DOI: 10.19812/j.cnki.jfsq11-5956/ts.20240102010

基于点击化学和非巯基 DNA 修饰纳米金的 维生素 C 检测

刘 伟^{1,2},张玉环^{3*},史玉晶⁴

(1. 杨凌职业技术学院生物工程学院,杨凌 712100; 2. 陕西省草莓工程技术研究中心,杨凌 712100;3. 陕西师范大学食品工程与营养科学学院,西安 710062; 4. 西宁市农产品质量安全检测中心,西宁 810003)

摘 要:目的 建立一种基于点击化学和非巯基 DNA 修饰的叠氮纳米金的可视化维生素 C (vitamin C, VC) 检测方法。**方法** 用一端有多个腺嘌呤核苷酸的非巯基 DNA 修饰纳米金,再与一端有叠氮基的互补链杂交, 形成表面暴露出叠氮基团的叠氮纳米金。在 VC 的存在下,将 Cu²⁺还原成 Cu⁺,催化叠氮纳米金与三炔丙基胺发 生点击化学反应,使叠氮纳米金聚集,引起光谱和颜色的变化。通过光谱和颜色的变化进行 VC 检测。**结果** 在 pH 为 7、Cu²⁺浓度为 100 µmol/L、三炔丙基胺浓度为 3 µmol/L 和反应时间 12 min 的最优条件下,用分光光度 计检测 VC 的检出限为 0.042 mg/L,目视的检出限为 0.05 mg/L。该方法成功用于饮料中 VC 的测定,呈现了 良好的回收率,从而验证了该方法的可靠性和可行性。**结论** 这项研究提供了一种简便、超灵敏的 VC 检测 方法,可用于 VC 的微量可视化检测。

关键词:比色法; 维生素 C; 纳米金; 点击化学; 非巯基 DNA

Detection of vitamin C based on click chemistry using nonthiolated DNA modified gold nanoparticles

LIU Wei^{1,2}, ZHANG Yu-Huan^{3*}, SHI Yu-Jing⁴

(1. School of Biotechnology, Yangling Vocation & Technical College, Yangling 712100, China; 2. Shaanxi Strawberry Engineering Technology Research Center, Yangling 712100, China; 3. College of Food Engineering & Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; 4. Xining Agricultural Product Quality and Safety Testing Center, Xining 810003, China)

ABSTRACT: Objective To establish a visualization vitamin C (VC) detection method based on click chemistry using nonthiolated DNA modified azide gold nanoparticles. **Methods** By modifying gold nanoparticles with DNA containing PloyA at one end and hybridizing with complementary chains containing azide groups at the other end, a gold nanoparticles with azide groups was formed. Cu^+ would cataly a click chemical reaction between the azide gold nanoparticles and the tripropargylamine, which reduced from Cu^{2+} in the presence of VC, that causing aggregation of the azide gold nanoparticles, accompanying the spectra variation and color change. Through the spectra variation and color change, a VC detection method was constructed. **Results** Under the optimized condition of pH 7, Cu^{2+}

基金项目:杨凌示范区科技计划项目(2018SF-02)、杨凌职业技术学院科学研究基金计划项目(A2017030)

Fund: Supported by the Yangling Demonstration Area Science and Technology Plan Project (2018SF-02), and the Yangling Vocational and Technical College Scientific Research Fund Project (A2017030)

^{*}通信作者:张玉环,博士,副教授,主要研究方向为食品安全与营养。E-mail: yh5zhang@snnu.edu.cn

^{*}Corresponding author: ZHANG Yu-Huan, Ph.D, Associate Professor, Shaanxi Normal University, No.620, West Changan Road, Changan District, Xi'an 710062, China. E-mail: yh5zhang@snnu.edu.cn

concentration 100 μ mol/L, tripropargylamine concentration 3 μ mol/L and reaction time 12 min, the limit of detection of VC was 0.042 mg/L and 0.05 mg/L using photometer and visual colorimetry separately. The method had been successfully applied to the determination of VC in beverages, showed a good recovery rate, thus verifying the reliability and feasibility of the method. **Conclusion** This study provides a simple and ultra-sensitive method for VC detection, which can be used for micro-visual detection of VC.

