后以 8000 r/min 离心 3 min。称取 750 mg 无水硫酸镁、125 mg PSA 置于 5 mL 具塞离心管中,吸 取 5.0 mL 上清液至此离心管中,涡旋振荡 2 min,以 8000 r/min 离心 3 min。上清液过 0.2 μm 滤膜,装入样品 瓶中, UPLC-MS/MS 测定。

1.3 仪器条件

色谱条件: Waters ACQUITY UPLC HSS T3 色谱柱

(100 mm×2.1 mm, 1.8 μm); 柱温: 40 °C; 进样体积: 5 μL; 流速 0.3 mL/min; 以 5 mmol/L 甲酸铵-0.1%甲酸水溶液(流 动相 A)和 5 mmol/L 甲酸铵-甲醇溶液(流动相 B)为流动相 进行梯度洗脱, 洗脱条件见表 1。

质谱条件:采用电喷雾离子源(electrospray ionization, ESI);多反应监测(multiple reaction monitoring, MRM)模式, 正离子扫描;毛细管电压 2.5 kV;离子源温度:150 ℃;雾 化气温度:400 ℃;去溶剂气流量:800 L/h。

表 1 流动相梯度洗脱条件 Table 1 Gradient elution conditions of mobile phase

时间/min	流速/(mL/min)	流动相 A/%	流动相 B/%
0.0	0.3	95	5
0.5	0.3	95	5
2.0	0.3	60	40
7.0	0.3	5	95
7.5	0.3	5	95
10.0	0.3	95	5

1.4 数据处理

采用外标法定量。采用 Mocrosoft Excel 2010 软件对数据进行处理并作图表。

2 结果与分析

2.1 质谱条件选择

由于 70 种农药的化学结构不同,电离方式不同,选择正、负离子模式分别进行扫描。发现 70 种农药均为正离 子模式。对 70 种农药的锥孔电压和碰撞能量进行优化,使 每种化合物的母离子与特征碎片离子的离子对强度达到最 大,将响应值最大的碎片离子设定为定量离子,次级相应 离子设定为定性离子。70 种化合物的质谱参数见表 2。总 离子色谱图见图 1。

		Table 2 Mass	s spectral parameters of	1 /0 kinds of pesticid	es	
序号	中文名称	母离子(m/z)	子离子(m/z)	锥孔电压/V	碰撞能量/eV	离子扫描模式
1	阿特拉津	216.08	174.22*, 96.03	30	18, 25	正离子
2	二甲戊灵	282.30	212.19*, 194.19	14	10, 16	正离子
3	灭多威	162.94	106.15*, 88.06	15	10, 10	正离子
4	异丙威	194.10	95.10*, 137.10	15	14, 8	正离子
5	西维因	202.00	117.00*, 145.00	30	28, 20	正离子
6	呋虫胺	202.88	128.97*, 157.01	16	12, 8	正离子
7	涕灭威亚砜	207.17	132.04*, 89.04	16	6, 14	正离子
8	涕灭威	208.17	116.03*, 89.04	8	6, 18	正离子
9	涕灭威砜	223.00	148.00*, 86.00	30	14, 10	正离子
10	敌敌畏	221.00	109.00*, 79.00	30	22, 34	正离子
11	克百威	222.11	165.10*, 123.00	30	16, 16	正离子
12	3-羟基克百威	238.00	163.00*, 181.00	30	16, 10	正离子
13	啶虫脒	223.00	126.00*, 90.10	28	20, 35	正离子
14	久效磷	224.10	127.10*, 98.10	15	16, 12	正离子

