DOI: 10.19812/j.cnki.jfsq11-5956/ts.20240914008

QuEChERS-液相色谱-串联质谱法测定水产品中 双甲脒及其代谢物残留量

郭 灿1, 王守英1, 黄志英1, 白 冰1, 邹 艺2, 杨海锋1, 司文帅 1,2*

(1. 上海市农业科学院农产品质量标准与检测技术研究所,上海 201403;2. 上海市科立特农产品检测技术服务有限公司,上海 201403)

摘 要:目的 建立 QuEChERS-液相色谱-串联质谱法测定水产品中双甲脒及其代谢物 2,4-二甲基苯胺残留 量的分析方法。**方法** 样品经磷酸氢二钠缓冲液调节 pH 后,经乙腈提取,盐析分层,再通过 QuEChERS 方法 净化,供液相色谱-串联质谱仪测定,内标法定量。结果 双甲脒及其代谢物的分离和洗脱在 8 min 内完成。 在 1、2、10 μg/kg 3 个水平的加标浓度下,双甲脒的平均加标回收率为 108.9%~111.1%, 2,4-二甲基苯胺为 100.6%~105.9%; 批内 RSDs 为 1.4%~4.5%, 批间 RSDs 为 8.0%~9.9%, 4 种基质的批间相对标准偏差在 3.1%~11.3%之间,基质效应为–17.9%~+14.0%。方法检出限为 0.5 μg/kg,定量限为 1.0 μg/kg。结论 该方法 高效、准确,适用于水产品中双甲脒及其代谢物残留量的测定,并为相关标准制修订提供参考。 关键词:双甲脒; 2,4-二甲基苯胺;液相色谱-串联质谱法;水产品;QuEChERS

Determination of amitraz and its metabolite residues in aquatic products by QuEChERS-liquid chromatography-tandem mass spectrometry

GUO Can¹, WANG Shou-Ying¹, HUANG Zhi-Ying¹, BAI Bing¹, ZOU Yi², YANG Hai-Feng¹, SI Wen-Shuai^{1,2*}

(1. Institute for Agro-food Standards and Testing Technology of Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; 2. Shanghai Co-Elite Agri-food Testing Technical Service Co., Ltd., Shanghai 201403, China)

ABSTRACT: Objective To develop an analytical method for the quantification of amitraz and its metabolite 2,4-dimethylaniline residues in aquatic products using the QuEChERS coupled with liquid chromatography-tandem mass spectrometry. **Methods** The samples were extracted using acetonitrile after pH adjustment with a disodium hydrogen phosphate buffer, separated by salting out, and subsequently subjected to cleanup using the QuEChERS method for determination via liquid chromatography-tandem mass spectrometry. The quantification was performed using the internal standard method. **Results** The separation and elution of amitraz and its metabolites were successfully accomplished within a time frame of 8 minutes. The average recoveries of dimethylamidine and 2, 4-dimethylamiline were 108.9%–111.1% and 100.6%–105.9% respectively at 3 levels of 1, 2, 10 µg/kg. Between batch RSDs of 1.4%–4.5%, within the RSDs of 8.0%-9.9%. The relative standard deviations of the four substrates ranged from 3.1% to

基金项目:农业农村部行业标准制修订项目(14192063)

Fund: Supported by the Ministry of Agriculture and Rural Affairs Industry Standard Revision Project (14192063)

^{*}通信作者: 司文帅, 助理研究员, 主要研究方向为农产品质量安全与检测技术。E-mail: siwenshuai021@163.com

^{*}Corresponding author: SI Wei-Shuai, Assistant Professor, Institute for Agro-food Standards and Testing Technology of Shanghai Academy of Agricultural Sciences, Shanghai 201403, China. E-mail: siwenshuai021@163.com

11.3%, and the matrix effect ranged from -17.9%-+14.0%. The limits of detection and quantitation were 0.5 µg/kg and 1.0 µg/kg respectively. **Conclusion** The proposed method demonstrates high efficiency and accuracy in the determination of amitraz and its metabolites in aquatic products, thereby offering valuable insights for the revision of relevant standards.

KEY WORDS: amitraz; 2,4-dimethylaniline; liquid chromatography-tandem mass spectrometry; aquatic product; QuEChERS

0 引 言

双甲脒(amitraz, AMZ)是一种常用于农业和畜牧业的 广谱有机氮类杀虫剂和杀螨剂^[1-3],主要应用于水果、蔬 菜、大豆等作物以及牛、羊、兔等家畜的病虫害防治^[4]。 其通过抑制螨类神经系统中的单胺氧化酶活性,干扰神经 递质代谢以达到杀虫效果^[5]。然而,频繁不当使用可能导 致害虫产生耐药性,降低防治效果^[6]。