KEY WORDS: colorimetry; vitamin C; gold nanoparticles; click chemistry; nonthiolated DNA

0 引 言

维生素 C (vitamin C, VC),又名抗坏血酸,是常见的 水溶性维生素之一,不仅能维持人体正常的生理和代谢功 能,而且在生长发育过程中发挥着非常重要的作用,能提 高人体免疫力,预防和降低各种疾病发生的几率,但人自 身不能合成,必须从外界中获得^[1]。因此,合理的摄入 VC, 对婴幼儿的生长发育以及维持人体正常的生命活动具有重 要作用^[2-3]。

国家标准中明确规定 VC 可作为抗氧化剂, 添加到食品中。VC 的检测方法可分为成三类, 一类是化学分析法, 如化学滴定法^[4-5]、电位滴定法^[6], 虽然该方法操作简单, 但容易受到待测样品颜色的基质中的干扰物质的影响, 结果的准确度难以保障。第二类是传统的仪器分析方法, 包括高效液相色谱法^[7-8]、分光光度法^[9]、荧光法^[10]、薄层色谱法^[11]等。这类方法虽然检测准确度高, 但是需要昂贵的大型分析仪器, 对操作人员要求高; 或者需要进行衍生化反应, 操作烦琐。第三类是快速检测方法, 包括电化学分析法^[12-14]、量子点法^[15]、微流控芯片法^[16-17]等, 这类方法可实现现场快速检测, 但是需要制备特定的电极或芯片。

纳米金(Au NPs)因其表面离子体效应、介电特性和催化作用等性能,在快速检测领域具有广泛应用^[18-22],尤其是其具有极高的吸光系数和强烈的粒子间距效应,使得纳米金比色法具有很高的灵敏度,在比色法检测中占据一席之地^[23-24]。由于纳米金的不稳定性,可用 DNA 等对纳米金进行修饰保护,以制备抗盐抗干扰的纳米金^[25]。除了常用的巯基 DNA 之外,含多个腺嘌呤核苷酸的 DNA 已被证实可用修饰纳米金^[26-27],这种非巯基 DNA 的多个腺嘌呤核苷酸可在纳米金表面展开,达到修饰保护纳米金的效果。与常用的巯基 DNA 保护的纳米金相比,非巯基DNA 修饰的纳米金上 DNA 链数量更少^[26],因此检测灵敏度更高。

点击化学是以碳-杂原子-碳键合成为基础完成的化学 合成手段,具有反应高选择性、模块化、条件温和、副产 物少等特点,在纳米粒子标记、材料表面修饰、药物合成、 蛋白质组学和抗原合成等领域有广泛的应用^[28]。其中,用 Cu⁺催化末端叠氮化物和炔基的 1,3-偶极环加成,生成三 氮唑类化合物的反应,被称为铜催化的叠氮-炔烃环加成 反应(CuAAC),其产率高、反应速率快、生物相容性好,是目前报道最多、应用最广的点击化学反应^[29]。点击化学在 食品检测中被用于食品成分^[30]、食品添加剂^[31]、农兽药残 留^[32-33]、真菌毒素^[34]、重金属^[35-38]、食源性致病菌^[39]等 的检测。

本研究拟以非巯基 DNA 修饰的纳米金和一端含叠氮 基团的互补的 DNA 链杂交,将叠氮基团修饰到纳米金表 面,得到叠氮基团暴露在外的非巯基 DNA 修饰的叠氮纳 米金。再以 VC 还原 Cu²⁺得到 Cu⁺,从而催化叠氮纳米金 上暴露的叠氮基团和三炔基化合物发生 CuAAC 点击化学 反应,从而引起叠氮纳米金交联聚集。根据叠氮纳米金的 聚集程度,实现对 VC 的识别与检测,以期提供一种简单、 灵敏、可视化检测 VC 的方法。

1 材料与方法

1.1 材料与试剂

果汁和功能性饮料均为浅色清汁,购买于当地市场。

VC、氯金酸、硫酸铜(分析纯,国药集团化学试剂有限公司); DNA 序列(见表 1)[生工生物工程(上海)股份有限公司]; 三炔丙基胺(纯度>98%,上海阿拉丁公司); 柠檬酸三钠、磷酸氢二钠、磷酸二氢钠、盐酸、氢氧化钠、氯化钠(分析纯,天津市科密欧化学试剂有限公司)。

表 1 DNA 序列 Table 1 NDA Sequence						
DNA 名称	序列(5'-3')					
PloyA30	ААААА ААААА ААААА ААААА ААААА ААААА ТТТТТ ATGAT GTTCG					
MAZI	N ₃ -AACAC CACAA CgAAC ATCAT					

1.2 仪器与设备

UV-2550 紫外可见分光光度计(日本岛津公司); H1650R 台式高速冷冻离心机(湖南湘仪实验室仪器开发有限公司);LC1260 高效液相色谱仪(美国安捷伦公司)。

1.3 试验方法

1.3.1 叠氮纳米金的制备

将柠檬酸钠还原法^[22]制备的 13 nm Au NPs 和 PloyA30 DNA 以 200:1(物质的量比)的比例在室温下孵育

16 h, 加入到磷酸盐缓冲液(0.1 mmol/L NaCl, 10 mmol/L 磷酸钠, pH=7.4), 静置 40 h。以 12000 r/min 在 4℃下离心 20 min, 弃去上清液, 离心沉淀物用磷酸盐缓冲液(0.1 mol/L NaCl, 10 mmol/L 磷酸钠, pH=7.4)重复离心 2次进行纯化。 最后将离心沉淀物重悬于磷酸盐缓冲液(0.3 mol/L NaCl, 10 mmol/L 磷酸钠, pH=7.4)中, 得到中间纳米金。