表 2 70 种农药质谱参数 Table 2 Mass spectral parameters of 70 kinds of pesticides

]	5	7

表 2(续)	
--------	--

序号	中文名称	母离子(m/z)	子离子(m/z)	锥孔电压/V	碰撞能量/eV	离子扫描模式
15	甲基硫环磷	228.00	109.00*, 168.00	25	25, 15	正离子
16	乐果	230.10	125.00*, 199.00	30	20, 10	正离子
17	杀线威	237.00	90.00*, 72.00	12	10, 10	负离子
18	灭线磷	243.20	97.00*, 131.00	18	31, 20	正离子
19	地虫硫磷	247.10	109.00*, 137.00	15	20, 10	正离子
20	噻虫胺	250.00	132.00*, 169.00	30	18, 12	正离子
21	噻 电 啉	253.00	126.00*. 90.10	32	20, 40	正离子
22	<u> </u>	256.00	140.00*. 168.00	17	20, 20	正离子
23		256.10	175.10*. 209.10	22	20, 14	正离子
24	敌百中	257.00	109.00* 79.00	19	18 30	正离子
25	低 店 中 防	271.10	125 90* 224 90	30	25 12	正离子
26	水胺硫磷	273.20	121.00* 231.20	20	25,12	正离子
2.7	應中陸	292.00	132.00*. 211.20	30	22, 12	正离子
28	住磕磷	279.10	247 10* 169 10	25	13 16	正离子
20	信硫磷亚砜	295.00	280.00* 109.00	29	18, 32	正高 7 正高 7
30	住底磁砌	311.00	125.00* 109.00	29	22.28	正向了
31	田主立杜磁	301.10	174.90* 125.00	30	22, 28	正向 〕
32		306.25	201 16* 57 03	20	12 20	正丙 J 正 南 子
32	空 嗓 响 除 巾 服	311.06	140.0*8 158.01	18	28 12	工肉 〕
3.1	一	314.00	162 10* 120 00	13	16.28	— 止向 J — 工 古 子
25	<u> </u>	214.10	112.10 , 120.00	21	25 18	— 止向 J — 工 古 子
26	<u>一</u> 喹啉 害死帕	314.10	07.00* 108.00	26	33, 18	止 向 J 正 卤 乙
27	由 融 册	350.20	122.00*, 198.00	12	20.8	工肉了
28	上前 放 融	256.20	135.00*, 297.10	12	20, 8	正丙丁
20	「「 <u>双</u> 睡」」	262.00	280.00*, 207.00	21	24.16	正丙丁
40	地母树	265.15	289.00*, 307.00	21	24, 10	正丙丁 工页乙
40	砂場火	240.40	107.05* 177.20	16	13, 22	工肉了
41	山 供店	406.20	251.00* 152.00	24	22 60	— 止向 J — 工 古 子
42	玉城府 联苯芴耏	400.20	191.00*, 152.00	12	22,00	止 向 J 正 卤 乙
43		440.29	286.20* 453.40	25	25 18	正丙 J 正 南 子
44		404.37	158.03* 141.00	23	10.35	工肉 〕
45		722.44	1/1 20* 07 20	21	20,60	— 止向 J — 工 古 子
40	夕示母系 田雉卦	896.60	141.09*, 97.09	40	30,00	止 向 J 正 卤 乙
4/	T 地 血 電 雲 武	180.10	102.00*, 302.10	40	17, 12	工商了
40	相每成	109.10	102.00*, 144.00	22	27, 22	工商了
- 49	二小空	190.00	160.10*, 103.00	32	18, 28	工商了
50	<u>多困火</u> 	192.10	100.10*, 132.10	30	18, 28	止呙丁
51	陸困火	202.00	131.00*, 1/5.00	42	30, 23	正离丁 工商了
52	<u> し</u> 毎 版 曲 ヨ	268.00	124.00*, 226.00	19	40, 10	正离于 工商了
53		274.90	1/8.00*, 155.00	37	24, 20	止呙丁
55	<u> </u>	280.10	192.10*, 220.10	25	32 18	<u> </u>
56		297.13	159.01*, 201.08	40	20, 16	<u> </u>
57	戊唑醇	308.26	69.99*, 125.01	30	22, 34	正离子
58	己唑醇	314.00	70.01*, 159.00	31	22, 28	正离子
59	烯唑醇	326.10	70.20*, 159.00	37	25, 34	正离子
60	苯霜灵	326.10	148.00*, 91.00	17	20, 34	正离子
61	氟吗啉	371.99	164.86*, 284.95	28	36, 20	正离子
62	<u> </u>	3/3.33	223.17*, 203.26	10	16, 18	止 周子
64	小町成	200.19	162 16* 104 17	10	28 14	正丙丁 元 丙乙
65	₩ΨΞ毗团間	200.32	165.04* 201.06	24	20, 14	正丙丁
60	施 些 些	388.10	103.04*, 301.00	20	50, 20	止呙丁
67	雪困陥 李融田环心	404.10	251 20* 111 10	20	25 40	正丙丁 元卤乙
69	<u> </u>	249.10	03.00* 120.00	25	25,00	正向丁
60	家叫那	240.10	70.20* 125.10	23	20.29	止 向 J 正 卤 乙
70	<u>多</u> 双唑 与苯啶甲	274.10	154.00* 172.00	27	20, 30	正丙丁 元卤乙
/0	录平版火	214.10	154.00*, 172.00	7	10, 0	正丙丁

