DOI: 10.19812/j.cnki.jfsq11-5956/ts.20240316002

基于矿物元素和稳定同位素指纹分析的 阿尔巴斯羊肉产地溯源

王柏辉^{1*}, 刘 婷², 杨晨辉¹, 桑 爽³, 柳 沙³, 王海玉³, 薛彦伦¹, 郭 佳¹

(1. 鄂尔多斯市检验检测中心,鄂尔多斯 017010; 2. 内蒙古农业大学食品科学与工程学院, 呼和浩特 010018; 3. 内蒙古自治区产品质量检验研究院,呼和浩特 010070)

摘 要:目的 分析鄂尔多斯市不同地区绒山羊羊肉中矿物元素的差异,构建阿尔巴斯羊肉产地鉴别的判别 模型。**方法** 应用电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)分析鄂尔多 斯市 3 个地区(鄂托克旗、准格尔旗和达拉特旗)93 个绒山羊羊肉中 19 种矿物元素的含量,结合化学计量学方 法(单因素方差分析、主成分分析和 Fisher 判别分析),探索矿物元素指纹分析对阿尔巴斯羊肉产地溯源的可行 性。**结果** 阿尔巴斯(鄂托克旗)羊肉中 Ca、Se 和 V 含量显著高于准格尔旗羊肉和达拉特旗羊肉(*P*<0.05),阿 尔巴斯(鄂托克旗)羊肉中 δ¹³C 含量集中分布在 15‰~-14‰,δ^{''}N 含量集中分布在 4‰~6‰。筛选 Ca、Fe、K、 Mg、Se、Ti 和 V 7 种矿物元素为特征指标建立阿尔巴斯(鄂托克旗)羊肉产地溯源模型,回代检验和交叉验证 的阿尔巴斯(鄂托克旗)羊肉产地判别正确率分别为 93.9%和 91.8%。**结论** 该模型用于阿尔巴斯羊肉产地溯源 分析具有切实可行性和准确性。

关键词: 阿尔巴斯羊肉; 产地溯源; 矿物质元素; 稳定同位素; 地方特色

Origin traceability of Albas mutton based on mineral element and stable isotope fingerprinting

WANG Bo-Hui^{1*}, LIU Ting², YANG Chen-Hui¹, SANG Shuang³, LIU Sha³, WANG Hai-Yu³, XUE Yan-Lun¹, GUO Jia¹

(1. Inspection and Testing Center of Ordos, Ordos 017010, China; 2. College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; 3. The Inner Mongolia Autonomous Region Institute of Product Quality Inspection, Hohhot 010070, China)

ABSTRACT: Objective To analyze the difference of mineral element content in cashmere goats from different areas in Ordos City, and construct discrimination model for the identification of Albas mutton. **Methods** The content of 19 kinds of mineral elements in 93 samples from 3 regions (Etuoke Banner, Zhungeer Banner and Dalad Banner of Ordos City) had been determined and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Combining with the chemometrics (variance analysis, principal component analysis and discriminant

基金项目:鄂尔多斯市科技计划项目(2021YY 农 128-38)

Fund: Supported by the Science and Technology Plan Project of Ordos (2021YY Agriculture 128-38)

^{*}通信作者:王柏辉,高级工程师,主要研究方向为肉品科学。E-mail: wbhsmile@126.com

^{*}Corresponding author: WANG Bo-Hui, Senior Engineer, Inspection and Testing Center of Ordos, No.7 Chaoyang Street, Kangbashi District, Ordos 017010, China. E-mail: wbhsmile@126.com

analysis), the feasibility of tracing the origin of Albas mutton by analysis of mineral element fingerprints was investigated. **Results** The content of Ca, Se and V in Albas (Etuoke Banner) mutton were significantly higher than those in Zhungeer mutton and Dalad mutton (P<0.05). The δ^{13} C content in Albas (Etuoke Banner) mutton was concentrated in -15% to -14%, and the δ^{15} N content was concentrated in 4‰ to 6‰. Ca, Fe, K, Mg, Se, Ti and V 7 kinds of mineral elements were selected as the characteristic indexes to establish the origin tracing model of Albas (Etuoke Banner) mutton. The accuracy of back test and cross-verification of Albas mutton origin identification was 93.9% and 91.8%, respectively. **Conclusion** The model construct achieves adequate classification accuracy, good sensitivities and acceptable specifities for detecting the fraud in the Albas mutton label.

KEY WORDS: Albas mutton; origin traceability; mineral elements; stable isotopes; local characteristics

0 引 言

在国家政策和市场需求的持续鼓励及推动下,我国 畜牧养殖业持续稳定地向上发展,其中肉羊产业在畜牧业 中占比越来越高。内蒙古自治区在发展肉羊养殖方面有独 特的自然优势和长久的历史,使得羊肉产业成为了内蒙古 的标志性产业之一。绒山羊产业是内蒙古鄂尔多斯地区农 牧民增收的优势特色产业,尤其是阿尔巴斯绒山羊地处鄂 尔多斯市西部鄂托克旗,是在鄂尔多斯高原特定的地理位 置和生态环境下形成的典型的绒、肉兼用型品种,其肉质 细、高铁高蛋白、低脂低胆固醇、氨基酸含量丰富以及无膻 味,深受广大消费者的青睐^[1-3]。近年来,随着阿尔巴斯羊肉 的声誉和品牌影响力不断提升,市场上频发仿冒问题。同时, 由于我国阿尔巴斯绒山羊品种资源保护体系还不够完善, 也阻碍了地方种质资源保护和优势产业的发展。

