基于表面修饰的高灵敏度免疫分析方法 检测牛奶中的卡那霉素

顾鑫凯,朱宝成,王亚妮,黄 睿,曾 昆*,张 祯

(江苏大学环境与安全工程学院,镇江 212001)

摘 要:目的 为了提高卡那霉素的检测灵敏度,将卡那霉素分子直接共价固化在酶标板上,由此开发一种 直接免疫分析方法检测卡那霉素。**方法** 本研究采用戊二醛以及聚乙二胺(polyamidoamine, PAMAM)-戊二醛 两种方式,对酶标板进行表面修饰,同时通过酶联免疫吸附实验(enzyme-linked immunosorbent assays, ELISA) 比较两种方式的差异,并对牛奶样本中卡那霉素进行检测。结果 基于戊二醛表面修饰的 ELISA 检出限为 0.219 ng/mL,线性范围为2.251~87.791 ng/mL;基于 PAMAM-戊二醛表面修饰的 ELISA 检出限为0.119 ng/mL, 线性范围为1.348~20.414 ng/mL。此两种方法比常规 ELISA 方法灵敏度分别提高5倍和10倍。将基于 PAMAM-戊二醛表面修饰的 ELISA 应用于牛奶样本的检测,发现卡那霉素的检出率为12.5%,最高检出质量浓度 为1.12 ng/mL。**结论** 本研究采用的戊二醛以及 PAMAM-戊二醛两种方式修饰酶标板后大大提高了免疫检测 的灵敏度,为食品中小分子污染物的快速筛查提供了新的思路。

关键词:免疫分析方法;牛奶;卡那霉素;戊二醛;聚乙二胺;表面修饰

Highly sensitivity immunoassay based on surface modification for the detection of kanamycin in milk

GU Xin-Kai, ZHU Bao-Cheng, WANG Ya-Ni, HUANG Rui, ZENG Kun*, ZHANG Zhen

(School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212001, China)

ABSTRACT: Objective To improve kanamycin detection sensitivity, develope a direct immunoassay approach by directly covalently anchoring kanamycin molecules to the surface of a modified plate. **Methods** The surface of the enzyme-labeled plates was altered in this investigation using glutaraldehyde and polyamidoamine (PAMAM)-glutaraldehyde. Meanwhile, enzyme-linked immunosorbent assays (ELISA) were utilized to compare the two approaches. Kanamycin has been identified in milk samples. **Results** For glutaraldehyde surface modified ELISA, the linear range was 2.251–87.791 ng/mL and the limit of detection was 0.219 ng/mL. For PAMAM-glutaraldehyde surface modified ELISA, the linear range was 1.348–20.414 ng/mL and the limit of detection was 0.119 ng/mL. The sensitivities of the two methods improved 5-fold and 10-fold compared with conventional ELISA. Using an ELISA based on PAMAM-glutaraldehyde to analyze milk samples, the detection rate of kanamycin was 12.5% and the

基金项目:国家自然科学基金项目(22176075)、江苏省农业科技自主创新资金项目(CX(21)3173)

Fund: Supported by the National Natural Science Foundation of China (22176075), and the Jiangsu Province Agricultural Science and Technology Independent Innovation Fund Project (CX(21)3173)

^{*}通信作者:曾昆,博士,副教授,主要研究方向为食品与环境污染物的快速检测分析。E-mail: kjj80116@ujs.edu.cn

^{*}Corresponding author: ZENG Kun, Ph.D, Associate Professor, Jiangsu University, School of Environmental and Safety Engineering, No.301 Xuefu Road, Xiangshan District, Zhenjiang 212001, China. E-mail: kjj80116@ujs.edu.cn

highest detection mass concentration was 1.12 ng/mL. **Conclusion** Glutaraldehyde and PAMAM-glutaraldehyde modified enzyme plate in this study greatly improve the sensitivity of immune detection, and provide a novel concept for the quick screening of contaminants in food.