注:*代表定量离子。

图 1 70 种农药的总离子色谱图 Fig.1 Total ion chromatogram of 70 kinds of pesticides

2.2 色谱条件选择

70 种农药的性质存在差异,为获得较好的峰形和分 离效果需对色谱条件进行优化。由于 70 种农药均是正离 子模式,因此考虑在水相中加入甲酸,有助于目标化合 物离子化,提高灵敏度。同时在流动相中添加了甲酸铵, 甲酸铵可以加强离子效率化并且提高分辨率^[17]。不同浓 度(1、2、5 mmol/L)的甲酸铵比较发现,在 5 mmol/L 甲酸 铵浓度下,70 种农药的回收率均在 60%~110%之间。因此, 选择以 5 mmol/L 甲酸铵-0.1%甲酸水溶液(A)和 5 mmol/L 甲酸铵-甲醇溶液(B)为流动相进行梯度洗脱,10 min 内可 完成 70 种农药的快速检测,并且峰形尖锐、分离度和灵敏 度均较好。

2.3 提取与净化方法选择

蔬菜植株基质比较复杂,含有大量的色素、糖类、胺 类、脂类等,因此分析时要选择合适的净化技术^[18]。 QuEChERS 是目前使用比较广的前处理方法,适用于极 性、非极性、高酸碱性等化合物,具有使用范围广、溶剂 使用量小、污染少等优点^[19-22]。而 C₁₈、PSA 是 QuEChERS 中常用的净化填料,具有快速、简便、净化效率高等特点。 C₁₈主要去除非极性干扰物,如脂类、固醇、类胡萝卜素等; PSA 主要去除极性干扰物,如鱼素、有机酸、氨基酸、糖 类等,还可以通过氢键作用结合一些共提物^[23-25]。本研 究考虑了 PSA、C₁₈、PSA+C₁₈ 3 种组合及不同添加量的 净化效果。通过回收率比较发现,最终选择 PSA 添加量 为 125 mg 时,实现去除杂质的同时对目标化合物不会造 成影响。

2.4 基质效应评价

蔬菜废弃物品种繁多,其自身含有无机或者有机成 分,如电解质、色素、酚类、糖类等,这些物质会干扰目 标化合物的分析,影响分析结果的准确性。基质效应表现 为增强或者抑制效应,如果基质效应强可能导致目标化合 物定量结果不准确^[26-28]。基质效应的计算如公式(1)所示:

ME/%=
$$(\frac{A_{\rm m}}{A_{\rm s}} - 1) \times 100\%$$
 (1)

其中, *A*_m 是蔬菜废弃物基质溶液配制的标准溶液峰面积, *A*_s 是纯溶剂配制的标准溶液峰面积。当|ME|≤20%,表明 无明显基质效应; 20%<|ME|≤50%,表明基质效应中等; |ME|>50%,表明对目标化合物有较强的基质效应^[29-30]。实 验中比较了 0.05 mg/L 溶剂标准溶液与土豆秧和番茄秧基 质标准溶液的峰面积。由图 2 可知,土豆秧和番茄秧中无 明显基质效应(|ME|≤20%)的农药数量一致,中等基质效 应(20%<|ME|≤50%)的土豆秧略高,而较强基质效应 (|ME|>50%)的则是番茄秧中略高。整体来说,两种蔬菜废 弃物中具有中等和较强基质效应的农药比例达到 61.4%。 因此,本研究中选用空白基质配制标准溶液的方式来进行 定量分析,从而降低基质干扰影响。

2.5 方法的线性范围与检出限

为消除基质效应,本研究采用空白基质溶液配制 2.0~200.0 μg/L 系列质量浓度混合标准溶液,以质量浓度 为横坐标,峰面积为纵坐标绘制标准曲线。结果表明,在 土豆秧和番茄秧基质中70种化合物在2.0~200.0 μg/L 质量 浓度范围内线性关系良好,相关系数为 0.991~0.999,可以 满足定量分析要求(表 3)。分别以3倍和10倍信噪比(*S/N*) 计算检出限和定量限,见表 3。70种农药的检出限为 0.0001~0.0020 mg/kg,定量限为0.0003~0.0060 mg/kg,低 于 GB 23200.121—2021《食品安全国家标准 植物源性食 品中 331种农药及其代谢物残留量的测定 液相色谱-质谱联 用法》的蔬菜中规定的对应农药的方法定量限。说明该检测 方法有更低的灵敏度和定量限,对于蔬菜废弃物直接还田、 堆肥或饲料化应用时,对其农药残留情况可以提供更加准确 的残留量,对其可能造成的安全风险提供检测依据。