动植物体中矿物元素的组成受到其生长区域、环境条 件、生物代谢等条件的影响,利用先进的分析技术结合化 学计量学可得到其独特的化学指纹图谱[4-6]。目前,较多研 究通过分析动植物体内矿物元素的组成和含量差异来鉴别 地理标志产品产地来源,建立矿物元素指纹图谱对地理标 志产品来源进行分类[7-8]。矿物元素指纹分析已广泛应用于 猪肉[9-11]、牛肉[12]、羊肉[13]、家禽[14]和水产[15]等畜肉产地 溯源研究。赵莱昱等^[16]对新疆皮山红羊进行真实性鉴别研 究表明, 矿物元素对皮山红羊的判别效果较好, 且在背最长 肌中的判别效果最好, 品种和肌肉部位判别模型准确率分 别为100%和99.29%。齐婧等^[17]基于矿物元素对盐池滩羊、 巴里坤哈萨克羊、苏尼特羊3种地理标志羊肉建立了簇类独 立软模式法(soft independent modeling of class analogies, SIMCA)判别模型,判别准确率达到 100%。李梦怡等^[18]采用 元素分析仪-稳定同位素比值质谱法对 4 个主产区羊肉中 δ^{13} C 和 $\delta^{''}$ N 进行检测, 证实不同地区羊肉中 δ^{13} C 和 $\delta^{''}$ N 含 量存在差异,表明 δ^{13} C 和 δ^{15} N 可作为产地溯源指标。此外, DNA 指纹溯源技术、近红外光谱技术、气相色谱技术在动 物源性产品掺假以及产地溯源鉴定方面已较为成熟^[19-23]。

综上所述,基于矿物元素指纹图谱分析技术结合化

学计量学构建产地判别分析模型可为阿尔巴斯羊肉产地溯 源分析提供理论基础和技术方法,在此基础上,构建起阿 尔巴斯羊肉产地溯源技术体系,提升阿尔巴斯羊肉原产地 保护力和品牌影响力,为内蒙古羊肉产地溯源技术体系的 建立和完善提供技术依据和理论支撑。

1 材料与方法

1.1 仪器设备

MARS6 微波消解仪(美国 CEM 公司); MARS240/50 型微波消解仪(上海新仪微波化学科技有限公司); DHG-9030A 型电热恒温鼓风干燥箱(上海善志仪器设备有 限公司); DFY-200A 型样品粉碎机(河北本辰科技有限公 司); SCQ-HD300A 型超声水浴箱(上海声彦超声波仪器有 限公司); UPHW-11-90T 型超纯水器(深圳宏博水处理设备 有限公司); UPHW-11-90T 型超纯水器(深圳宏博水处理设备 有限公司); 350D 型电感耦合等离子体质谱仪(美国 PerkinElmer 公司); FLASH 2000-DELTA-V ADVANTAGE 型稳定同位素质谱仪(美国赛默飞世尔有限责任公司)。

1.2 试剂

HNO₃(优级纯,成都市科隆化学品有限公司);H₂O₂(优级纯,国药集团化学试剂有限公司);石油醚(优级纯,天津市大茂化学试剂厂);超纯水(GB/T 6682—2008《分析实验室用水规格和试验方法》规定的一级水);氩气、氦气(纯度≥99.995%,大连大特气体有限公司)。

1.3 实验方法

1.3.1 矿物质元素的测定

(1)样品采集

鄂尔多斯市鄂托克旗、达拉特旗和准格尔旗 3 个地区 为实验区域,鄂托克旗选择 49 只阿尔巴斯绒山羊,准格尔 旗选择 22 只绒山羊,达拉特旗选择 22 只绒山羊,采集绒 山羊股二头肌作为实验材料,-20 ℃储存待用。

(2)前处理方法

称取组织样品 0.5 g, 置于微波消解管中, 加入 6 mL HNO₃和 2 mL H₂O₂, 按照 GB 5009.268—2016《食品安全 国家标准 食品中多元素的测定》第一法 电感耦合等离子体质谱法进行微波消解。通过恒温消解仪赶酸后用超纯水 定容至 50 mL,待测,同时开展空白对照实验。利用电感耦合等离子体质谱法 (inductively coupled plasma mass spectrometry, ICP-MS)测定样品中 Ba、Ca、Cd、Co、Cr、Cu、Fe、K、Mg、Mn、Mo、Na、Ni、Sb、Se、Sr、Ti、V和 Zn 19 种矿物元素的含量。

(3)测定仪器条件

仪器参数设置为: 射频功率 1550 W, 采样锥/截取锥 采取镍锥, 采集模式为跳峰, 重复次数 2 次, 雾化器采用 同心雾化器, 测量模式为碰撞池, 氦气流量 4.35 mL/min, 采样时间持续 0.1 s。