KEY WORDS: immunoassay method; milk; kanamycin; glutaraldehyde; polyamidoamine; surface modified

0 引 言

卡那霉素(kanamycin, KAN)是一种重要的氨基糖苷类 抗生素,因其价格低廉、抗菌效果好,在医学领域被广泛 应用于治疗革兰氏阴性菌、单胞菌属、葡萄菌属感染以及 结核病等疾病^[1];在兽医学领域,该方法主要用于预防和 治疗牛乳腺炎、肠炎、子宫炎、腹膜炎和败血症等疾病,同 时还能促进动物的生长发育^[2-3]。然而,过量使用抗生素, 会导致其大量存留在肉、蛋、奶等动物源性食品中,通过 食物链传递,给人类健康带来危害,如肾毒性、耳毒性以 及前庭神经功能损害等^[4]。我国在 GB 31650—2019《食品 安全国家标准 食品中兽药最大残留限量》中规定卡那霉 素在牛奶中的最高残留限量为 150 ng/mL。因此, 探索简 便、快速、灵敏的检测方法筛查食品中抗生素残留具有重 要意义。目前, 卡那霉素的检测方法主要有高效液相色谱 法^[5]、液相色谱法^[6]、高效液相色谱-质谱法^[7]、毛细管电 泳法^[8]、微生物抑制法^[9-11]、免疫分析方法^[12-14]和分子印 记技术^[8,15]。现代的仪器分析方法在灵敏度和准确性方面 表现出了较高的水平。然而,由于仪器设备本身的昂贵以 及前处理过程的复杂性, 使得这种方法在快速分析领域并 不具备明显的优势[16]。微生物法操作简便,但是无法区分 抗生素污染的种类,并不能定量分析。而免疫分析方法以 抗原抗体特异性结合为基础[17],具有特异性强、灵敏度高、 操作简单便捷等优势[18],在快速检测领域应用广泛。

酶联免疫吸附实验(enzyme-linked immunosorbent assays, ELISA)是免疫分析方法中应用最为广泛的一种,通 过抗原或抗体结合在固相载体表面,与相应的抗体或抗原 结合,形成特定的抗原-抗体复合物,然后利用酶标记的二 抗或底物来检测复合物的形成。表面固定化的抗原或抗体 的数量直接影响 ELISA 方法的性能。通常, 表面的抗体 或抗原通过相对较弱的疏水作用或范德华力吸附在孔板 上^[19],这将极大地限制可固定的抗原或抗体的数量。有研 究通过修饰微孔板表面^[20],提高其固化的效率,如通过 辐射处理引入带负电的羧基,促进其与带正电荷的抗体 结合[21]。尽管附着的蛋白数量有所提升,但是这些抗原或 抗体容易被洗涤液洗掉,或是被溶液中的非特异性蛋白取 代。同时,对于小分子类的靶物质,如抗生素、有机化合 物等[22],由于分子量小,不能直接被微孔板吸附,小分子 往往需要先与大分子物质(蛋白质或聚合物)偶联^[23-25], 然 后才能被吸附在微孔板上,进而构建相应的免疫分析方

法。然而,偶联过程中小分子空间构象会发生变化,进而 影响竞争性免疫分析方法的性能。因此,探索小分子半抗 原直接固化技术,对于提升小分子竞争性检测方法的灵敏 度具有重要意义^[26]。

在生物学和细胞学研究中,戊二醛常被用作细胞固 定剂[27], 戊二醛能够与蛋白质中的氨基和硫氧化物基团发 生反应,形成交联,增强细胞结构的稳定性。树状分子 (dendrimers)是一类具有树枝状结构的大分子物质^[28],由 内核、分支单元和表面官能团 3 部分组成,具有分子组成 明确、纳米尺寸、高度分支、生物相容性、表面聚集大量 的功能性基团等特性, 广泛应用于生物医药载体、材料改 性和工业催化等领域。聚乙二胺(polyamidoamine, PAMAM) 是目前研究最为广泛的树状分子之一^[29-30]。低代数的 PAMAM (G1~G3)呈平面的椭圆形,具有一定柔性;高代 数的 PAMAM (G4 以上)呈稳健的球形结构,其尺寸一般在 几纳米到十几纳米。PAMAM 通过修饰传感器表面(硅、金、 玻璃等材质),极大地提升传感器的性能。PAMAM 末端高 密度的功能基团增加了固化位点,提高识别分子的负载量; 通过采用不同的末端功能基团定向固化蛋白,避免随机固 化导致的识别材料功能丧失; 高密度的末端分支结构可以 有效降低非特异性吸附。