2.6 方法的精密度与准确度

选取经测定不含上述 70 种农药的土豆秧和番茄秧样品,分别添加 0.002、0.004 和 0.020 mg/kg 的 70 种农药混

合标准溶液,按照所建立的方法进行处理和测定。每个添加水平样品做 6 个平行,测定评价回收率及相对标准偏差。结果见表 3,70种农药回收率在 61.7%~109.9%之间,相

对标准偏差在 0.4%~9.7%之间, 基本满足 GB/T 27404—2008《实验室质量控制规范 食品理化检测》标准 对回收率和相对标准偏差的要求。

	表 3	70 种农药的线性范围、	相关系数、	检出限、	定量限、	平均回收率与相对标准偏差
Table 3	Linear equation	ons, correlation coefficen	ts, limits of	detection	, limits of	f quantification, average recoveries and relative
		standar	d deviation	s of 70 ki	ids of pes	ticides

序号	中文名称	线性范围/(μg/L)	相关系数	检出限/(mg/kg)	定量限/(mg/kg)	平均回收率/%	相对标准偏差/%
1	阿特拉津	2.0~200.0	0.991	0.0005	0.0015	69.5~102.2	0.5~5.8
2	二甲戊灵	2.0~200.0	0.999	0.0005	0.0015	82.7~105.7	2.1~4.6
3	灭多威	2.0~200.0	0.999	0.0020	0.0060	75.9~108.8	2.7~4.2
4	异丙威	2.0~200.0	0.994	0.0004	0.0012	67.5~86.5	2.3~5.1
5	西维因	2.0~200.0	0.991	0.0010	0.0030	65.9~105.2	4.5~5.8
6	呋虫胺	2.0~200.0	0.999	0.0020	0.0060	64.1~100.6	1.8~6.7
7	涕灭威亚砜	2.0~200.0	0.999	0.0020	0.0060	67.5~103.5	2.9~6.4
8	涕灭威	2.0~200.0	0.999	0.0020	0.0060	71.4~90.4	3.2~5.1
9	涕灭威砜	2.0~200.0	0.991	0.0020	0.0060	71.4~96.7	0.8~4.2
10	敌敌畏	2.0~200.0	0.993	0.0002	0.0006	61.7~99.1	2.4~4.1
11	克百威	2.0~200.0	0.992	0.0020	0.0060	64.1~109.2	3.0~5.6
12	3-羟基克百威	2.0~200.0	0.999	0.0020	0.0060	70.7~96.7	7.2~8.3
13	啶虫脒	2.0~200.0	0.999	0.0002	0.0006	91.8~95.8	0.4~6.2
14	久效磷	2.0~200.0	0.993	0.0010	0.0030	78.0~99.6	1.3~3.5
15	甲基硫环磷	2.0~200.0	0.999	0.0002	0.0006	75.3~106.2	2.4~3.7
16	乐果	2.0~200.0	0.991	0.0020	0.0060	78.1~92.8	2.1~3.1
17	杀线威	2.0~200.0	0.999	0.0020	0.0060	77.6~105.8	5.6~8.7
18	灭线磷	2.0~200.0	0.996	0.0002	0.0006	77.2~108.9	4.0~6.2
19	地虫硫磷	2.0~200.0	0.999	0.0020	0.0060	65.8~98.4	4.6~7.8
20	噻虫胺	2.0~200.0	0.999	0.0020	0.0060	90.1~107.2	1.6~7.5
21	噻虫啉	2.0~200.0	0.999	0.0002	0.0006	78.7~94.9	2.3~6.1
22	硫环磷	2.0~200.0	0.999	0.0002	0.0006	69.8~90.9	2.8~6.1
23	吡虫啉	2.0~200.0	0.997	0.0002	0.0006	65.6~107.6	1.3~3.4
24	敌百虫	2.0~200.0	0.999	0.0020	0.0060	92.2~109.9	2.2~4.5