将中间纳米金与 MAZI DNA 在 0.3 mmol/L 磷酸盐缓 冲液(phosphate buffered solution, PBS) (pH=7)中孵育 12 min, 用中间纳米金相同的方法纯化,将离心后沉淀物重悬于磷 酸盐缓冲液(0.3 mol/L NaCl, 10 mmol/L 磷酸钠, pH=7)中, 得到叠氮纳米金。

1.3.2 VC 的检测

将三炔丙基胺溶液(3 μmol/L)、硫酸铜溶液(100 μmol/L)、 PBS (0.3 mol/L NaCl, 10 mmol/L 磷酸钠, pH=7)以 1:1:1 等 体积混合, 配制成反应缓冲液。

将 20 μL VC 溶液与 110 μL 反应缓冲液、70 μL 叠氮 纳米金混匀,在室温下反应 12 min。用紫外可见分光光度 计扫描其吸收光谱,同时用数码相机拍照记录。

1.3.3 样品的处理

果汁加水稀释至适当浓度,取 20 μL 果汁稀释液与 110 μL 反应缓冲液、70 μL 叠氮纳米金混匀,在室温下反 应 12 min,测定其吸光度。

功能性饮料超声脱气 15 min,加水稀释至适当浓度, 取 20 µL 功能型饮料稀释液与 110 µL 反应缓冲液、70 µL 叠氮纳米金混匀,在室温下反应 12 min,测定其吸光度。

用高效液相色谱法^[7]进行比对试验。

1.4 数据处理

试验重复3次,用 Origin 2021 和 Excel 2013 处理数据,用 Origin 2021 进行 *t* 检验分析显著性。

2 结果与分析

2.1 VC 检测的设计原理

如图 1 所示, "PloyA30"DNA 单链以 5 端的多个腺苷酸 吸附在纳米金表面, DNA 单链 3 的待互补序列向外延伸暴 露, 形成了 DNA 保护的纳米金。然后与另一条"MAZI"DNA 单链进行杂交, "MAZI"DNA 上 3'端的互补序列与 "PloyA30"DNA 单链上相应的序列配对,从而将 "MAZI"DNA 单链修饰在纳米金上,同时"MAZI"DNA 上 5' 端的叠氮基团暴露在外,形成了含叠氮基团的 DNA 修饰的 叠氮纳米金。此叠氮纳米金依然保持了纳米金的分散状态,颜色呈红色。在此叠氮纳米金中加入炔基化合物三炔丙基 胺、能解离出 Cu²⁺的化合物硫酸铜和还原剂 VC。VC 将 Cu²⁺ 还原成 Cu⁺, Cu⁺催化三炔丙基胺上的炔基和叠氮纳米金上 的叠氮基发生 CuAAC 点击化学反应,生成 1,4-二取代的 1,2,3-三唑,将分散的纳米金交联,交联后的纳米金聚集。由

于纳米金的表面等离子体效应,与分散叠氮纳米金的相比, 交联后叠氮纳米金光谱曲线变化,最大吸收峰红移,同时伴随着颜色从红色变为蓝色。VC的多少,与Cu⁺的生成量相关, 最终在微观上影响叠氮纳米金的聚集程度,在宏观上影响叠 氮纳米金的颜色变化和光谱改变,因此可以通过分析叠氮纳 米金发生的颜色变化和光谱改变,实现VC的定量分析。

~ : DNA链(PolyA30) ~ : DNA链(MAZI) 丫 : 三炔丙基胺

图 1 基于点击化学的 VC 检测原理 Fig.1 Schematic of the VC detection based on click chemistry

2.2 检测原理的可行性验证

如表 2 所示,叠氮纳米金与炔基化合物、Cu²⁺、VC 这 3 种物质中的任意 1 种或 2 种组合均呈现出酒红色,颜 色与叠氮纳米金(a1)相比未发生明显改变(a2~a5); 当 4 种 物质组合(a6)时, VC 将 Cu²⁺离子还原成 Cu⁺, Cu⁺催化炔基 化合物和叠氮纳米金发生 CuAAC 点击化学反应,使叠氮 纳米金聚集,溶液颜色呈现出蓝紫色。

表 2 反应体系中不同反应物的组合及溶液颜色变化 Table 2 Combination of different reactants in the reaction system and the color change of the solution

反应物名称	酒红色 al	酒红色 a2	酒红色 a3	酒红色 a4	酒红色 a5	蓝紫色 a6
叠氮纳米金	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
炔基化合物		\checkmark	\checkmark	\checkmark		\checkmark
Cu^{2+}				\checkmark	\checkmark	\checkmark
VC			\checkmark		\checkmark	\checkmark