本研究以卡那霉素^[31]为研究对象,采用戊二醛^[32-33] 和 PAMAM-戊二醛^[25]两种方式对酶标板进行表面修饰, 将 KAN 分子直接固化在聚苯乙烯板上,构建直接免疫分 析方法检测卡那霉素,并比较两种方式的差异,对牛奶 样本中卡那霉素进行检测,为食品安全领域其他污染物 的快速检测提供良好思路,为保障食品安全提供有效技 术支持。

1 材料与方法

1.1 材料与试剂

硫酸卡那霉素(中国药检所); 羊抗鼠酶标二抗 (goat anti-mouse horseradish peroxidase, GAM-HRP)(美 国 Jacket 公司); 明胶、3,3',5,5'-四甲基联苯胺(3,3',5,5'tetramethylbenzidine, TMB)(美国 Sigma 公司); 戊二醛(50wt% in water, 上海阿拉丁生化科技股份有限公司); PAMAM (G4, 乙二胺为核, 氨基末端, 10wt% in methanol)(威海晨源分子 新材料有限公司); 其他常规试剂(分析纯, 国药集团化学试 剂有限公司); KAN 单克隆抗体、KAN 包被原[卵清白蛋白 (ovalbumins, OVA)-KAN, OVA-KAN]为实验室自制。

1.2 仪器与设备

Infinite M1000PRO 多功能酶标仪(奥地利 Infinite 公司); C-MAG HS4 磁力搅拌器(德国 IKA 公司); 5415D 低温 高速离心机(德国 Eppendorf 公司); AR224CN 电子天平(精 度 0.1 mg, 美国 OAUS 公司); QT-1 涡旋混合器(上海琪特 分析仪器有限公司); HH-B11.420-BS-II电热恒温培养箱(上 海跃进医疗器械有限公司); ACQUITY UPLC I-Class/Xevo G2-XS Qtof 超高效液相色谱-四极杆飞行时间质谱联用仪 (美国 Waters 公司)。

1.3 实验方法

1.3.1 卡那霉素竞争性 ELISA 方法的建立

(1)卡那霉素 ELISA 竞争性免疫检测流程

用包被液(0.05 mol/L 碳酸盐缓冲液, pH 8.5)将包被原 (OVA-KAN, 2.5 mg/mL)适当稀释,每孔 100 µL,4°C过夜; 倒去酶标板中液体,用磷酸吐温缓冲盐溶液(phosphate buffered solution with tween-20, PBST)进行洗涤一次;每孔 加入 200 µL 封闭液(含 2%明胶的包被液), 37°C培养箱中反 应 1.5 h; 孔中依次加入不同浓度的 KAN 标准品 50 µL 以 及适当稀释的KAN抗体 50 µL,在37°C培养箱中反应 30 min; 倾去反应液,用 PBST 洗涤 3 次;用磷酸缓冲盐溶液 (phosphate buffered solution, PBS)将 GAM-HRP 稀释 5000 倍,每孔 100 µL, 37°C培养箱反应 30 min; 倾去反应液,用 PBST 洗涤 3 次; 加入新鲜配制的 TMB 显色液,在 37°C 培养箱中反应 10~15 min 后,加入 50 µL 0.2 mol/L 硫酸终 止液终止反应,用酶标仪测定 450 nm 处吸光度值,分析数 据得出 B_0 (不添加抑制物质的对照孔的 OD 值)以及半数抑 制浓度(half maximal inhibitory concentration, IC₅₀)。