AMZ 化学性质不稳定,在环境和生物体内易代谢为 具有致癌性、致突变性和遗传毒性的 2,4-二甲基苯胺 (2,4-dimethylaniline, DMA),对人体健康构成威胁^[7-8]。 AMZ 还可通过与α-2-肾上腺素受体结合,抑制中枢神经和 呼吸系统,引发严重中毒^[9]。长期暴露于 AMZ 及其代谢产 物下,可能引发代谢紊乱、心动过缓和中枢神经系统抑制等 问题^[9]。因此,各国制定了食用农产品中 AMZ 的残留限量标 准,如欧盟和日本规定蜂蜜中的最大残留限量为 0.2 mg/kg, 美国则根据基质不同将其限量设定在 0.02~9.00 mg/kg 之 间^[10]。我国 GB 31650—2019《食品安全国家标准 食品 中兽药最大残留限量》规定牛、羊、猪及蜂蜜中的限量为 0.4 mg/kg,并将 AMZ 及其代谢产物 DMA 的总和作为残留 标志物。

在水产品中, AMZ 对鱼类毒性尤为明显, 极低浓度 即可导致鱼类大规模死亡^[11]。目前我国已经制定了 AMZ 在动物性食品中的最大残留限量标准, AMZ 可用于家 畜、蜜蜂,但鱼类禁用,在质量标准和说明书中要明确对 鱼类的安全警示。AMZ 代谢过程中,首先转化为单甲脒 (N-2,4-dimethylphenyl-N-methylformamidine, DMPF) 和 2,4-二甲基苯基甲酰胺(2,4-dimethylphenylformamide, DMF), 最终生成 DMA(见图 1)。目前 AMZ 及其代谢物的检 测方法主要有气相色谱法^[12]、气相色谱-质谱联用法^[13-15]、 高效液相色谱法^[16]和液相色谱-串联质谱法^[10,17-20],此 外,免疫层析法^[21]、高光谱法^[22]、胶体金法^[23]和拉曼光 谱法[24]也偶有报道。其中,液相色谱-串联质谱法因其高 灵敏度和良好的分离效果, 被广泛应用于多种基质的检 测。然而,现有检测方法在水产品基质中应用时面临一些 挑战,由于 AMZ 代谢物 DMA 含量低,加上水产品基质 复杂,脂肪和蛋白质等成分易干扰检测,影响精度。此外, 传统气相和液相色谱法前处理步骤烦琐,耗时较长,不

利于快速、大规模分析。因此,亟需开发简便高效的检测 方法。

针对 AMZ 的前处理方法有 3 种: (1)是在高温酸性条 件下将 AMZ 水解为 DMA, 并通过 DMA 含量推算 AMZ 的含量,但受基质影响可能导致水解不完全,进而影响结 果准确性^[13,25-26]; (2)是同时检测 AMZ 及其三种代谢物^[10,27], 但由于中间代谢产物不稳定,检测精度可能降低^[18]; (3)是 参考 GB 31650—2019 残留定义,测定 AMZ 及其最终代谢 产物 DMA,既确保了方法的有效性,又提高了其广泛适用 性^[14-15,28]。然而,现有研究主要集中在蜂蜜、牛奶和果蔬 等基质^[12,25,29],对水产品的研究较少^[30-31]。本研究开发了 一种高效的 QuEChERS-液相色谱-串联质谱法,用于检测 水产品中 AMZ 及其代谢物 DMA 的残留。该方法简便、 准确,有助于提高水产品质量安全的监测水平,并为规范 水产养殖提供技术支持。

Fig.1 Metabolism routes of AMZ

1 材料与方法

1.1 仪器与材料

Acquity UPLC H-Class 超高效液相色谱仪(美国 Waters 公司); 4500 QTRAP 三重四极杆质谱仪(美国 AB SCIEX 公司); Thermo Scientific Sorvall ST 16R 离心机(美 国 Thermo Fisher Scientific 公司); Ohaus Adventurer AX224 电子分析天平(感量 0.01 g, 奥豪斯仪器有限公司); Vortex-Genie 2 多管涡旋混合器(上海安谱实验科技股份 有限公司); EYELA MG-2200 氮吹仪(上海中科同力化工材 料有限公司); KQ3200E 超声波仪(上海科导超声仪器有限 公司)。 乙腈、甲醇、甲酸(色谱纯,德国 Merck 公司);纯 水(杭州哇哈哈集团有限公司);AMZ 和 DMA 标准对照品 (德国 Dr. Ehrenstorfer 公司);氢氧化钠、氨水、盐酸、氯 化钠、磷酸氢二钠(分析纯,中国医药集团有限公司);无水 MgSO₄、十八烷基硅烷键合吸附剂(C_{18})和乙二胺-N-丙基硅 烷(ethylenediamine-N-propylsilane, PSA)、乙酸胺(色谱 纯)(上海安谱实验科技股份有限公司);EC-C₁₈色谱柱 (100 mm×3.0 mm, 2.7 μ m,美国 Agilent 公司);BEH C₁₈色谱 柱(100 mm×2.1 mm, 1.7 μ m,美国 Waters 公司); 0.22 μ m 尼 龙微孔滤膜(美国 PALL 公司)。

1.2 试验方法

1.2.1 标准溶液配制

分别准确移取标准储备溶液,配制成质量浓度为 1.0 μg/mL的混合标准中间溶液,然后用 50%乙腈-水溶 液制成质量浓度为 0.2、0.5、1.0、2.0、5.0、10.0 μg/L 系 列标准工作曲线。