注:√表示该反应体系中存在该反应物。

如图 2 所示, 叠氮纳米金(a1)与炔基化合物、Cu²⁺、 VC 3 种物质中的任意 1 种或 2 种组合, 吸收曲线与叠氮纳 米金(a1)相比未发生明显改变(a2~a5), 最大吸收峰均出现 在 526 nm 附近; 当 4 种物质组合(a6)时, 526 nm 处吸收峰 峰值变小, 并在 613 nm 左右出现新峰, 说明此体系中发生 了叠氮纳米金的聚集。

注: A: 不同物质组合的吸收曲线; B: 不同物质组合在 525 nm 的吸光度; C: 不同物质组合在 613 nm 的吸光度; a1: 叠氮纳米金; a2: 叠氮 纳米金+炔基化合物; a3: 叠氮纳米金+炔基化合物+VC; a4: 叠氮纳米金+炔基化合物+Cu²⁺; a5: 叠氮纳米金+Cu²⁺+VC; a6: 叠氮纳米金+炔基化合物+Cu²⁺+VC; a~b 表示差异有统计学意义, P<0.05, 图 5 同。 图 2 反应体系中不同物质组合的光谱图 Fig.2 Spectra of different substance combinations in reaction systems

光谱的改变与颜色变化一致,都说明了叠氮基、炔基、Cu²⁺、VC四者同时存在,才发生CuAAC反应,引起 叠氮纳米金的聚集。通过颜色的变化和光谱的改变,衡量 叠氮纳米金聚集的程度,从而对VC进行定量分析。

2.3 检测条件的优化

2.3.1 pH

pH 影响静电斥力,进而影响纳米金的分散性,同时 pH 也会对一些化学反应的进程产生影响。点击化学在较宽 的 pH 范围内都可进行,但是纳米金对 pH 比较敏感。一方 面要既能保证点击化学能发生,另一方面保持点击化学反 应发生前叠氮纳米金的分散。在研究中发现叠氮纳米金在 pH 小于 5 和大于 10 时已经出现聚集,颜色不能保持红色, 光谱也出现变化,不能用于衡量点击化学引起的纳米金聚 集程度。故此后的试验中仅在 pH 从 5 到 10 的范围内,通 过测定检测体系在 613 nm 处和 526 nm 处的吸光度比值 *A*₆₁₃/*A*₅₂₆,考察不同 pH 的缓冲溶液对检测体系的影响。

如图 3A 所示,随着 pH 的增加(pH 5~pH 7),检测体系 吸光度比值 *A*₆₁₃/*A*₅₂₆ 从 0.525 增加大 0.895,当 pH 超过 7 时,吸光度比值 *A*₆₁₃/*A*₅₂₆ 逐步减小到 0.341,呈现先增大后 减小的趋势。pH 为 7 时,*A*₆₁₃/*A*₅₂₆ 值最大,表明在此 pH 下,检测体系的信号最强,灵敏度最高。因此, pH 为 7 被选用 为最佳 pH。

2.3.2 Cu²⁺浓度

Cu⁺能催化 CuAAC 点击化学偶联叠氮纳米金, 其浓

度对检测体系有直接影响。作为 Cu^+ 的来源, Cu^{2+} 在CuAAC点击化学反应中的有效循环效率有限,表现为 Cu^{2+} 浓度影响检测体系。在检测体系中加入不同浓度的 Cu^{2+} 硫酸铜),测定吸光度比值 A_{613}/A_{526} ,考察 Cu^{2+} 浓度与检测信号的关系。

如图 3B 所示,当 Log(Cu²⁺浓度)从-2 增加到 2,即 Cu²⁺浓度从 0.01 µmol/L 增加到 100 µmol/L 时,吸光度比值 A_{613}/A_{526} 随着 Cu²⁺浓度的增大而增大,且 A_{613}/A_{526} 和 log(Cu²⁺浓度)呈良好的线性关系,相关系数为 0.987(如图 3B 插图所示)。当 Log(Cu²⁺浓度)超过 2,即 Cu²⁺浓度超过 100 µmol/L, A_{613}/A_{526} 基本保持不变。表明随着 Cu²⁺浓度的 增大,产生的 Cu⁺随之增多,从而引起纳米金探针聚集程 度增大;而 Cu²⁺浓度超过 100 µmol/L 时,即使再增加 Cu²⁺ 浓度,不能产生更多的 Cu⁺,叠氮纳米金聚集程度大致不 变。当 Cu²⁺浓度为 100 µmol/L 时,产生的 Cu⁺数量为极大 值,叠氮催化纳米金聚集的效率最高。因此,100 µmol/L 被 选为最佳添加浓度。