1.3.2 稳定同位素的测定

(1)样品采集

鄂尔多斯市鄂托克旗、达拉特旗和准格尔旗 3 个地区 为实验区域,鄂托克旗选择 12 只阿尔巴斯绒山羊;准格尔 旗选择 10 只绒山羊;达拉特旗选择 10 只绒山羊,采集绒 山羊股二头肌作为实验材料,-20 ℃储存待用。

(2)测定方法

按照 DB15/T 975—2016《畜产品牛羊肉中碳、氮同 位素丰度比检测方法》进行实验,实验参数为:还原炉温 度为 650 ℃,进样器氦气吹扫流量为 200 mL/min,载气为 氦气,稀释压力为 0.6 bar,流量为 95 mL/min,燃烧炉温度 为 1000 ℃, CO₂压力为 0.6 bar, N₂压力为 1.0 bar。

1.4 数据处理

本研究中鄂尔多斯市不同区域绒山羊羊肉中矿物元 素含量利用 SPSS 25.0 软件开展单因素方差分析、主成分 分析和 Fisher 判别分析。

2 结果与分析

2.1 不同地区绒山羊羊肉中矿物元素含量的差异分析

通过对鄂尔多斯市不同地区绒山羊股二头肌中的 19 种元素(Ba、Ca、Cd、Co、Cr、Cu、Fe、K、Mg、Mn、Mo、 Na、Ni、Sb、Se、Sr、Ti、V和Zn)含量进行方差分析,其 中Ca、Se、K、Mg、Fe、Sb、Sr、Ti和V元素含量存在显 著差异。由表 1所示,阿尔巴斯(鄂托克旗)羊肉中 Ca、Se 和V含量显著高于准格尔旗羊肉和达拉特旗羊肉(P<0.05), 准格尔旗羊肉中K和Mg含量显著高于阿尔巴斯(鄂托克旗) 羊肉(P<0.05),达拉特旗羊肉中 Fe,Ti和Sb含量显著高于阿 尔巴斯(鄂托克旗)羊肉(P<0.05),而Sr含量显著低于阿尔巴 斯(鄂托克旗)羊肉,3个地区其他元素间不存在差异显著 (P>0.05)。这与赵汝婷^[24]、WANG等^[25]的研究结果一致,都 证实了内蒙古地区与其他地区以及内蒙古不同地区羊肉中 矿物元素的含量差异显著。矿物元素含量的差异揭示了不同 地区绒山羊羊肉间存在差异,但单一指标不足以对产地来 源进行准确判别,故采用主成分分析和Fisher函数判别分析 进一步分析阿尔巴斯羊肉产地溯源情况。

쿤	€1	不同地区绒山羊羊肉中矿物元素含量的差异
Table 1	Dif	ferences in mineral element content in the mutton of
		cashmara gaats from different regions