25		2.0~200.0	0.993	0.0020	0.0060	70.9~84.0	2.1~6.7
26	水胺硫磷	2.0~200.0	0.996	0.0002	0.0006	72.2~94.8	1.2~8.4
27	噻虫嗪	2.0~200.0	0.991	0.0020	0.0060	73.0~92.1	4.6~8.2
28	倍硫磷	2.0~200.0	0.996	0.0005	0.0015	69.4~93.9	4.2~7.2
29	倍硫磷亚砜	2.0~200.0	0.995	0.0005	0.0015	80.8~101.0	2.3~6.5
30	倍硫磷砜	2.0~200.0	0.994	0.0005	0.0015	66.1~109.3	4.2~6.5
31	甲基立枯磷	2.0~200.0	0.991	0.0020	0.0060	66.4~109.1	1.6~8.1
32	噻嗪酮	2.0~200.0	0.995	0.0001	0.0003	80.5~95.5	3.2~4.8
33	除虫脲	2.0~200.0	0.998	0.0002	0.0006	76.0~108.7	1.7~5.4
34	氯唑磷	2.0~200.0	0.998	0.0005	0.0015	74.2~108.3	2.3~4.1
35	三唑磷	2.0~200.0	0.997	0.0002	0.0006	62.8~103.1	1.4~3.5
36	毒死蜱	2.0~200.0	0.995	0.0001	0.0003	84.3~106.5	2.6~4.8
37	虫酰肼	2.0~200.0	0.996	0.0010	0.0030	72.7~106.5	2.1~6.2
38	增效醚	2.0~200.0	0.999	0.0002	0.0006	80.0~104.0	3.1~4.6
39	蝇毒磷	2.0~200.0	0.992	0.0020	0.0060	80.3~94.1	4.5~6.8
40	哒螨灵	2.0~200.0	0.998	0.0001	0.0003	84.3~109.9	4.5~8.7
41	醚菊酯	2.0~200.0	0.996	0.0010	0.0030	80.8~107.4	1.6~7.6
42	虫螨腈	2.0~200.0	0.999	0.0010	0.0030	70.8~101.7	2.1~6.5
43	联苯菊酯	2.0~200.0	0.991	0.0020	0.0060	78.4~87.9	4.2~8.1
44	氯虫苯甲酰胺	2.0~200.0	0.995	0.0010	0.0030	71.0~108.3	2.7~6.5
45	氟酰脲	2.0~200.0	0.994	0.0020	0.0060	72.0~106.3	4.2~6.5
46	多杀霉素	2.0~200.0	0.995	0.0002	0.0006	81.0~87.1	3.1~8.2
47	甲维盐	2.0~200.0	0.996	0.0005	0.0015	81.0~108.2	3.6~7.1
48	霜霉威	2.0~200.0	0.995	0.0020	0.0060	75.1~106.4	4.5~6.5
49	三环唑	2.0~200.0	0.996	0.0001	0.0003	78.4~96.5	5.1~6.5
50	多菌灵	2.0~200.0	0.997	0.0002	0.0006	71.1~106.3	3.4~6.7
51	噻菌灵	2.0~200.0	0.992	0.0002	0.0006	66.6~95.9	5.3~9.1
52	乙霉威	2.0~200.0	0.996	0.0020	0.0060	74.9~86.6	4.2~8.4
53	敌菌灵	2.0~200.0	0.991	0.0020	0.0060	74.8~101.2	2.3~6.7
54	甲霜灵	2.0~200.0	0.998	0.0002	0.0006	73.2~102.3	1.5~6.7
55	腈菌唑	2.0~200.0	0.993	0.0020	0.0060	75.4~108.0	2.6~7.6
56	灭菌丹	2.0~200.0	0.995	0.0010	0.0030	70.2~105.2	3.5~7.4
57	戊唑醇	2.0~200.0	0.992	0.0020	0.0060	64.1~109.4	4.6~8.9