2.3.3 三炔丙基胺浓度

在检测体系中加入不同浓度的三炔丙基胺,测定吸 光度比值 A₆₁₃/A₅₂₆,考察三炔丙基胺浓度与检测信号的关 系。如图 3C 所示,当三炔丙基胺的浓度从 0.01 μmol/L 增 加到 3 μmol/L 时,吸光度比值 A₆₁₃/A₅₂₆随着三炔丙基胺浓 度的增大而增大。当三炔丙基胺浓度超过 3 μmol/L 时, A₆₁₃/A₅₂₆基本保持不变。表明随着三炔丙基浓度的增大, CuAAC 反应产物增多,从而引起纳米金探针聚集程度增 大; 而浓度超过 3 μmol/L 时, 三炔丙基胺已经过量, CuAAC 反应产物不再增多, 叠氮纳米金聚集程度大致不 变。因此, 3 μmol/L 被选为三炔丙基胺的最佳浓度。 2.3.4 反应时间

在 VC 质量浓度为 0.05、1.00 和 20.00 mg/L 3 个浓度 条件下,测定吸光度比值 A₆₁₃/A₅₂₆,考察时间对检测体系 的影响。如图 3D 所示,当 VC 质量浓度为 0.05 mg/L 时,前 8 min 内 A₆₁₃/A₅₂₆随着时间的增加而增大,8 min 达到稳定 值;当 VC 质量浓度为 1.00 mg/L 和 20.00 mg/L 时,前 12 min 内 A₆₁₃/A₅₂₆随着时间的增长而增大,12 min 达到稳定值。 因此,12 min 被选为最佳检测时间。

2.4 标准曲线的建立和灵敏度的考察

如图 4A 所示,不存在 VC 时,体系中的叠氮纳米金的 吸收曲线在 526 nm 处有最大吸收峰;随着加入的 VC 质量 浓度不断变大,吸收曲线的极大值慢慢变为 613 nm 处, *A*526 在缓慢的变小,而 *A*613 迅速变大,最大吸收峰出现了 蓝移。为了定量描述吸光度和最大吸收峰的变化,选用吸 光度比值 *A*613/*A*526 作为衡量标准。

如图 4B 所示, 当 log(VC 质量浓度)从-1.3 到 1.3, 即

VC 质量浓度在 0.05 mg/L 到 20.00 mg/L 的范围内时, 吸光 度比值 *A*₆₁₃/*A*₅₂₆ 与 VC 浓度的对数呈现良好的线性关系, 线 性 归 回 方 程 *Y*=0.1841×log₁₀(*c*)+0.9003, 相 关 系 数 *R*²=0.989, 其中 *Y* 为吸光度比值 *A*₆₁₃/*A*₅₂₆, *c* 为 VC 的质量浓 度, 方法检出限为 0.042 mg/L。

如图 4C 所示,随着 VC 质量浓度的增加,检测体系的颜色从酒红色逐渐变为蓝紫色。通过观察颜色的变化,或者制成比色卡,可以进行目视半定量检测。在 0.05 mg/L VC 的存在下,出现比较明显的颜色变化。因此,本方法可以进行分光光度法定量比色测定和目视比色半定量测定。

2.5 方法的特异性检测

为了验证基于点击化学的比色法检测 VC 的选择性和 特异性,在检测体系中加入水溶性维生素或可能在功能性 饮料中存在的成分作为对照样品。考察水溶性维生素烟酸、 泛酸、牛磺酸、叶酸,功能性饮料中的蔗糖、果糖的吸光 度比值 A₆₁₃/A₅₂₆。

如图 5 所示, 检测体系中仅加入 VC 时, 吸光度比值 *A*₆₁₃/*A*₅₂₆比空白有很大差异, 而分别加入烟酸、泛酸、牛磺

Fig.3 Effects of reaction condition on the detection system

注: A: 可见吸收光谱图; B: A₆₁₃/A₅₂₆与 VC 质量浓度关系及标准曲线; C: 颜色变化图。 图 4 检测体系的灵敏度 Fig.4 Sensitivity of the detection system

Fig.5 Specificity of the detection system

酸、叶酸、蔗糖和果糖时,吸光度比值 *A*₆₁₃/*A*₅₂₆ 与空白无显著性差异。表明这些物质均不干扰 VC 的检测,本方法用于检测 VC 的特异性很强。

2.6 实际样品中 VC 的检测

将本方法用于果汁和功能性饮料样品的检测,并同时与高效液相色谱法比较,以考察其用于实际样品检测的准确度和重复性。如表 3 所示,分别在果汁和功能性饮料中添加 2、5、10 mg/L 的 VC 溶液,平行 3 次,用本方法和高效液相色谱法进行测定,其回收率分别为85.5%~107.5%和 89.2%~104.8%,两种方法测定值无显著性差异,表明本方法和高效液相色谱法结果一致,能用于果汁和功能性饮料中 VC 的检测。