元素鄂托克旗 羊肉准格尔旗 羊肉达拉特旗 羊肉显著性 $Ba/(\mug/kg)$ 0.1850.1680.1810.601 $Ca/(mg/kg)$ 90.204a58.563b63.575b0.003 $Cd/(\mug/kg)$ 0.0200.0200.0190.303 $Co/(\mug/kg)$ 0.0230.0210.0220.091 $Cr/(\mug/kg)$ 0.1630.0970.2220.283 $Cu/(\mug/kg)$ 2.0832.1351.9530.702 $Fe/(mg/kg)$ 3.742b5.839ab6.614a0.011 $K/(mg/kg)$ 3593.098b4161.475a3866.855b0 $Mg/(mg/kg)$ 327.815b357.421a340.856ab0.014 $Mn/(\mug/kg)$ 0.0250.0280.0190.293 $Na/(mg/kg)$ 736.501682.646690.9780.169 $Ni/(\mug/kg)$ 0.001b0.000b0.010a0 $Se/(\mug/kg)$ 0.037a0.033ab0.016b0.06 $Ti/(\mug/kg)$ 0.815b0.817b4.072a0 $V/(\mug/kg)$ 0.045a0.027b0.029b0 $Zn/(\mug/kg)$ 60.27959.53956.6120.354	cushillere gouts from unterent regions						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	元素	鄂托克旗 羊肉	准格尔旗 羊肉	达拉特旗 羊肉	显著性		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ba/(µg/kg)	0.185	0.168	0.181	0.601		
$\begin{array}{c c} Cd/(\mu g/kg) & 0.020 & 0.020 & 0.019 & 0.303 \\ Co/(\mu g/kg) & 0.023 & 0.021 & 0.022 & 0.091 \\ Cr/(\mu g/kg) & 0.163 & 0.097 & 0.222 & 0.283 \\ Cu/(\mu g/kg) & 2.083 & 2.135 & 1.953 & 0.702 \\ Fe/(mg/kg) & 3.742^b & 5.839^{ab} & 6.614^a & 0.011 \\ K/(mg/kg) & 3593.098^b & 4161.475^a & 3866.855^b & 0 \\ Mg/(mg/kg) & 327.815^b & 357.421^a & 340.856^{ab} & 0.014 \\ Mn/(\mu g/kg) & 0.406 & 0.378 & 0.394 & 0.837 \\ Mo/(\mu g/kg) & 0.025 & 0.028 & 0.019 & 0.293 \\ Na/(mg/kg) & 736.501 & 682.646 & 690.978 & 0.169 \\ Ni/(\mu g/kg) & 0.080 & 0.080 & 0.076 & 0.954 \\ Sb/(\mu g/kg) & 0.01^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Ca/(mg/kg)	90.204 ^a	58.563 ^b	63.575 ^b	0.003		
$\begin{array}{cccc} Co/(\mu g/kg) & 0.023 & 0.021 & 0.022 & 0.091 \\ Cr/(\mu g/kg) & 0.163 & 0.097 & 0.222 & 0.283 \\ Cu/(\mu g/kg) & 2.083 & 2.135 & 1.953 & 0.702 \\ Fe/(mg/kg) & 3.742^b & 5.839^{ab} & 6.614^a & 0.011 \\ K/(mg/kg) & 3593.098^b & 4161.475^a & 3866.855^b & 0 \\ Mg/(mg/kg) & 327.815^b & 357.421^a & 340.856^{ab} & 0.014 \\ Mn/(\mu g/kg) & 0.406 & 0.378 & 0.394 & 0.837 \\ Mo/(\mu g/kg) & 0.025 & 0.028 & 0.019 & 0.293 \\ Na/(mg/kg) & 736.501 & 682.646 & 690.978 & 0.169 \\ Ni/(\mu g/kg) & 0.080 & 0.080 & 0.076 & 0.954 \\ Sb/(\mu g/kg) & 0.001^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.01^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Cd/(µg/kg)	0.020	0.020	0.019	0.303		
$\begin{array}{cccc} Cr/(\mu g/kg) & 0.163 & 0.097 & 0.222 & 0.283 \\ Cu/(\mu g/kg) & 2.083 & 2.135 & 1.953 & 0.702 \\ Fe/(mg/kg) & 3.742^b & 5.839^{ab} & 6.614^a & 0.011 \\ K/(mg/kg) & 3593.098^b & 4161.475^a & 3866.855^b & 0 \\ Mg/(mg/kg) & 327.815^b & 357.421^a & 340.856^{ab} & 0.014 \\ Mn/(\mu g/kg) & 0.406 & 0.378 & 0.394 & 0.837 \\ Mo/(\mu g/kg) & 0.025 & 0.028 & 0.019 & 0.293 \\ Na/(mg/kg) & 736.501 & 682.646 & 690.978 & 0.169 \\ Ni/(\mu g/kg) & 0.080 & 0.080 & 0.076 & 0.954 \\ Sb/(\mu g/kg) & 0.01^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.01^a & 0.078^b & 0.019^c & 0 \\ Sr/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Co/(µg/kg)	0.023	0.021	0.022	0.091		
$\begin{array}{c ccc} Cu/(\mu g/kg) & 2.083 & 2.135 & 1.953 & 0.702 \\ Fe/(mg/kg) & 3.742^b & 5.839^{ab} & 6.614^a & 0.011 \\ K/(mg/kg) & 3593.098^b & 4161.475^a & 3866.855^b & 0 \\ Mg/(mg/kg) & 327.815^b & 357.421^a & 340.856^{ab} & 0.014 \\ Mn/(\mu g/kg) & 0.406 & 0.378 & 0.394 & 0.837 \\ Mo/(\mu g/kg) & 0.025 & 0.028 & 0.019 & 0.293 \\ Na/(mg/kg) & 736.501 & 682.646 & 690.978 & 0.169 \\ Ni/(\mu g/kg) & 0.080 & 0.080 & 0.076 & 0.954 \\ Sb/(\mu g/kg) & 0.001^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Cr/(µg/kg)	0.163	0.097	0.222	0.283		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu/(µg/kg)	2.083	2.135	1.953	0.702		
K/(mg/kg) 3593.098^b 4161.475^a 3866.855^b 0Mg/(mg/kg) 327.815^b 357.421^a 340.856^{ab} 0.014Mn/(µg/kg) 0.406 0.378 0.394 0.837Mo/(µg/kg) 0.025 0.028 0.0190.293Na/(mg/kg) 736.501 682.646 690.978 0.169Ni/(µg/kg) 0.080 0.080 0.076 0.954Sb/(µg/kg) 0.01^b 0.000^b 0.010^a 0Se/(µg/kg) 0.037^a 0.033^{ab} 0.016^b 0.06Ti/(µg/kg) 0.815^b 0.817^b 4.072^a 0V/(µg/kg) 0.045^a 0.027^b 0.029^b 0Zn/(µg/kg) 60.279 59.539 56.612 0.354	Fe/(mg/kg)	3.742 ^b	5.839 ^{ab}	6.614ª	0.011		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	K/(mg/kg)	3593.098 ^b	4161.475 ^a	3866.855 ^b	0		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mg/(mg/kg)	327.815 ^b	357.421ª	340.856 ^{ab}	0.014		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mn/(\mu g/kg)$	0.406	0.378	0.394	0.837		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mo/(\mu g/kg)$	0.025	0.028	0.019	0.293		
$\begin{array}{c cccc} Ni/(\mu g/kg) & 0.080 & 0.080 & 0.076 & 0.954 \\ Sb/(\mu g/kg) & 0.001^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.113^a & 0.078^b & 0.019^c & 0 \\ Sr/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Na/(mg/kg)	736.501	682.646	690.978	0.169		
$\begin{array}{ccccc} Sb/(\mu g/kg) & 0.001^b & 0.000^b & 0.010^a & 0 \\ Se/(\mu g/kg) & 0.113^a & 0.078^b & 0.019^c & 0 \\ Sr/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Ni/(µg/kg)	0.080	0.080	0.076	0.954		
$\begin{array}{cccc} Se/(\mu g/kg) & 0.113^a & 0.078^b & 0.019^c & 0 \\ Sr/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	$Sb/(\mu g/kg)$	0.001^{b}	0.000^{b}	0.010^{a}	0		
$\begin{array}{cccc} Sr/(\mu g/kg) & 0.037^a & 0.033^{ab} & 0.016^b & 0.06 \\ Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \\ \end{array}$	Se/(µg/kg)	0.113ª	0.078 ^b	0.019 ^c	0		
$\begin{array}{cccc} Ti/(\mu g/kg) & 0.815^b & 0.817^b & 4.072^a & 0 \\ V/(\mu g/kg) & 0.045^a & 0.027^b & 0.029^b & 0 \\ Zn/(\mu g/kg) & 60.279 & 59.539 & 56.612 & 0.354 \end{array}$	Sr/(µg/kg)	0.037^{a}	0.033 ^{ab}	0.016 ^b	0.06		
	Ti/(µg/kg)	0.815 ^b	0.817^{b}	4.072 ^a	0		
Zn/(µg/kg) 60.279 59.539 56.612 0.354	$V/(\mu g/kg)$	0.045 ^a	0.027 ^b	0.029^{b}	0		
	$Zn/(\mu g/kg)$	60.279	59.539	56.612	0.354		