表 3	(续)
-----	-----

序号	中文名称	线性范围/(μg/L)	相关系数	检出限/(mg/kg)	定量限/(mg/kg)	平均回收率/%	相对标准偏差/%
58	己唑醇	2.0~200.0	0.992	0.0010	0.0030	71.7~109.2	3.8~8.4
59	烯唑醇	2.0~200.0	0.991	0.0010	0.0030	67.9~109.6	4.2~7.6
60	苯霜灵	2.0~200.0	0.991	0.0020	0.0060	78.4~108.3	3.7~6.8
61	氟吗啉	2.0~200.0	0.993	0.0002	0.0006	74.2~106.6	2.4~6.9
62	恶唑酮菌	2.0~200.0	0.994	0.0020	0.0060	68.5~109.0	5.1~9.7
63	咪鲜胺	2.0~200.0	0.998	0.0020	0.0060	70.5~85.7	4.5~8.6
64	吡唑醚菌酯	2.0~200.0	0.999	0.0010	0.0030	79.5~109.1	2.4~6.8
65	烯酰吗啉	2.0~200.0	0.999	0.0001	0.0003	88.0~107.8	1.5~5.2
66	嘧菌酯	2.0~200.0	0.997	0.0002	0.0006	76.0~104.5	4.6~7.4
67	苯醚甲环唑	2.0~200.0	0.998	0.0005	0.0015	68.1~108.7	3.5~8.1
68	氯吡脲	2.0~200.0	0.998	0.0010	0.0030	68.9~98.1	4.1~7.9
69	多效唑	2.0~200.0	0.995	0.0010	0.0030	66.4~99.7	5.5~9.4
70	氯苯胺灵	2.0~200.0	0.991	0.0020	0.0060	65.5~109.9	4.2~9.6

2.7 实际样品测定

按最优的方法,采集蔬菜种植基地蔬菜废弃物 20 份, 进行 70 种农药残留情况测定。共检出 7 种农药,分别为霜 霉威、多菌灵、莠去津、噻虫胺、吡虫啉、氯虫苯甲酰胺 和多杀菌素(表 4)。霜霉威、多菌灵、莠去津和吡虫啉的检 出率最高均为 30%;而吡虫啉的检出浓度最高,最高为 3.290 mg/kg。吡虫啉是蔬菜种植中广泛使用的杀虫剂,主 要用于防治蚜虫、飞虱、粉虱、叶蝉、蓟马等防治刺吸式 口器害虫^[31]。

表 4 实际蔬菜废弃物样品中 70 种农药检出结果 Table 4 Detection results of 70 kinds of pesticides in actual

vegetable waste samples							
化合物	检出率	检出范围	平均残留量				
	/%	/(mg/kg)	/(mg/kg)				
霜霉威	30	未检出~0.310	0.031				
多菌灵	30	未检出~0.304	0.030				
莠去津	30	未检出~0.010	0.002				
噻虫胺	10	未检出~0.351	0.052				
吡虫啉	30	未检出~3.290	1.230				
氯虫苯甲酰胺	10	未检出~0.451	0.041				
多杀菌素	10	未检出~0.012	0.006				

3 结 论

本研究通过对质谱参数、前处理条件以及基质效应等 条件进行对比优化,确定最佳净化吸收组分和比例,去除 基质带来的色素、糖类、有机酸等基质效应的干扰,减少 了目标化合物的损失,建立了 QuEChERS 净化结合 UPLC-MS/MS 对蔬菜废弃物中 70 种农药残留的同时快速 检测的方法,该方法具有前处理简单、样品用量少、分析 速度快,准确、灵敏度高的特点,适用于大批量蔬菜废弃 物中农药多残留的检测。利用该方法对实际蔬菜生产基地 的蔬菜废弃植株进行筛查,检出 7 种农药,以杀虫剂和杀 菌剂为主。说明蔬菜种植中大部分农药进入植株体内,对 其再利用时,如直接还田或饲料化,其中残留的农药可能 会造成二次污染。因此,需加强对蔬菜废弃物再利用中农 药安全筛查,以保证其安全性,避免农药二次污染造成的 质量安全风险。