1.2.2 样品前处理

准确称取 2.0 g试样(精确至 0.01 g)于 50 mL离心管中, 加入陶瓷均质子和 1 mL 0.2 mol/L 的磷酸氢二钠缓冲液 (pH 9.0), 混匀, 然后加入 10 mL 乙腈涡旋提取 10 min、超 声 10 min, 以增强目标物的溶出。加入 3.0 g 氯化钠, 剧烈 振荡 2 min, 5000 r/min 离心 5 min, 取上层乙腈层, 加入净 化剂(50 mg PSA+50 mg C₁₈), 涡旋混匀 2 min, 进行再次离 心(5000 r/min, 5 min), 移取 5 mL 上清液氮吹至 1 mL, 准 确加入 1 mL 水, 涡旋混匀, 过 0.22 μm 尼龙微孔滤膜, 供 液相色谱-串联质谱仪测定。

(1)提取试剂的优化

选择乙腈作为主要提取溶剂,相较于传统的正己烷-异丙醇(2:1, *V:V*)提取法,乙腈的极性适中,更有助于高效 提取 AMZ 及其代谢物。实验中加入氯化钠,有助于实现水 相与有机相的有效分层,减少非目标成分的溶出,提高提 取效率。

(2)碱性缓冲试剂的优化

在提取过程中添加磷酸氢二钠缓冲液,调节溶液至 弱碱性(pH 9.0),以提高 AMZ 的稳定性和提取效率。与其 他缓冲剂如氢氧化钠相比,磷酸氢二钠对基质的影响较小, 并能有效保持目标物的完整性。

(3)净化方法

采用 QuEChERS 方法,以 PSA 和 C₁₈ 为净化剂,分别 去除样品中脂肪酸、糖类和非极性物质,确保提取液的清 洁度,提高检测精度。相较于传统固相萃取法,QuEChERS 操作简便且经济高效。

(4)浓缩与定容

取净化后的提取液(5 mL),使用氮气吹至 1 mL,再精确加入 1 mL 水复溶,确保目标物浓度稳定,减少损失。此外,避免使用乙腈-水(*V*:*V*=1:1)以外的溶剂,以保证目标物

在液相分析前的稳定性。

1.2.3 液相色谱-串联质谱条件

(1)液相色谱条件

色谱分离采用反相 EC-C₁₈ 色谱柱(3.0 mm×100 mm, 2.7 μm), 柱温保持在 30 ℃; 流速为 0.4 mL/min; 进样体积 为 5 μL; 流动相 A 为 0.1%甲酸水溶液, B 为乙腈溶液; 梯 度洗脱时间为 8 min, 洗脱程序见表 1。

表 1 梯度洗脱程序 Table 1 Gradient elution program				
时间/min	A/%	B/%		
0.0	95	5		
1.2	95	5		
2.0	60	40		
4.0	5	95		
5.0	5	95		
5.5	95	5		
8.0	95	5		

(2)质谱条件

电离方式: 电喷雾电离, 正离子扫描; 检测方式: 多反应监测; 离子化电压: 4500 V; 离子源温度: 450 ℃; 气帘 气: 30 psi; 喷雾气: 50 psi; 辅助加热气: 50 psi; 多反应监测 离子对、去簇电压及碰撞能量见表 2。

表 2 AMZ 和 DMA 定性、定量离子对、去簇电压及碰撞能量 Table 2 AMZ and DMA qualitative and quantitative ion-pairing, declustering voltage and collision energy

编号	被测物名称	定性离子对(m/z)	去簇电压 /V	碰撞能 /eV
1	A M 7	294.2>163.2*	55	23
I A	AMZ	294.2>122.0	55	38
r	DMA	122.1>107.1*	60	23
2	2 DMA	122.1>77.0	00	36
3	AMZ-D ₃	297.2>166.2*	55	23
4	DMA-D ₆	128.2>110.1*	60	23

注:*为定量离子。

1.2.4 实际样品的制备

本研究的实际样品来自近期送至实验室的草鱼、对 虾、鳗鱼和河蟹样品,样品由市场或水产养殖基地采集。 收到样品后,立即在实验室进行前处理。样品制备流程如 下:剔除非食用部分,仅保留可食用的肌肉组织,使用冷 冻干燥机进行冻干处理,确保样品含水量一致。冻干样品 经粉碎研磨后分装于无菌样品袋中,低温保存(-20 ℃),以 备后续检测。

1.3 数据处理

本研究的数据处理采用内标法,通过目标物与内标物的峰面积比进行定量分析,以提高测定准确性。利用标准曲线法和线性回归计算目标物含量,并通过质谱中的多反应监测选择特征离子对进行定性和定量分析,确保结果可靠性;数据分析和绘图使用 Microsoft Excel和 OriginLab Origin;数据精密度通过计算标准偏差和相对标准偏差(relative standard deviation, RSD)评估。

2 结果与分析

2.1 质谱条件的优化

本研究基于液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry, LC-MS/MS),开 发了用于水产品中 AMZ 及其代谢物检测的方法。通过在 正、负电喷雾电离(ESI⁺、ESI)模式下进行全扫描分析,本 研究发现 ESI⁺模式下响应更佳,因此选择准分子离子峰 [M+H]⁺作为最优母离子。优化去簇电压后,提升了灵敏度 和准确性,并通过二级质谱扫描和调节碰撞能量,确定了 两个最优碎片离子。这一过程显著提高了 AMZ 残留分析 的可靠性。