注:同行上标不同小写字母表示在 0.05 水平上有显著差异(P<0.05)。

2.2 主成分分析

主成分分析通过降维来消除不同样品中各矿物元素 间的相关性,从而达到实现多元统计分析的目的^[26-28]。对 鄂尔多斯市不同地区绒山羊羊肉中矿物元素进行主成分分 析,结果见表 2。结果表明共有 6 个主成分,其方差贡献率 依次为 20.097%、17.648%、15.723%、11.908%、8.883% 和 6.225%, 6 个主成分的累计方差贡献率达 80.483%。

由主成分抽提各矿物元素结果分析得知, 矿物元素 Co、Cr、Mn和Ni在第一主成分上载荷较大, 即与第一主 成分的相关程度较高。Fe、Se和Ti在第二主成分上载荷 较大(Sb含量较低, 不考虑), 即与第二主成分的相关程度 较高。矿物元素Ca、Mo、Na、Sr和V在第三主成分上载 荷较大, 即与第三主成分的相关程度较高。Cu、K、Mg和 Zn在第四主成分上载荷较大, 即与第四主成分的相关程度 较高。基于上述实验分析, 结果显示鄂尔多斯市不同地区 的绒山羊羊肉中矿物元素存在差异规律, 成功寻获并识别 特征指标, 为阿尔巴斯绒山羊产地溯源判别模型的构建提 供技术理论依据。 _ . . .

Table 2	Loaunig matrix a	inu variance conti	inducion rate of th	ie mst o principal	components	
元表			主成分	计分析		
儿系	1	2	3	4	5	6
Ba	0.468	0.103	0.076	-0.379	0.627	-0.101
Ca	0.132	0.375	0.630	-0.336	0.441	0.195
Cd	0.436	0.565	0.002	0.036	0.200	-0.534
Co	0.822	0.277	0.274	-0.051	-0.208	-0.185
Cr	0.698	-0.140	0.131	-0.293	-0.508	0.149
Cu	0.555	-0.025	-0.311	0.576	0.113	-0.020
Fe	0.535	-0.639	-0.182	0.135	0.158	0.164
K	0.150	-0.450	0.301	0.539	0.330	0.346
Mg	-0.052	-0.163	0.607	0.671	0.210	0.052
Mn	0.663	-0.127	0.303	-0.050	-0.543	0.070
Мо	0.431	0.175	-0.549	0.389	0.081	0.036
Na	-0.070	0.057	0.782	0.273	-0.162	0.122
Ni	0.824	0.005	-0.253	-0.085	0.026	0.173
Sb	0.182	-0.777	0.183	-0.215	0.208	-0.188
Se	0.044	0.625	0.088	0.273	-0.209	0.379
Sr	0.330	0.291	-0.492	-0.145	0.349	0.394
Ti	0.248	-0.822	0.305	-0.172	0.050	-0.189
V	0.203	0.508	0.661	-0.259	0.168	0.111
Zn	0.235	0.295	0.150	0.593	0.011	-0.458
方差贡献率/%	20.097	17.648	15.723	11.908	8.883	6.225
累计方差贡献率/%	20.097	37.745	53.468	65.376	74.259	80.483

表 2 前 6 个主成分的载荷矩阵及方差贡献率

2.3 判别分析

如表 3 所示,为了明确每个矿物元素含量对阿尔巴斯 (鄂托克旗)羊肉产地的鉴别效果,选用逐步判别分析筛选 出前 6 个主成分最具有判别能力的因子,从不同地区绒山 羊羊肉样品各元素指标的方差分析、主成分分析结果中选 择 Ca、Fe、K、Mg、Se、Ti 和 V 7 种元素进行逐步分析,筛 选出有效变量,建立如下判别模型。