(2)条件优化

最佳 Ab 与 Ag 浓度优化:采用棋盘法摸索 Ab 与 Ag 最佳反应浓度。每行包被不同质量浓度的抗原 Ag (10.000、5.000、2.500、1.250、0.625 μg/mL); 抗体 Ab 用抗体稀释 液稀释至不同质量浓度(4.000、2.000、1.000、0.500、0.250、0.125、0.063 μg/mL),并依次加入不同列的孔板中,按1.3.1 (1)步骤重新测定。吸光度数值接近于 1.0 时的为 Ab 与 Ag 最佳反应浓度。

缓冲液 pH 优化: 过酸和过碱条件会影响抗原抗体的 构象和功能,从而导致其失活,因此选择弱酸和弱碱环境 来优化缓冲液的 pH。参考人体血液 pH 约为 7.4,从而抗原 抗体的 pH 优化以 7.4 居中,差值为 0.6 浮动。KAN 标准品 用不同 pH (5.6、6.2、6.8、7.4、8.0、8.6) PBS 稀释,按 1.3.1 (1)步骤测定 *B*₀ 以及 IC₅₀,分析确定最佳 pH。

离子强度优化: KAN 标准品用含不同 NaCl 浓度(0、 0.008、0.020、0.050、0.100 g/mL)的磷酸缓冲溶液(phosphate buffer, PB)缓冲液稀释, 按 1.3.1 (1)步骤测定 *B*₀ 以及 IC₅₀, 分析确定最佳离子强度。 蛋白含量优化: KAN 标准品用含不同蛋白浓度(含 0、 0.005、0.010、0.020、0.050 g/mL)的牛血清白蛋白(bovine albumin, BSA)的 PBS 缓冲液稀释,按 1.3.1 (1)步骤测定 B₀ 以及 IC₅₀,分析确定最佳蛋白含量。

(3)竞争标准曲线建立

按照 1.3.1 (2)中的条件优化后的最佳条件进行实验。 KAN 标准品的质量浓度分别为 50.000、25.000、12.500、 6.250、3.125、1.562 和 0 ng/mL。按 1.3.1 (1)步骤重新测定, 处理数据绘制卡那霉素的间接竞争抑制曲线。计算出检出限 (limit of detection, LOD)、IC₅₀和检测线性范围。

1.3.2 基于戊二醛表面修饰的高灵敏卡那霉素 ELISA 免疫分析方法的建立

(1)基于戊二醛表面修饰的卡那霉素 ELISA 竞争性免 疫检测流程

在酶标板中加入适当稀释的戊二醛溶液,每孔 100 μL, 4℃过夜; PBST 冲洗 3 次,拍干;用包被液稀释 KAN 至适 当浓度,每孔 100 μL,37℃作用 30 min;倒去板中液体,用 PBST 洗涤一遍后,加入 200 μL 封闭液,37℃培养箱中反应 1.5 h;倒掉板中液体,依次加入不同浓度的 KAN 标准品 50 μL 以及适当稀释的 KAN 抗体 50 μL,37℃反应 30 min; 倾去反应液,用 PBST 洗涤 3 次;用 PBS 将 GAM-HRP 稀 释 5000 倍,每孔 100 μL,37℃反应 30 min;倾去反应液, PBST 冲洗 3 次;加入现配的 TMB 显色液,在37℃培养箱 中反应 10~15 min 后,加入 50 μL 0.2 mol/L 硫酸终止液终 止反应,测定其 450 nm 处吸光度值。

(2)条件优化

优化戊二醛浓度:用不同浓度的戊二醛浓度(稀释为 5.00wt%、0.50wt%、0.10wt%、0.01wt%)来处理酶标板。 依照 1.3.2 (1)步骤重新测定,确定最适的戊二醛浓度。

KAN 最佳包被浓度优化:用包被液配制不同质量浓 度的 KAN 抗原(10.000、5.000、2.500、1.250、0.625 μg/mL), 依照 1.3.2 (1)步骤重新测定,确定最适的 KAN 包被浓度。