2.2 色谱条件的优化

2.2.1 色谱柱

在相同流动相和梯度洗脱条件下,对两种色谱柱进行比较: EC-C₁₈ (100 mm×3.0 mm, 2.7 μ m)和 BEH C₁₈ (100 mm×2.1 mm, 1.7 μ m)。实验结果显示,对于 BEH C₁₈ 色谱柱, DMA 出现了峰分叉和峰前伸现象,导致其保留和洗脱性能较差,响应值偏低。而在 EC-C₁₈ 色谱柱上,峰型尖锐且狭窄,显著提高了灵敏度(见图 2)。

2.2.2 流动相

电喷雾质谱的离子化发生在溶液状态中,因此流动 相的组成对目标化合物的分离和离子化效率有显著影响, 从而影响其灵敏度。在流动相选择的比较中,本研究使 用了 0.1%甲酸水溶液和甲醇、乙腈有机相进行洗脱。结 果显示,当使用乙腈作为有机相时,AMZ 及其代谢物的 灵敏度显著提高,这是由于乙腈具有更强的洗脱能力(见 图 3)。

2.3 前处理方法优化

2.3.1 提取剂

根据相关文献和标准,正己烷-异丙醇混合液和纯乙 腈溶液通常用于提取 AMZ 及其代谢物^[16,27]。例如,在 GB/T 21169—2007《蜂蜜中 AMZ 及其代谢物残留量测定 液相色谱法》中,正己烷-异丙醇被推荐作为提取剂。本 研究在此基础上,比较了 GB/T 21169—2007标准中的正 己烷-异丙醇提取法与 QuEChERS 方法(提取后直接过膜) 对目标物的提取效果。结果显示,采用 QuEChERS 提取 后,目标物的损失较小(图 4),且基质效应保持在 -10%~20%之间,符合提取要求。相比之下,正己烷-异丙 醇提取法由于需要额外的溶剂置换,可能进一步增大目 标物的损失。

图 3 2 种有机相洗脱条件下目标物的响应值(质量浓度: 10 ng/L) Fig.3 Response values of the targets under 2 kinds of organic phase elutions (concentration: 10 ng/L)

2.3.2 碱性缓冲因子

研究表明, AMZ 在酸性环境下易发生分解, 而在碱性 环境下提取效率更高且稳定^[32]。因此, 本研究比较了加入 磷酸氢二钠缓冲溶液(0.2 mol/L; 调节 pH 在 9.0 左右)、氢 氧化钠溶液(0.1 mol/L)及提取溶剂中直接添加 2%氨水溶 液与不添加缓冲因子下的提取效果。为避免碱性缓冲溶液 引入水分而可能导致与乙腈互溶, 本研究在实验中同时加 入了 3.0 g NaCl, 以实现水相与乙腈相的有效分层, 从而 减少体积变化带来的偏差。实验结果显示, 在弱碱性环境 中, AMZ 的回收率显著提高(见表 3), 进一步表明 AMZ 在 弱碱性环境下的提取稳定性更好。

表 3	碱性缓冲因子对目标物的提取效率影响
Table 3	Effects of alkaline buffer factor on extraction
	efficiency of target substance

		回收率	5/%	
化合物	磷酸氢二	不加缓冲	氢氧化	
	钠	溶液	钠	2%氨水
AMZ	74.7	40.1	41.0	43.0
DMA	92.0	82.5	68.3	84.1

2.3.3 内标法与外标法

在后续优化实验中,尽管在提取过程中添加了碱性 缓冲溶液,当水产品基质选择虾时,AMZ的回收率显著降 低,范围在38%~43%之间,与鱼基质相比回收率降低了约 30%,这可能是AMZ受基质影响在提取过程中部分降解。 因此,虽然碱性缓冲溶液有助于提高目标物的提取效率, 但无法完全规避基质 pH 的变化对回收率的影响,且不同 水产品基质的 pH 差异较大。本研究尝试了将 AMZ 水解为 其代谢物 DMA 并采用内标法校正来解决这一问题。现有 的 AMZ 水解检测方法通常是在强酸性或强碱性条件下将 AMZ 水解为 DMA,再以 DMA 为目标物进行定量分析,最 终通过换算得到 AMZ 的含量。

本研究进行了在酸性和碱性条件下的AMZ水解实验, 并对水解温度、时间和盐酸浓度进行了正交实验。实验结 果表明,在1.0 mol/L 盐酸和10 mol/L 氢氧化钠下,分别在 60 °C水浴中进行 30 min 的 AMZ 水解,盐酸条件下的转化 率达到 60%,而碱性条件下的转化率不足 5%。基于此,本 研究进一步对盐酸水解的影响因素进行了正交优化实验。 结果显示,即使在优化条件下,使用外标法进行水解实验 时,AMZ 的转化率仍未超过 75%,未能满足后续研究对回 收率的要求(详见表 4)。

表 4 水解温度、时间和盐酸浓度的正交实验 Table 4 Orthogonal experiments of hydrolysis temperature, time and hydrochloric acid concentration