具体判别模型如下:

 Y_{a} =-0.033Ca-0.217Fe+0.018K+0.068Mg+48.467Se-1. 135Ti+110.979V-47.406

*Y*_b=-0.03Ca-0.303Fe+0.023K+0.080Mg-1.327Se-1.59 7Ti-28.740V-60.085

*Y*_c=-0.046Ca-0.435Fe+0.018K+0.101Mg-45.383Se-0. 146Ti+2.566V-50.515

式中, Ca、Fe、K、Mg、Se、Ti、V为矿物元素值; Y_a、Y_b和 Y_c分别为鄂托克旗、准格尔旗、达拉特旗 3 个地区绒山 羊股二头肌中矿物元素含量值。

根据孙淑敏^[29]的方法,利用判别模型对阿尔巴斯羊肉样品进行回代或交叉检验,对判别模型进行有效性验证。 由表 4 可知,该模型的回代验证结果显示,鄂托克旗有 93.9%的样品被正确识别,准格尔旗有 77.3%的样品被识别, 达拉特旗有 72.7%的样品被正确识别。该模型交叉验证结果 显示,鄂托克旗有 91.8%的样品被正确识别,准格尔旗有 63.6%的样品被识别,达拉特旗有 68.2%的样品被正确识别。 该模型中鄂托克旗样品的回代检验和交叉检验错判率分别 为 6.1%和 8.2%,低于 10%,具有实际应用意义。由此可知, 矿物元素指纹分析对阿尔巴斯(鄂托克旗)羊肉产地溯源具 有应用价值,证明矿物元素 Ca、Fe、K、Mg、Se、Ti 和 V

表 3 Fisher 判别函数系数						
Table 3	e 3 Fisher discriminant function coefficients					
元麦		地域				
儿家		鄂托克旗	准格尔旗	达拉特旗		
Ca		-0.033	-0.030	-0.046		
Fe		-0.217	-0.303	-0.435		
Κ		0.018	0.023	0.018		
Mg		0.068	0.080	0.101		
Se		48.467	-1.327	-45.383		
Ti		-1.135	-1.597	-0.146		
V		110.979	-28.740	2.566		
(常量)		-47.406	-60.085	-50.515		

表 4 不同地区绒山羊羊肉中矿物元素判别分析分类结果 Table 4 Classification results of discriminant analysis of mineral elements in the mutton of cashmere goats from different regions

分类		百届	预测组别			
		水丙 	鄂托	准格	达拉	整体
		<i>J</i> C/11	克旗	尔旗	特旗	
		鄂托克旗	46	3	0	49
回代	数目	准格尔旗	1	17	4	22
检验		达拉特旗	2	4	16	22
	正确率/%		93.9	77.3	72.7	84.9
		鄂托克旗	45	4	0	49
交叉	数目	准格尔旗	3	14	5	22
检验		达拉特旗	2	5	15	22
	正确率/%		91.8	63.6	68.2	79.6

的含量对阿尔巴斯羊肉产地具有有效的判别力,为区分或 鉴别阿尔巴斯绒山羊羊肉原产地指纹判别模型的构建提供 理论基础,这与马梦斌等^[30]对滩羊肉产地溯源研究中利用 矿物元素差异规律建立的模型的研究类似。

2.4 不同地区绒山羊羊肉中稳定同位素含量的差异 分析

根据实验结果(表 5),阿尔巴斯(鄂托克旗)羊肉中 δ¹³C 含量集中分布在-15‰-14‰,δ¹⁵N 含量集中分布在 4‰~6‰,因此,阿尔巴斯羊肉中稳定同位素δ¹³C和δ¹⁵N可 作为判断是否为阿尔巴斯羊肉的依据,也可为地方标准 DB 15/T 1561《阿尔巴斯羊肉》的制修订提供基础理论依据。

表 5 不同地区绒山羊羊肉中稳定同位素含量差异分析(‰) Table 5 Differential analysis of stable isotope content in the mutton of cashmere goats from different regions (‰)

元素	鄂托克旗	准格尔旗	达拉特旗	显著性
$\delta^{_{13}}\mathrm{C}$	-15.45^{a}	-14.92^{ab}	-14.44^{b}	0.077
$\delta^{15} \mathrm{N}$	4.75 ^ª	3.57 ^b	3.57 ^b	0.046
$\delta^{13}C/\delta^{15}N$	-4.04	-3.44	-3.79	0.679

3 结 论

本研究通过对鄂尔多斯不同地区绒山羊羊肉中矿物 元素和稳定同位素含量进行分析,结合化学计量学方法建 立阿尔巴斯绒山羊羊肉真实性鉴别模型。研究证实不同地 区的绒山羊羊肉矿物元素含量存在显著差异,可能与饲养 环境、品种等因素有关。采用逐步判别分析筛选出的7种 矿物元素(Ca、Fe、K、Mg、Se、Ti和V)溯源指标建立的 溯源判别模型对阿尔巴斯羊肉产地具有较高的判别准确 率。阿尔巴斯羊肉中 δ^{13} C 含量集中分布在-15‰~14‰, δ^{15} N 含量集中分布在 4‰~6‰。因此,矿物元素指纹分析 技术在阿尔巴斯羊肉产地测源中具有切实可行性,可为特 色品牌保护和国家地理标志产品的矿物元素溯源体系建立 提供理论参考。

参考文献

[1] 郭荣. 舍饲和放牧模式对阿尔巴斯绒山羊肉品质及脂肪、蛋白质代谢 相关指标的影响[D]. 呼和浩特:内蒙古农业大学, 2021.