表 3 样品中添加 VC 的检测结果 Table 3 Detection results of VC addition in sample

样品名称	医抽氏目炎 四	本方法	去	高效液相色谱法		
	祢加庾重浓度/(mg/L) -	测量值/(mg/L)	回收率/%	测量值/(mg/L)	回收率/%	
果汁	2	1.71±0.13	85.5±7.6	$1.79{\pm}0.08$	89.5±4.5	
	5	4.67±0.21	93.4±4.5	4.78±0.11	95.6±2.3	
	10	10.06 ± 0.59	100.6 ± 5.9	10.48 ± 0.38	104.8 ± 3.6	
功能性饮料	2	2.15±0.15	107.5 ± 7.0	2.03 ± 0.07	101.5±3.4	
	5	$4.78 {\pm} 0.18$	95.6±3.8	4.46 ± 0.14	89.2±3.1	
	10	9.87±0.46	98.7±4.7	9.65±0.33	96.5±3.4	

3 讨论与结论

本研究提出了一种基于点击化学和非巯基 DNA 修饰 的 VC 检测法,方法简单、可靠,检出限可以达到 10⁻⁸ 数 量级,灵敏度相比其他方法有显著的优势。所采用的非巯 基 DNA 修饰的叠氮纳米金,相比直接用纳米金聚集进行 比色测定,稳定性更好,方法的重现性得到提高。一端有 多个腺嘌呤核苷酸的非巯基 DNA,与常用的巯基 DNA 相 比,非巯基 DNA 的纳米金上能容纳的 DNA 链数量更少^[26], 点击化学催化交联需要的 Cu⁺就更少,所需要的 VC 的量 更少,从而形成了高灵敏的可视化检测 VC 的基础。优化 后的比色法可检测到 0.042 mg/L 的 VC,用于实际样品的 检测具有良好的准确性,并且不受类似物或干扰物的影 响。根据颜色的鲜明变化,也可以用目视比色法进行半定 量测定,与传统分析方法相比避免了使用液相色谱仪等大 型分析仪器,在实验室固定场所之外也能进行检测,可用 于现场的快速筛选,丰富了 VC 的检测方法。如后续能有 效解决外界光线和样品基质中有色物质等的干扰,使用手 机拍照结合 APP 识别颜色,则可实现准确的便携定量检 测。因此,本方法适用于 VC 的可视化、超灵敏检测。

参考文献

- [1] 王丽华,杨春娟,樊杨. 硫酸亚铁叶酸片联合维生素 C 治疗妊娠妇女 贫血的临床研究[J]. 中国临床药理学杂志, 2023, 39(22): 3238–3242.
 WANG LH, YANG CJ, FAN Y. Clinical trial of ferrous sulfate and folic acid tablets combined with vitamin C in the treatment of anemia in pregnant women [J]. Chin J Clin Pharmacol, 2023, 39(22): 3238–3242.
- [2] 张立新, 高志星. 大剂量维生素 C 对肠易激综合症细胞免疫功能的影响[J]. 山东医药, 2012, 52(1): 90–91.
 ZHANG LX, GAO ZX. Effect of high-dose vitamin C on cellular immune function in irritable bowel syndrome [J]. Chin Remed Clin, 2012, 52(1): 90–91.
- [3] 白璐, 谢卓霖, 王智文, 等. 维生素 C 对炎症的治疗作用[J]. 临床与病 理杂志, 2021, 41(12): 2973–2979.
 BAI L, XIE ZL, WANG ZW, *et al.* Therapeutic effect of vitamin C on inflammation [J]. J Clin Pathol Res, 2021, 41(12): 2973–2979.
- [4] 肖德卿, 梁淑霞, 况芹芹, 等. 8 个品种草莓盆栽果实维生素 C 含量的 测定[J]. 安徽农业科学, 2015, 43(8): 246–247, 251.
 XIAO DQ, LIANG SX, KUANG QQ, *et al.* Determination of vitamin C content of eight varieties strawberry potted fruit [J]. J Anhui Agric Sci, 2015, 43(8): 246–247, 251.
- [5] 管颖, 郭艳东, 陈果, 等. 紫五加的营养成分分析与评价[J]. 食品安全 质量检测学报, 2018, 9(5): 1021–1025. GUAN Y, GUO YD, CHEN G, *et al.* Anthocyanins from purple sweet potato (*Ipomoea batatas*) and its application in VC quantification [J]. J Food Saf Qual, 2018, 9(5): 1021–1025.
- [6] 徐攀攀,许会艳. 果蔬中维生素 C 含量测定方法研究进展[J]. 广州化工, 2020, 48(8): 18–20.
 XU PP, XU HY. Research progress on determination of vitamin C in fruits and vegetables [J]. Guangzhou Chem Ind, 2020, 48(8): 18–20.
- [7] 孟慧琴, 吕宁, 金莹, 等. 高效液相色谱法测定特殊医学用途婴幼儿配 方乳粉中维生素 C 含量[J]. 食品安全质量检测学报, 2021, 12(24): 9342–9348.