参考文献

- 国家统计局. 国家数据[Z]. http://data.stats.gov.cn
 National Bureau of Statistics of the People's Republic of China. National data [Z]. http://data.stats.gov.cn
- [2] CHANG RX, LI YM, CHEN Q, et al. Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 °C [J]. Journal of Environmental Management, 2019, 230: 119–127.
- [3] 罗娟,赵立欣,于佳动,等.我国蔬菜废弃物利用研究进展与发展建 议[J]. 中国瓜菜, 2024. https://doi.org/10.16861/j.cnki.zggc.202423.0476 LUO J, ZHAO LX, YU JD, *et al.* Advances and suggestions on utilization of vegetable waste in China [J]. China Cucurbits and Vegetables, 2024. https://doi.org/10.16861/j.cnki.zggc.202423.0476.
- [4] JI C, KONG CX, MEI ZL, *et al.* A review of the amaerobic digestion of fruit and vegetable waste [J]. Applied Biochemistry and Biotechnology, 2017, 183(3): 906–922.
- [5] SHI C, WANG KJ, ZHENG MY, et al. The efficiencies and capacities of carbon conversion in fruit and VW two-phase anaerobic digestion: Ethanol-path vs. butyrate path [J]. Waste Management, 2021, 126: 737–746.
- [6] LI JP, WAN DD, JIN SR, et al. Fast treatment and recycling method of large-scale vegetable wastes [J]. Science of the Total Environment, 2023, 892: 164308.
- [7] 韩雪,常瑞雪,杜鹏祥,等.不同蔬菜种类的产废比例及性状分析[J].农业资源与环境学报,2015,32(4):377-382.
 HAN X, CHANG RX, DU PX, *et al.* Straw coefficient and properties of different vegetable wastes [J]. Journal of Agricultural Resources and Environment, 2015, 32(4):377-382.
- [8] MANIADAKIS K, LASARIDI K, MANIOS Y, et al. Integrated waste management through producers and consumers education: Composting of vegetable crop residues for reuse in cultivation [J]. Journal of Environmental Science and Health, 2004, 39(1): 169–183.
- [9] 孙可欣,国冉冉,王子铭,等. 蔬菜废弃物资源化高效利用方式分析[J].中国农学通报,2023,39(5):92-99.
 SUN KX, GUO RR, WANG ZM, et al. Efficient resource utilization of vegetable waste [J]. Chinese Agricultural Science Bulletin, 2023, 39(5):

92–99.

- [10] ZHANG SY, ZHANG Y, REN SH, et al. Uptake, translocation and metabolism of acetamiprid and cyromazine by cowpea (Vigna unguiculata L.) [J]. Environmental Pollution, 2023, 331(1): 121839.
- [11] 张圆圆,李峰,张宇娇,等.农田尾菜发酵过程中农药残留变化特征[J].农药学学报,2020,22(11):122–130.
 ZHANG YY, LI F, ZHANG YQ, *et al.* Dissipation of pesticides residues during vegetable waste fermentation [J]. Chinese Journal of Pesticide Science, 2020, 22(11): 122–130.
- [12] 和丽忠,陈喜,陈锦玉,等. 蔬菜废弃物无害化处理农药残留量变化研究[J]. 西南农业学报,2006,19(增刊):125–128.
 HE LZ, CHEN X, CHEN JY, *et al.* Study on change of pesticide residue with harmless treatment of vegetable wastes [J]. Southwest China Journal of Agricultural Sciences, 2006, 19(Supplement): 125–128.
- [13] MAHMOUD H, ALEJANDRO B, ELISABETH J, et al. Evaluation of the nutritional value and presence of minerals and pesticides residues in agro-industrial by-products to replace conventional ingredients of small ruminant diets [J]. Small Ruminant Researth, 2023, 229: 107117.
- [14] ARCO A, YANEZ-RUIZ DR, MARTIN-GARCIA AI. Is it safe using olive and green-house agroindustrial by-products in dairy goats feeding [J]. Méditerranéennes. Série A, Séminaires Méditerranéens, 2015, 115: 275–279.
- [15] 赵静,崔旭,吴加伦,等. 多菌灵在杭白菊及其土壤中的残留消解动态[J]. 农药学学报, 2013, 15(4): 457–463.
 ZHAO J, CUI X, WU JL, *et al.* Residue and decline dynamics of carbendazim in chrysanthemum flower and soil [J]. Chinese Journal of Pesticide Science, 2013, 15(4): 457–463.
- [16] WANG ZH, HUANG W, LIU ZW, et al. The neonicotinoid insecticide imidacloprid has unexpected effects on the growth and development of soil amoebae [J]. Science of the Total Environment, 2023, 869: 161884.
- [17] 王苹苹,侯广月,王亭亭,等. 超高效液相色谱-串联质谱法检测果蔬 中植物生长调节剂及残留规律研究[J]. 中国果菜, 2024, 44(7): 11–16. WANG PP, HOU GY, WANG TT, *et al.* Residue determination pf plant growth regulators in fruits and vegetables by UPLC-MS and studies the regulation of plant growth regulators [J]. China Fruit & Vegetable, 2024, 44(7): 11–16.
- [18] 赵超群,金绍强,岳超,等.改良 QuEChERS-超高效液相色谱-串联质
 谱法测定水果蔬菜中 36 种农药残留[J].安徽农业科学,2024,52(15):
 197-214.