		水解因素		
方法	温度/℃	时间/min	盐酸浓度 /(mol/L)	转化率/%
方法 1	30	10	1.0	70.2
方法 2	30	20	0.1	71.6
方法 3	30	30	0.01	70.2
方法 4	40	10	1.0	67.8
方法 5	40	20	0.1	62.0
方法 6	40	30	0.01	64.9
方法 7	60	10	1.0	58.0
方法 8	60	20	0.1	65.0
方法 9	60	30	0.01	69.0

本研究考察了内标法在提高 AMZ 回收稳定性方面的 效果,并对比了内标法与外标法的回收率。结果显示,内 标法能够有效解决 AMZ 在前处理过程中的不稳定问题, 从而显著提高目标物的回收率。此外,相同条件下,内标 法通过减少称样量,既保证了方法的准确性,又降低了基 质对仪器的污染风险。因此,综合考虑这些优势后,本研 究决定在实际操作中选择称取 2 g 样品并使用内标法进行 定量分析(详见表 5)。

T-11- 5	表 5	
Table 5	Compar	ison of recoveries between internal and external
		standard mathads (%)

standard includes (70)				
方法类别	目标物	2g样品	5g样品	
内标法	AMZ	91.27	89.98	
	DMA	101.51	94.31	
外标法	AMZ	25.17	14.39	
	DMA	111.58	109.76	

2.3.4 净化方式

水产品基质复杂,含有大量蛋白质和脂肪,因此提取 后的净化步骤至关重要。目前,主流的净化方法包括 QuEChERS 方法^[10,29,33-34]和固相萃取法^[11,18]。固相萃取操 作烦琐、溶剂消耗大且成本较高,而 QuEChERS 方法以其 快速、高效和经济性被广泛应用于样品前处理。本研究采 用 QuEChERS 方法进行净化,其中使用 PSA 去除脂肪酸、 糖类和色素,使用十八烷基硅烷键合吸附剂(C₁₈)有效去除 非极性物质,如油脂等杂质。本研究以淡水鱼为基质,比较 了 4种净化方式的效果:直接过膜、100 mg PSA、100 mg C₁₈, 及 50 mg PSA+50 mg C₁₈ 净化。实验结果表明,50 mg PSA+50 mg C₁₈的组合具有最佳的净化效果,AMZ 和 DMA 的基质抑制效应均低于 10%(图 5)。因此,该净化方案适合 用于后续的研究。

2.3.5 浓缩与定容

在仪器分析中,定容溶剂对分析物的峰形、分离度 和灵敏度有显著影响。色谱分析中通常使用流动相定容。 然而,文献指出,使用 0.1%甲酸水溶液-甲醇(1:9, *V:V*)作 为定容溶剂时,AMZ 在 7 h内几乎完全分解,而使用乙腈-水(1:1, *V:V*)作为定容溶剂时,AMZ 在 24 h内能够保持稳 定^[27]。鉴于 AMZ 是一种鱼类禁用兽药,本研究在内标法 的基础上增加了氮吹浓缩步骤,以提高方法的灵敏度。结 果显示,将 5 mL净化液浓缩至 1 mL 后,再加 1 mL水复溶, 可以保准方法具有较好的回收稳定性,且方法检出限可达 到 0.5 μg/kg。

2.3.6 方法灵敏度与现有方法比较

本研究的 LC-MS/MS 方法表现出更高的灵敏度,检 出限为 0.5 µg/kg,定量限为 1.0 µg/kg。相比之下,传统气 相色谱-质谱法的检出限通常在 3.0~15 µg/kg^[13-15,26]。通 过优化质谱条件,如采用正离子电喷雾模式(ESI⁺)并精 确调节电离和碰撞能量,该方法显著提升了检测信号的 强度和稳定性,更适用于水产品中 AMZ 及其代谢物微量 残留的检测。

2.4 方法学考察

2.4.1 基质效应

选择草鱼、对虾、鳗鱼和河蟹样品,按照前处理步 骤处理后,添加混合标准中间液,配制成进样质量浓度 为 5 ng/mL 的基质添加样品,测得响应值 *B*。用流动相配 制同浓度的标准品溶液,测得响应值 *A*。通过基质效应计 算公式(1):

基质效应/%=(峰面积 *B*/峰面积 *A*-1)×100% (1) 式中,正值表示基质增强效应,负值表示基质抑制效应。结 果显示,本方法中的基质效应范围为-17.9%至+14.0%(表 6), 应用内标法有效避免了基质效应,并提高了定量准确性。

表 6 草鱼、对虾、鳗鱼、河蟹中 AMZ 及 DMA 的基质效应(%) Table 6 Matrix effects of AMZ and DMA in grass carp, shrimp, eel, river crab (%)

目标物	草鱼	对虾	鳗鱼	河蟹
AMZ	8.2	-17.3	-9.5	-17.9
DMA	2.3	14.0	0.9	5.2

2.4.2 线性范围、检出限和定量限

本方法采用溶剂标准品的多点定量策略。标准曲线的 配制步骤如下:取 0.1 mL 的 AMZ 和 DMA 标准储备液,加 入 10 mL 棕色容量瓶中,用甲醇稀释至 1 mg/L 的混合中间 液。然后,使用 50%乙腈水溶液逐级稀释该混合中间液,制 备浓度范围为 0.2~10.0 ng/mL 的标准溶液,供 LC-MS/MS 测定。标准曲线的线性结果见表 7。如果样品中药物浓度 超出线性范围,则需用 50%乙腈水溶液稀释至线性范围内 后再进行测定。