MENG HQ, LV N, JIN Y, *et al.* Determination of vitamin C in infant formula milk powder for special medical purpose by high performance liquid chromatography [J]. J Food Saf Qual, 2021, 12(24): 9342–9348.

[8] MIYAZAWA T, MATSUMOTO A, MIYAHARA Y. Determination of cellular vitamin C dynamics by HPLC-DAD [J]. Analyst, 2019, 144(11): 3483–3487. [9] 温欣荣,涂常青.分光光度法测定水果中维生素 C[J]. 化学世界, 2019, 60(1): 12-17.

WEN XR, TU CQ. Spectrop hotometric determination of vitamin C in fruits [J]. Chem World, 2019, 60(1): 12–17.

- [10] 刘瑶瑶,刘敬民,张咚咚,等. 羟基氧化钴长余辉纳米探针用于食品中 VC 的检测[J]. 食品科学, 2018, 39(8): 108–114.
 LIU YY, LIU JM, ZHANG DD, *et al.* Detection of vitamin C in food base on cobalt oxyhydroxide persistent luminescent (COOOH-PLNP) nanaoparticles [J]. Food Sci, 2018, 39(8): 108–114.
- [11] 莫超群,张六龄,蒋召涛,等. 间接原子吸收法测定饮料蔬果中维生素 C[J]. 化学研究与应用, 2011, 23(8): 1099–1102.
 MO CQ, ZHANG LL, JIANG ZT, *et al.* Indirect determination of ascorbic (VC) in drinks, fruit and vegetable by atomic absorption spectrometry [J]. Chem Res Appl, 2011, 23(8): 1099–1102.
- [12] SHA TZ, LIU JJ, SUN MM, et al. Green and low-cost synthesis of nitrogen doped graphene like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples [J]. Talanta, 2019, 200: 300–306.
- [13] FRANKE A, CUSTER LJ, ARAKAKI C, et al. Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii [J]. J Food Compos Anal, 2004, 17(1): 1–35.
- [14] CHAVHAN PM, REDDY V, SOLANKI PR, et al. Sol-gel derived nanostructured zirconia platform for vitamin C detection [J]. J Electrochem Soc, 2013, 160(2): H93–H97.
- [15] 张立佩,胡博,王建华. 量子点荧光探针检测抗坏血酸[J]. 高等学校 化学学报, 2011, 32(3): 688-693.
 ZHANG LP, HU B, WANG JH. Detection of ascorbic acid by quantum fluorescence probe [J]. Chem J Chin Univ, 2011, 32(3): 688-693.
- [16] 李泽娴. 基于纸基微流控芯片检测水果中葡萄糖、果糖和维生素 C 的应用研究[D]. 上海: 上海海洋大学, 2017.
 LI ZX. Application of paper-based microfluidic device for detecting glucose, fructose, vitamin C content in fruit sample [D]. Shanghai:

Shanghai Ocean University, 2017.
[17] 张修珂, 李梦瑶, 李聪, 等. 基于微流控芯片对果蔬 VC 的快速检测[J].
中国食品添加剂, 2020, 31(2): 154–160.
ZHANG XK, LI MY, LI C, *et al.* Rapid detection of fruit and vegetable VC based on microfluidic chip [J]. Chin Food Addit, 2020, 31(2):

154-160.
[18] 王炳志, 骆和东, 叶雅真, 等. 组胺胶体金免疫快速检测试纸条研制及 其在水产品检测中的应用[J]. 食品安全质量检测学报, 2021, 12(18): 7206-7213.

WANG BZ, LUO HD, YE YZ, *et al.* Development of vitamin C colloidal gold immune rapid detection test strip and its application in aquatic products [J]. J Food Saf Qual, 2021, 12(18): 7206–7213.

- [19] QIN L, ZENG G, LAI C, et al. "Gold rush" in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing [J]. Coordin Chem Rev, 2018, 359: 1–31.
- [20] HRIOUA A, LOUDIKI A, FARAHI A, et al. Recent advances in electrochemical sensors for amoxicillin detection in biological and

environmental samples [J]. Bioelectrochemistry, 2021, 137: 107687.