GUO R. The effect of yard-feeding and grazing mode on meat quality and related indexes of fat and protein metabolism of Albas cashmere goat [D]. Hohhot: Inner Mongolia Agricultural University, 2021.

- [2] 成海荣,乌力吉,刘飞.赛羊会见证内蒙古白绒山羊(阿尔巴斯型)高质量发展之路[J].畜牧产业,2023,10:43-48.
 CHENG HR, WU LJ, LIU F. Sheep racing will witness the high-quality development of Inner Mongolia white cashmere goats (Albas) [J]. Anim Agric, 2023, 10: 43-48.
- [3] 王柏辉,郭佳,周霞,等.阿尔巴斯山羊不同肌肉部位营养品质分析[J]. 食品科技, 2023, 48(1): 113–119.
 WANG BH, GUO J, ZHOU X, *et al.* Analysis of nutrition quality in different cuts of Arbas goat [J]. Food Sci Technol, 2023, 48(1): 113–119.
 [4] 陈坡,曹进,李梦怡,等. 食品产地溯源技术及结合化学计量学应用进
- [4] 陈政,曾远,学岁闲,寺,良而广地溯源权木及结告化学川重学应用近展[J]. 食品安全质量检测学报,2023,14(22):116–125. CHEN P, CAO J, LI MY, *et al.* Progress in traceability technology of food origin and its application in combination with chemometrics [J]. J Food Saf Qual, 2023, 14(22): 116–125.
- [5] DOU XJ, ZHANG LX, YANG RN, *et al.* Mass spectrometry in food authentication and origin traceability mass spectrometry reviews [J]. Mass Spectrom Rev, 2022, 42(5): 1772–1807.
- [6] XU Y, ZHONG P, JIANG A, et al. Raman spectroscopy coupled with chemometrics for food authentication: A review [J]. TRAC Trend Anal Chem, 2020, 131: 116017.
- [7] WANG Q, LIU H, ZHAO S, et al. Discrimination of mutton from different sources (regions, feeding patterns and species) by mineral elements in Inner Mongolia, China [J]. Meat Sci, 2021, 174: 108415.
- [8] 徐芝亮,章新泉. 基于电感耦合等离子体串联质谱法分析矿物元素的 江西茶叶产地溯源[J]. 食品安全质量检测学报, 2024, 15(4): 186–193. XU ZL, ZHANG XQ. Geographical origin traceability of tea in Jiangxi Province based on inductively coupled plasma tandem mass spectrometry analysis of trace mineral elements [J]. J Food Saf Qual, 2024, 15(4): 186–193.
- [9] KIM JS, HWANG IM, LEE GH, et al. Geographical origin authentication of pork using multi-element and multivariate data analyses [J]. Meat Sci, 2017, 123: 13–20.
- [10] 齐婧,李莹莹,姜锐,等.基于矿物元素指纹分析中国地理标志猪肉的产地溯源[J].现代食品科技,2020,36(3):267-274.
 QI J, LI YY, JIANG R, *et al.* Origin traceability of Chinese geographical indication-featured pork based on mineral element fingerprints [J]. Mod Food Sci Technol, 2020, 36(3): 267-274.
- [11] 池福敏, 次顿, 谭占坤, 等. 不同产地藏猪肉矿物元素含量差异分析[J]. 现代食品, 2019, 11: 126–129.
 CHI FM, CI D, TAN ZK, *et al.* Comparison of mineral element content of Tibetan pig from different regions [J]. Mod Food, 2019, 11: 126–129.
- [12] FRANKE BM, HALDIMANN M, GERMAUD G, et al. Element signature analysis: Its validation as a tool for geographic authentication of the origin

of dried beef and poultry meat [J]. Eur Food Res Technol, 2008, 227(3): 701–708.