取 2.0 g 空白草鱼、对虾、鳗鱼和河蟹样品,分别添加 100 ng/mL 标准混合工作液 10 μL 和 20 μL,涡旋混匀后按"1.2.2"进行前处理,每个浓度设置 3 个平行实验。结果表明,在检出限 0.5 μg/kg 的添加质量浓度下,不同水产样品中 AMZ 及 DMA 的信噪比(峰对峰)均大于 3,在定量限 1.0 μg/kg 的添加质量浓度下,信噪比均大于 10。

表 7 AMZ 及 DMA 的添加标准曲线线性实验结果 Table 7 Results of standard curve linearity experiments for AMZ and DMA addition

日标物	回归方程	相关系数	线性范围
白 你 10	回归力性	(R^2)	/(ng/mL)
AMZ	<i>Y</i> =1.03424 <i>X</i> +0.08057	0.9955	0.2~10.0
DMA	<i>Y</i> =1.10784 <i>X</i> +0.02169	0.9997	0.2~10.0

2.4.3 回收率实验

在确定样品前处理方法后,本研究对草鱼、对虾、鳗 鱼和河蟹样品进行了 AMZ 及 DMA 的加标回收率实验,以 评估方法的准确度和精密度。实验在 1、2、10 μg/kg 3 个 水平上进行,每批次 6 次平行实验,共重复 3 批次。结果 显示, AMZ 的平均加标回收率为 108.9%~111.1%, DMA 为 100.6%~105.9%; 批内 RSDs 为 1.4%~4.5%, 批间 RSDs 为 8.0%~9.9%(表 8)。结果表明, 该方法在测定 AMZ 及 DMA 时具有良好的准确性和稳定性。

表 8 AMZ 及 DMA 的回收率及 RSDs Table 8 Recoveries and RSDs for AMZ and DMA

目标物	添加浓度 /(µg/kg)	平均回收率 /%	批内 RSDs /% (<i>n</i> =6)	批间 RSDs /% (n=18)
AMZ	1, 2, 10	110.5、111.1、 108.9	5.0、1.8、 7.3	10.5、8.3、 7.6
DMA	1, 2, 10	105.9、100.6、 101.9	3.0、4.5、 1.4	9.7、8.0、 9.9

2.5 实际样品测定

使用本方法对近期送至本实验室的水产品样品进行 测定,包括草鱼、对虾、鳗鱼和河蟹。检测结果显示,共 有3批样品检出阳性。其中,草鱼样品中检出了AMZ,其 含量为1.2 µg/kg; 鳗鱼和对虾样品中检出了DMA,其含量 分别为1.9 µg/kg和2.3 µg/kg。

3 结 论

建立了一种基于 QuEChERS 前处理方法结合液相色谱 -串联质谱技术的检测方法,用于测定水产品中 AMZ 及其代 谢物残留。样品经乙腈提取、盐析分层,并使用 PSA 和 C₁₈ 净化,有效降低了背景干扰;通过内标法定量,显著提高了 方法的灵敏度和加标回收率。该方法满足了水产品中 AMZ 及其代谢物残留检测的要求。经过反复实验验证,该方法具 备良好的灵敏度、准确性和可靠性,能够有效保障水产品中 AMZ 及其代谢物残留检测的准确性,进一步保证消费者的 健康安全。

参考文献

- HU SX, BENNER CP, WHITE JA, et al. Pharmacokinetics and brain distribution of amitraz and its metabolites in rats [J]. Environ Toxicol Pharm, 2019, 65: 40–45.
- [2] MONTEIRO HR, LEMO MFL, NOVAIS SC, et al. Amitraz toxicity to the midge *Chironomus riparius*: Life-history and biochemical responses [J]. Chemosphere (Oxford), 2019, 221: 324–332.
- [3] CHOU CP, LU SY, UENG TH. Modulation of serum concentrations and hepatic metabolism of 17 beta-estradiol and testosterone by amitraz in rats [J]. Arch Toxicol, 2008, 82(10): 729–737.
- [4] 董仲生.双甲脒配合伊维菌素控制肉兔疥螨病的试验研究[J]. 中国养兔, 2023(1): 23–25.
 DONG ZS. Experimental study on the control of sarcoptes in meat rabbits by amitraz combined with iver mectin [J]. Chin J Rabbit Farm, 2023(1): 23–25.
- [5] LERDSRI J, UPAN J, JAKMUNEE J. Nafion mixed carbon nanotube

modified screen-printed carbon electrode as a disposable electrochemical sensor for quantification of Amitraz in honey and longan samples [J]. ElectroChim Acta, 2022, 410: 140050.