包被条件优化:采用不同条件进行包被(4℃过夜、4℃ 6h、4℃4h、4℃2h、4℃1h以及37℃恒温箱30min),依 照1.3.2 (1)步骤重新测定,确定最佳的包被反应时间。

KAN 抗体浓度优化: 抗体 Ab 用抗体稀释液稀释至不 同质量浓度(4.000、2.000、1.000、0.500、0.250、0.125、 0.625 μg/mL), 依照 1.3.2 (1)步骤重新测定, 确定最适的 KAN 抗体浓度。

(3)竞争标准曲线建立

按照1.3.2 (2)中的条件优化后的最佳条件和1.3.2 (1)步骤重新测定。处理数据绘制基于戊二醛表面修饰的卡那霉素的间接竞争抑制曲线。计算出 LOD、IC₅₀和检测线性范围。 1.3.3 基于 PAMAM-戊二醛表面修饰高灵敏卡那霉素 ELISA 免疫分析方法的建立

(1)基于 PAMAM-戊二醛表面修饰卡那霉素 ELISA 竞

争性免疫检测

在酶标板中加入适当稀释的 PAMAM 溶液,每孔 100 µL,4°C过夜;用 PBST 洗涤 3 次,拍干;加入 100 µL 适量稀释的戊二醛溶液,4°C过夜;用包被液稀释 KAN 至 适当浓度,每孔 100 µL,37℃作用 30 min;倒去板中液体,用 PBST 洗涤一遍后,加入 200 µL 封闭液,37℃培养箱中反应 1.5 h;倒掉板中液体,依次加入不同浓度的 KAN 标准品 50 µL 以及适当稀释的 KAN 抗体 50 µL,在 37℃培养箱中反应 30 min;倾去反应液,用 PBST 洗涤 3 次;用 PBS 将 GAM-HRP 稀释 5000 倍,每孔 100 µL,37℃培养箱反应 30 min;倾去反应液,用 PBST 洗涤 3 次;加入新鲜配制的 TMB 显色液,在 37℃培养箱中反应 10~15 min 后,加入 50 µL 的 0.2 mol/L 硫酸终止液终止反应,用酶标仪测定 450 nm 处吸光度值。

(2)条件优化

PAMAM 浓度优化:用不同浓度的 PAMAM(稀释至 0.40wt%、0.20wt%、0.10wt%、0.05wt%)来处理酶标板,依 照 1.3.3 (1)步骤重新测定,确定最适的 PAMAM 浓度。

戊二醛浓度优化:加入不同的浓度戊二醛(稀释至 5.00wt%、0.50wt%、0.10wt%、0.01wt%)来处理酶标板。 依照 1.3.3 (1)步骤重新测定,确定最适的戊二醛浓度。

KAN 抗体浓度优化: KAN 抗体按照不同质量浓度进行 稀释(4.000、2.000、1.000、0.500、0.250、0.125、0.625 μg/mL), 依照 1.3.3 (1)步骤重新测定,确定最适的抗体浓度。

(3)竞争标准曲线建立

按照 1.3.3 (2)中的条件优化后的最佳条件和 1.3.3 (1) 步骤重新测定。处理数据绘制基于 PAMAM-戊二醛表面修 饰的卡那霉素的间接竞争抑制曲线。计算出 LOD、IC₅₀ 和 检测线性范围。

1.3.4 牛奶样本的检测

在进行比较传统 ELISA、戊二醛表面修饰的 ELISA 和 PAMAM-戊二醛表面修饰的 ELISA 竞争性检测卡那霉素的 检出限和线性范围后,选择最优者进行实际样本的检测。

检测牛奶样本的流程:牛奶样本在 5000 r/min 下离心 10 min,上清液用 PBS (0.01 mol/L, pH 7.4)稀释后进行检

测。在牛奶中添加不同质量浓度的 KAN 标准品,质量浓度 分别为 0、1、2 和 10 ng/mL,用构建的检测方法进行 KAN 浓度进行检测,并计算加标回收率。从本地选购了 8 种 不同品牌的牛奶样本,检测其中 KAN 浓度,同时采用 超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS) 对牛奶样本中 KAN 进行测定^[3]。