- [13] SUN SM, GUO BL, WEI YM, et al. Multi-element analysis for determining the geographical origin of mutton from different regions of China [J]. Food Chem, 2011, 124(3): 1151–1156.
- [14] 白婷, 蔡浩洋, 邓银华, 等. 基于微量元素指纹图谱对黑水凤尾鸡进行 产地溯源的研究[J]. 中国测试, 2018, 44(9): 57–62.
 BAI T, CAI HY, DENG YH, *et al.* Study on origin of Heishui Phoenix chicken based on trace element fingerprint [J]. China Meas Test, 2018, 44(9): 57–62.
- [15] 洪赫阳,张信泽,张秀珍,等. 基于 Sr 稳定同位素和矿物元素的鲍鱼 产地溯源技术研究[J]. 核农学报, 2023, 37(11): 2185–2195.
 HONG HY, ZHANG XZ, ZHANG XZ, et al. Tracing the geographical origin of abalone using Sr stable isotopes and mineral elements [J]. J Nucl Agric Sci, 2023, 37(11): 2185–2195.
- [16] 赵莱昱,张鸿儒,王晶,等.基于矿物元素指纹图谱对新疆皮山红羊真实性鉴别[J]. 食品科学, 2024, 45 (4): 300–306.
 ZHAO LY, ZHANG HR, WANG J, *et al.* Authentication of Xinjiang Pishan Hong sheep meat based on multi-element fingerprinting [J]. Food Sci, 2024, 45(4): 300–306.
- [17] 齐婧,李莹莹,姜锐,等. 基于矿物元素指纹的地理标志羊肉真实性鉴别[J]. 食品科学, 2022, 43(24): 365–370.
 QI J, LI YY J, JIANG R, *et al.* Authenticity identification of geographical indication mutton based on mineral element fingerprint [J]. Food Sci, 2022, 43(24): 365–370.
- [18] 李梦怡, 贾菲菲, 董喆, 等. 我国不同产区羊肉中碳、氮同位素比值特 征及溯源研究[J]. 食品安全质量检测学报, 2022, 13(5): 1663–1669.
 LI MY, JIA FF, DONG Z, et al. Characteristics and traceability research on carbon and nitrogen stable isotope ratios of mutton from different producing regions of China [J]. J Food Saf Qual, 2022, 13(5): 1663–1669.
- [19] LOFTUS R. Traceability of biotech-derived animals: Application of DNA technology [J]. Rev Sci Tech Oie, 2005, 24(1): 231–242.
- [20] 陈通, 吴志远, 王正云, 等. 基于气相离子迁移谱和化学计量学方法判别肉的种类[J]. 中国食品学报, 2019, 19(7): 221–226.
 CHEN T, WU ZY, WANG ZY, *et al.* Identification of meat species by gas chromatography-ion mobility spectrometry and chemometrics [J]. J Chin Inst Food Sci Technol, 2019, 19(7): 221–226.
- [21] LOPEZ MA, INSAUSTI K, JAREN C, et al. Detection of minced lamb and beef fraud using NIR spectroscopy [J]. Food Control, 2019, 98: 465–473.
- [22] BAI HW, ZHOU GH, HU YN, et al. Traceability technologies for farm animals and their products in China [J]. Food Control, 2017, 79: 35–43.
- [23] WANG Q, LIU HJ, BAI Y, et al. Research progress on mutton origin tracing and authenticity [J]. Food Chem, 2022, 373: 131387.

- [24] 赵汝婷. 地理标志产品苏尼特羊肉的产地溯源研究[D]. 北京: 中国农业科学院, 2022.
 ZHAO RT. Chinese academy of agricultural sciences thesis [D]. Beijing: Chinese Academy of Agricultural Sciences, 2022.
- [25] WANG Q, LIU HJ, ZHAO S, et al. Discrimination of mutton from different sources (regions, feeding patterns and species) by mineral elements in Inner Mongolia, China [J]. Meat Sci, 2021, 174: 108415.
- [26] 郭利攀, 龚立科, 俞琰垒, 等. 东海经济鱼类的多元素分析及产地判别[J]. 中国食品学报, 2015, 15(1): 214–221.
 GUO LP, GONG LK, YU YL, *et al.* Multi-element analysis and geographical origin distinguishing for commercial fishes from east China sea [J]. J Chin Inst Food Sci Technol, 2015, 15(1): 214–221.
- [27] 鹿保鑫,马楠,王霞,等. 基于电感耦合等离子体质谱仪分析矿物元素 含量的大豆产地溯源[J]. 食品科学, 2018, 39(8): 288-294.
 LU BX, MA N, WANG X, *et al.* Tracing the geographical origin of soybeans based on inductively coupled plasma mass spectrometry (ICP-MS) analysis of mineral elements [J]. Food Sci, 2018, 39(8): 288-294.
- [28] 李艳敏,张立严,狄红梅. 主成分和判别分析在清香型白酒产地溯源中的应用[J]. 中国酿造, 2018, 37(1): 145–148.
 LI YM, ZHANG LY, DI HM. Application of principal component analysis and discriminant analysis in origin traceability of light-flavor Baijiu [J]. China Brew, 2018, 37(1): 145–148.
- [29] 孙淑敏. 羊肉产地指纹图谱溯源技术研究[D]. 咸阳:西北农林科技大学, 2012.

SUN SM. Study on geographical origin traceability techniques of lamb meat based on fingerprint analysis [D]. Xianyang: Northwest Agriculture and Forestry University, 2012.

 [30] 马梦斌,罗瑞明,李亚蕾.基于矿物元素指纹差异的不同产地滩羊肉 判别[J]. 食品科学, 2020, 41(6): 316–321.

MA MB, LUO RM, LI YL. Discrimination of different geographical origins of tan sheep meat based on mineral element fingerprints [J]. Food Sci, 2020, 41(6): 316–321.

(责任编辑:于梦娇 韩晓红)

作者简介

王柏辉,高级工程师,主要研究方向 为肉品科学。 E-mail: wbhsmile@126.com