- [6] WYK RDV, BARON S, MARITZ-OLIVER C. An integrative approach to understanding pyrethroid resistance in *Rhipicephalus microplus* and *R. decoloratus* ticks [J]. Ticks Tick-Borne Dis, 2016, 7(4): 586–594.
- [7] BOMMURAJ V, BIRENBOIM M, CHEN Y, et al. Depletion kinetics and concentration-and time-dependent toxicity of a tertiary mixture of amitraz and its major hydrolysis products in honeybees [J]. Chemosphere (Oxford), 2021, 272: 129923.
- [8] LIANG D, LIU W, RAZA R, et al. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis [J]. J Sep Sci, 2019, 42(1): 330–341.
- [9] MOYANO P, RUIZ M, GARCIA JM, et al. Oxidative stress and cell death induction by amitraz and its metabolite BTS-27271 mediated through cytochrome P450 and NRF2 pathway alteration in primary hippocampal cell [J]. Food Chem Toxicol, 2019, 129: 87–96.
- [10] 侯建波,谢文,钱艳,等.分散固相萃取净化/液相色谱-串联质谱法同 时测定蜂王浆中双甲脒、单甲脒及其代谢物[J].分析测试学报,2019, 38(4):455-460.

HOU JB, XIE W, QIAN Y, *et al.* Simultaneous determination of amitraz, semiamitraz and their metabolites in royal jelly by dispersive solid-phase extraction/liquid chromatography-tandem mass spectrometry [J]. J Inst Anal, 2019, 38(4): 455–460.

- [11] 郭浩, 郭东东,李恒,等. 固相萃取/液相色谱-串联质谱法测定鱼塘水 中双甲脒及其代谢产物[J]. 分析测试学报, 2014, 33(12): 1416–1420.
 GUO H, GUO DD, LI H, *et al.* Detection of amitraz and its metabolites in pond-water using SPE/LC-MS/MS [J]. J Inst Anal, 2014, 33(12): 1416–1420.
- [12] 张慧萍,刘伯扬,宋晓东.优化气相色谱法检测牛奶中双甲脒残留标志物[J]. 食品安全质量检测学报, 2017, 8(12): 4854–4858.
 ZHANG HP, LIU BY, SONG XD. Optimation the method for determination of amitraz residues in milk by gas chromatography [J]. J Food Saf Qual, 2017, 8(12): 4854–4858.
- [13] 袁东婕. GC/MS 法测定茶叶中双甲脒及其代谢物残留量[J]. 食品安全 导刊, 2024(15): 68–71.

YUAN DJ. Determination of residual levels of amitraz and its metabolites in tea by GC/MS method [J]. China Food Saf Magaz, 2024(15): 68–71.

- [14] 韩瑨烜,陈其玲,吴辰雪子,等. GC-MS 检测蜂蜜中双甲脒残留量的 方法研究[J]. 食品工业, 2018, 39(4): 299–301.
 HAN JX, CHEN QL, WUCHEN XZ, *et al.* The methods of detection of amitraz and its metabolite (2,4-xylidine) residues in honey based on gas hromatography-mass spectrometry [J]. Food Ind, 2018, 39(4): 299–301.
- [15] 王健. GC-MS/MS 法同时测定蜂王浆中 8 种高风险农药残留[J]. 食品 工业, 2022, 43(4): 306-309.
 WANG J. Simultaneous determination of 8 high-risk pesticide residues in royal jelly by GC-MS/MS [J]. Food Ind, 2022, 43(4): 306-309.
- [16] 谭璟慧,谢宏斌,李贵荣,等.超高效液相色谱法同时测定蜂蜜中双甲
 脒及其代谢物残留量[J].食品安全质量检测学报,2020,11(12):
 4091-4096.

TAN JH, XIE HB, LI GR, *et al.* Simultaneous determination of amitraz and its metabolite (2,4-dimethylaniline) residues in honey by ultra-performance liquid chromatography [J]. J Food Saf Qual, 2020, 11(12): 4091-4096.

第22期

- [17] 侯建波,谢文,钱艳,等.液相色谱-串联质谱法测定蜂蜜中双甲脒及 其代谢产物残留量[J].理化检验(化学分册),2019,55(7):784-790.
 HOU JB, XIE W, QIAN Y, *et al.* Simultaneous determination of amitraz, semiamitraz and their metabolites in honey by dispersive solid-phase extraction/liquid chromatography-tandem mass spectrometry [J]. Phy Test Chem Anal (Part B: Chem Anal), 2019, 55(7): 784-790.
- [18] 李建勋,王玉珍,吴翠玲,等.基于增强型脂质去除固相小柱净化结合 液相色谱-串联质谱法测定猪肉和猪肝中的双甲脒农药及其代谢物[J].
 应用化学,2020,37(8):969–976.
 LI JX, WANG YZ, WU CL, *et al.* Determination of amitraz pesticide and

its metabolites in pork and pig liver by liquid chromatography tandem mass spectrometry coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) on the basis of enhanced lipid-removing solid-phase column purification [J]. Chin J Appl Chem, 2020, 37(8): 969–976.