1.4 数据处理

本研究中的数据均为至少 3 次平行实验结果, 并采用 Excel 2019、Origin 2021 软件进行分析。

2 结果与分析

2.1 卡那霉素竞争性 ELISA 的条件优化

为了获得最佳灵敏度的检测方法,首先对抗原和抗体的最适浓度进行优化^[33]。选择吸光度值在 1.0 左右的抗原抗体浓度作为最佳反应浓度,确定 OVA-KAN 和抗体的最适质量浓度分别为 5.000 µg/mL 和 0.125 µg/mL(表 1)。 其次,抗原抗体的结合容易受溶液理化条件的影响,缓冲液的 pH、离子强度和蛋白含量是影响抗原抗体识别的重要因素,为了获取最佳的实验结果,对其进行浓度优化(图 1)。选择 IC₅₀ 和 B_0/IC_{50} 两个指标作为评判标准, IC₅₀ 值越小以及 B_0/IC_{50} 值越大,说明灵敏度越高。根据图 1 的优化结果,在 pH 6.8,0.02 g/mL NaCl,0 g/mL BSA 时 IC₅₀最小, B_0/IC_{50} 值最大。因此,实验最终选取 0.01 mol/L PB (含 0.02 g/mL NaCl, pH 6.8,0 g/mL BSA)作为最适的缓冲液。

2.2 基于戊二醛表面修饰的高灵敏卡那霉素 ELISA 分析方法条件优化

在 ELISA 方法中,小分子半抗原无法直接结合在聚 苯乙烯板上,往往需要通过与大分子蛋白质偶联,形成 完全抗原后,才能被固化在酶标板上^[33]。本研究中引入戊 二醛作为交联试剂,将 KAN 分子直接共价偶联在酶标板 上,为后续免疫检测方法的构建奠定基础(图 2a)。戊二醛 的用量直接影响小分子固化的数量,分别采用 5.00wt%、

表 1 方阵滴定法确定最佳包被抗原与抗体浓度 Table1 Optimal concentration of coating antigen and antibody by checkerboard method

拉休/(us/mol)	抗原/(µg/mL)									
DUPP/(µg/IIIL)	10.000		5.000		2.500		1.250		0.625	
4.000	2.932	3.146	2.698	2.588	1.782	1.742	1.485	1.408	1.069	1.136
2.000	2.872	2.964	2.447	2.435	1.596	1.336	1.110	1.266	0.853	0.756
1.000	2.635	2.578	2.389	2.488	1.469	1.445	0.984	1.052	0.659	0.584
0.500	2.053	2.157	2.066	2.133	1.156	1.278	0.798	0.732	0.352	0.393
0.250	1.749	1.682	1.663	1.612	0.972	0.956	0.532	0.495	0.205	0.197
0.125	1.324	1.247	1.119	1.243	0.767	0.746	0.315	0.297	0.123	0.165
0.062	1.059	0.956	0.733	0.712	0.496	0.536	0.145	0.186	0.106	0.112
空白	0.241	0.138	0.116	0.093	0.089	0.096	0.082	0.072	0.068	0.062

0.50wt%、0.10wt%、0.01wt%戊二醛进行反应(图 2b)。戊 二醛浓度过高(5.00wt%)时,最大吸光度值明显低于其他 条件(0.50wt%和 0.10wt%)。同时比较了不同标准品浓度下, 吸光度的变化趋势,发现使用不同浓度的戊二醛时,OD 值 均随着标准品浓度的增加而降低,说明利用戊二醛表面修 饰构建竞争性 ELISA 方法的可行性。当使用 0.50wt%戊二 醛时,最大吸光度值较高且不同浓度标准品对应的 OD 值 变化显著,因此选作最适条件。进一步,优化 KAN 包被使 用量(图 2c),随着 KAN 使用浓度的增加,吸光度显著增加, 当 KAN 质量浓度超过 5 µg/mL 时,吸光度增加明显放缓, 意味着偶联趋于饱和,因此选择 5 µg/mL 为最佳包被质量 浓度。包被条件也会对反应产生影响(图 2d),4℃包被 12 h 和 37℃包被 0.5 h 均得到较高的 OD 值,为节省时间,选择 37℃包被 0.5 h 的条件。最后,对竞争过程中使用的 KAN 抗体质量浓度进行优化(图 2e),当抗体稀释至 2.000 µg/mL 时,吸光度在 1.0 左右,为最适反应条件。