- [21] 胡娅琪, 卢小泉. 基于纳米金粒子可视化分析检测的研究进展[J]. 化 学通报, 2019, 82(12): 1059–1066.
 HU YQ, LU XQ. Research progress in visual analysis based on gold nanoparticles [J]. Chemistry, 2019, 82(12): 1059–1066.
- [22] SHIBA F. Size control of monodisperse Au nanoparticles synthesized via a citrate reduction process associated with a pH-shifting procedure [J]. Crystengcomm, 2013, 15(42): 8412–8415.
- [23] ZHANG L, SUN Y, JIANG Y, et al. Visual sensing of picric acid in 100% aqueous media based on supramolecular polythiophene assemblies with colorimetric and fluorescent dual response [J]. Chinese Chem Lett, 2020, 31(9): 2428–2432.
- [24] YAO Z, HUANG B, HU X, et al. Colorimetric detection of copper ions based on a supramolecular complex of water-soluble polythiophene and ATP [J]. Anal, 2013, 138(6): 83–93.
- [25] CHEN Y, ZHANG S, LU J, *et al.* DNA-guided extracellular-vesicle metallization with high catalytic activity for accurate diagnosis of pulmonary nodules [J]. Small, 2023, 19(32): e2208142.
- [26] PEI H, LI F, WAN Y, et al. Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates [J]. J Am Chem Soc, 2012, 134(29): 11876–11879.
- [27] ZHANG X, MARK R, LIU JW. Surface science of DNA adsorption onto citrate-capped gold nanoparticles [J]. Langmuir, 2012, 28(8): 3896–3902.
- [28] MUSUMECI F, SCHENONE S, DESOGUS A, et al. Click chemistry, a potent tool in medicinal sciences [J]. Curr Med Chem, 2015, 22(17): 2022–2050.
- [29] 谢桂芳, 苏本超, 谢晓霞, 等. 点击化学在食品安全检测中的应用研究 进展[J]. 分析测试学报, 2021, 40(5): 648–655.
 XIE GF, SU BC, XIE XX, *et al.* Research progress on application of click chemistry in food safety detection [J]. J Instruml Anal, 2021, 40(5): 648–655.
- [30] 李燕萍, 江凌, 张涛, 等. 基于点击反应的纳米金比色检测还原糖的研究[J]. 分析化学, 2013, 41(11): 1688–1693.
 LI YP, JIANG L, ZHANG T, *et al.* Colorimetric detection of reducing sugar based on gold nanoparticles via click-reaction [J]. Chin J Anal Chem, 2013, 41(11): 1688–1693.
- [31] QIU SY, GAO S, LIU QD, et al. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry [J]. Biosens Bioelectron, 2011, 26(11): 4326–4330.
- [32] DONG YZ, ZHENG WS, CHEN D, et al. Click reaction-mediated T₂ immunosensor for ultrasensitive detection of pesticide residues via brush-like nanostructure-triggered coordination chemistry [J]. J Agric

Food Chem, 2019, 67(35): 9942-9949.

- [33] XIANYU YL, DONG YZ, WANG ZL, et al. Broad-range magnetic relaxation switching bioassays using click chemistry-mediated assembly of polystyrene beads and magnetic nanoparticles [J]. ACS Sens, 2019, 4(7): 1942–1949.
- [34] XU JH, LIU T, CHI JX, et al. Online high-efficient specific detection of zearalenone in rice by using high-loading aptamer affinity hydrophilic monolithic column coupled with HPLC [J]. Talanta, 2020, 219: 121309.
- [35] FOMO G, NWAJI N, NYOKONG T, et al. Low symmetric metallophthalocyanine modified electrode via click chemistry for simultaneous detection of heavy metals [J]. J Electroanal Chem, 2018, 813: 58–66.
- [36] PREMASIRI WR, CHEN Y, WILLIAMSON PM, et al. Rapid urinary tract infection diagnostics by surface-enhanced raman spectroscopy (SERS): Identification and antibiotic susceptibilities [J]. Anal Bioanal Chem, 2017, 409(11): 3043–3054.
- [37] LI DX, XIE JQ, ZHOU WJ, et al. Click chemistry-mediated cyclic cleavage of metal ion-dependent DNAzymes for amplified and colorimetric detection of human serum copper (II) [J]. Anal Bioanal Chem, 2017, 409(27): 6421–6427.
- [38] KLEIN K, LOZA K, HEGGEN M, et al. An Efficient method for covalent surface functionalization of ultrasmall metallic nanoparticles by surface azidation followed by copper-catalyzed azide-alkyne cycloaddition (click chemistry) [J]. Chem Nano Mat, Chemnanomat, 2021, 7(12): 1330–1339.
- [39] GUO RY, HUANG FC, CAI GZ, et al. A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification [J]. Microchim Acta, 2020, 187(4): 197.

(责任编辑:张晓寒 于梦娇)

作者简介

刘 伟, 博士, 讲师, 主要研究方向为 食品/农产品质量安全检测。 E-mail: neilyouth@qq.com

张玉环,博士,副教授,主要研究方向 为食品安全与营养。 E-mail: yh5zhang@snnu.edu.cn