- [19] XU JZ, MIAO JJ, LIN H, et al. Determination of amitraz and 2,4-dimethylaniline residues in honey by using LC with UV detection and MS/MS [J]. J Sep Sci, 2009, 32(23-24): 4020–4024.
- [20] GAO X, SUN Y, YOU H, et al. Simultaneous determination of amitraz, chlordimeform, formetanate and metabolites in human blood by liquid chromatography tandem mass spectrometry with phospholipid-removal pretreatment [J]. Biomed Chromatogr, 2019, 33(4): 4477.
- [21] LU Q, LIU L, LI J, et al. Rapid and sensitive quantitation of amitraz in orange, tomato, and eggplant samples using immunochromatographic assay [J]. Food Chem, 2024, 446: 138899.
- [22] ZOHAR E, COHEN H, GOLDSHLAGE N, et al. Detection of the amitraz pesticide in bee wax by hyperspectral imaging [J]. J Food Meas Charact, 2024, 18(4): 3008–3017.
- [23] 智军海, 孟超, 周嘉明. 双甲脒胶体金免疫快速检测试纸条研制及其 在蜂蜜中的应用[J]. 食品安全质量检测学报, 2022, 13(10): 3290–3295.
 ZHI JH, MENG C, ZHOU JM. Development of amitraz colloidal gold rapid immunoassay strip and its appli cation in honey [J]. J Food Saf Qual, 2022, 13(10): 3290–3295.
- [24] NIE X, JING W, XUN W, et al. Highly effective detection of amitraz in honey by using surface-enhanced raman scattering spectroscopy coupled with chemometric methods [J]. Chin J Chem Phy, 2019, 32: 4.
- [25] 梁晓涵,党政,杨雅雅,等.果蔬中双甲脒残留量气质联用快速测定方法[J]. 热带农业科学, 2019, 39(6): 67–73.
 LIANG XH, DANG Z, YANG YY, *et al.* A rapid determination method for amitraz residues in fruits and vegetables by GC-MS/MS [J]. Chin J Trop Agric, 2019, 39(6): 67–73.
- [26] 赵世红,樊亚光,李琦,等. GC-MS/MS 法检测水果中双甲脒及其水解 产物的 2,4-二甲基苯胺残留量[J]. 食品安全导刊, 2024(19): 73-75.
 ZHAO SH, FAN YG, LI Q, *et al.* Determination of 2,4-dimethylaniline residue in fruit by GC-MS/MS [J]. China Food Saf Magaz, 2024(19): 73-75.
- [27] 黄娟,桂茜雯,高玲,等.高效液相色谱-串联质谱法测定蔬菜水果中 双甲脒及其代谢产物[J].色谱,2019,37(1):2-7.
 HUANG J, GUI QW, GAO L, *et al.* Determination of amitraz and its

metabolites in vegetables and fruits by high performance liquid chromatography-tandem mass spectrometry [J]. Chin J Chromatogr, 2019, 37(1): 2–7.

[28] 张晶,王军淋,徐小民.蜂蜜中双甲脒及其代谢产物 2,4-二甲基苯胺和 氟胺氰菊酯的 GC-MS 残留检测[J].中国卫生检验杂志,2020,30(18): 2186-2189.

ZHANG J, WANG JL, XU XM. Residue determination of amitraz 2,4-dimethyl aniline and Tau-fluvalinate by GC-MS [J]. Chin J Health Lab Technol, 2020, 30(18): 2186–2189.

- [29] 谭亚军. 柑橘类水果中双甲脒及其代谢物的 QuEChERS-GC/MS 测定 法[J]. 职业与健康, 2022. DOI: 10.13329/j.cnki.zyyjk.2022.0488
 TAN YJ. Determination of amitraz and its metabolites in citrus fruits by QuEChERS-GC/MS [J]. Occup Health, 2022. DOI: 10.13329/j.cnki. zyyjk.2022.0488
- [30] 刘元灿. 鱼肌肉中杀虫脒和双甲脒残留检测气相色谱法的建立[D]. 武汉: 华中农业大学, 2009.
 LIU YC. Development of gas chromatography methods for determination of chlorodimeform and amitraz residues in muscle of fish [D]. Wuhan:

Huazhong Agricultural University, 2009.

- [31] 刘海燕,刘针铃,任民红,等. GPC 净化-GC-MS/MS 法测定鳗鱼中杀 虫脒、双甲脒及代谢物残留[J]. 食品工业, 2015, 36(12): 255-258.
 LIU HY, LIU ZL, REN MH, *et al.* Determination of chlordimeform, amitraz and their metabolity residues in eel by GC-MS/MS with GPC purification [J]. Food Ind, 2015, 36(12): 255-258.
- [32] KORTA E, BAKKALI A, BERRUETA LA, et al. Study of acaricide stability in honey. Characterization of amitraz degradation products in honey and beeswax [J]. J Agric Food Chem, 2001, 49(12): 5835–5842.
- [33] COLAZZO M, ALONS B, ERNST F, *et al.* Determination of multiclass, semi-polar pesticide residues in fatty fish muscle tissue by gas and liquid chromatography mass spectrometry [J]. MethodsX, 2019, 6: 929–937.
- [34] LI Y, LI Y, YANG Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive [J]. J Separation Sci, 2020, 43(8): 1466–1473.

(责任编辑: 蔡世佳 于梦娇)

郭 灿,硕士,研究实习员,主要研究
 方向为食品安全控制技术。
 E-mail: guocan24@163.com

司文帅,助理研究员,主要研究方向 为农产品质量安全与检测技术。 E-mail: siwenshuai021@163.com