ZHAO CQ, JIN SQ, YUE C, *et al.* Determination of 36 pesticide residue in fruits and vegetables by QuEChERS -ultra high performance liquid chromatography tandem mass spectrometry [J]. Journal of Anhui Agricultural Sciences, 2024, 52(15): 197–214.

- [19] RAHMAN MM, ABD EAAM, KIM SW, et al. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review [J]. Journal of Separation Science, 2017, 40: 203–212.
- [20] 高冉,张文波,吴义华,等. QuEChERS 前处理结合超高效液相色谱-串联质谱法同时测定土壤中 11 种农药的残留量[J].理化检验-化学分 册, 2024, 60(7): 668-673.

GAO R, ZHANG WB, WU YH, *et al.* Simultaneous determination of residues of 11 pesticides in soil by ultra-high performance liquid chromatography-tandem mass spectrometry coupled with QuEChERS

pretreatment [J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2024, 60(7): 668–673.

- [21] DING GT, SUN P, REN DQ, et al. Terminal residue of fungicides in agro-products from north China: Assessment of human exposure potential [J]. Journal of Food Composition and Analysis, 2023, 117: 105138.
- [22] LIU W, SU Y, LIU J, et al. Determination of cyflufenamid residues in 12 foodstuffs by QuEChERS-HPLC-MS/MS [J]. Food Chemistry, 2021, 362: 130148.
- [23] 周非凡. 蔬菜水果农药残留中基质效应的分析[J]. 食品安全导刊, 2021, 305(12): 114–115.
 ZHOU FF. Matrix effect analysis of pesticide residues in vegetables and fruits [J]. China Food Safety Magazine, 2021, 305(12): 114–115.
- [24] COLLIMORE WA, BENT GA. A newly modified QuEChERS method for the analysis of organochlorine and organophosphate pesticide residues in fruits and vegetables [J]. Environmental Monitoring and Assessment, 2020, 192(2): 128.
- [25] 杨黎, 蓝嫄嫄, 黄高武, 等. QuEChERS 结合超高效液相色谱-串联质 谱法测定八角中 222 种农药及其代谢物残留[J]. 食品安全质量检测学 报, 2024, 15(19): 54-67.

YANG L, LAN YY, HUANG GW, et al. Determination of 222 kinds of pesticides and their metabolite residues in *Illicium verum* by QuEChERS combined with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2024, 15(19): 54–67.

- [26] 闫君,陈婷,张婕,等.农药残留检测的基质效应研究综述[J]. 食品科技, 2024, 49(6): 335–341.
 YAN J, CHEN T, ZHANG J, *et al.* A review of matrix effects in pesticide residue detection [J]. Food Science and Technology, 2024, 49(6): 335–341.
- [27] BUDZINSKI H, COUDERCHET M. Environmental and human health issues related to pesticides: From usage and environmental fate to impact [J]. Environmental Science and Pollution Research, 2018, 25(15): 14277–14279.
- [28] BAI MK, TANG RX, LI GR, et al. High-throughput screening of 756 chemical contaminants in aquaculture products using liquid chromatography/quadrupole time-of-flight mass spectrometry [J]. Food Chemistry: X, 2022, 15: 100380.
- [29] MENG H, LI YJ, ZHAO DN, et al. Determination of triazole fungicides by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with a lipophilicity-matched separation strategy for reducing matrix effects [J]. Analytical Letters, 2024, 57(13): 2132–2145.
- [30] BESIL N, CESIO V, HEINZEN H, et al. Matrix effects and interferences of different citrus fruit coextractives in pesticide residue analysis using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 2017, 65(23): 4819–4829.
- [31] 杜鹏辉, 饶钦雄, 王献礼, 等. 吡虫啉和啶虫脒在两种叶菜上残留的原始沉积行为及其影响因素[J]. 农药学学报, 2023, 25(2): 406-413.
 DU PH, RAO QX, WANG XL, *et al.* Qriginal deposition behavior and influencing factors of imidacloprid and acetamprid residues on two leafy vegetables [J]. Chinese Journal of Pesticide Science, 2023, 25(2): 406-413.

(责任编辑:于梦娇 韩晓红)