2.3 基于 PAMAM-戊二醛表面修饰的高灵敏卡那 霉素 ELISA 免疫分析方法条件优化

为进一步探索酶标板改性的影响,引入高分子树枝 状聚合物 PAMAM。本研究中使用的 PAMAM G4.0 呈球形 结构,外围有 64 个氨基基团。PAMAM 末端高密度的功能 集团增加了固化位点^[34],提高靶物质的荷载量,同时在其 末端枝接戊二醛,进一步拓展连接空间,有助于增加固化 效率(图 3a)。分别对 PAMAM、戊二醛、包被浓度以及抗 体浓度进行优化。采用 PAMAM-戊二醛的表面修饰方法,

图 3 基于 PAMAM-戊二醛表面修饰的 KAN 免疫测定优化

Fig.3 Optimization of KAN immunoassay based on PAMAM-glutaraldehyde surface modification

在不同浓度 KAN 标准质量浓度下,OD 值总体呈逐渐下降 趋势,为免疫分析方法的构建奠定了基础。PAMAM 的用 量对吸光度有明显影响(图 3b),0.10wt%稀释时最大吸光度 值最高,同时不同标准品浓度对应吸光度的差异最为显著, 因此后续实验采用 0.10wt% PAMAM。戊二醛浓度优化见 图 3c,在较高的浓度下(5.00wt%),最大吸光度低于其他浓 度,综合比较最大吸光度以及在 KAN 标准品为 0.5 ng/mL 的 抑制率,选择 0.50wt%戊二醛作为工作浓度。图 3d 和 3e 显 示,KAN 的最优包被质量浓度为 5 µg/mL,KAN 抗体的最 优工作质量浓度为 1.000 µg/mL。

2.4 竞争性标准曲线的比较

基于以上优化条件,分别构建了 3 种 KAN 免疫分析 方法标准曲线(图 4)。相对于常规 ELISA 方法,基于戊二 醛表面修饰的 ELISA 以及基于 PAMAM-戊二醛表面修饰 ELISA 其标准曲线明显左移,说明其灵敏度优于常规 ELISA 方法。对于常规 ELISA 方法,LOD 为 1.217 ng/mL, IC₅₀ 为 13.176 ng/mL,线性范围为 2.945~96.791 ng/mL;基 于戊二醛表面修饰的 ELISA,LOD 为 0.219 ng/mL,IC₅₀ 为 7.188 ng/mL,线性范围为 2.251~87.791 ng/mL;基于 PAMAM-戊二醛表面修饰的 ELISA,LOD 为 0.119 ng/mL, IC₅₀ 为 4.245 ng/mL,线性范围为 1.348~20.414 ng/mL。其 中基于 PAMAM-戊二醛表面修饰的 ELISA 具有最高的灵 敏度,其灵敏度相较于常规 ELISA 方法提高了 10 倍。

2.5 牛奶样本的检测结果

采用基于 PAMAM-戊二醛表面修饰 ELISA 对牛奶样 本中 KAN 含量进行检测。牛奶中富含蛋白质、脂肪等物质, 会对抗原抗体识别产生影响,在对实际牛奶样本进行检测 前,需进行基质效应评估。结果显示(图 5),当牛奶样本离心 后,直接进行检测或牛奶样本用 PBS 按 1:1 稀释时,基质干 扰较为严重,最大 OD 值偏低,且整个标准曲线走势平缓; 当牛奶样本用 PBS 按 1:2 稀释时,结果与原始标准曲线较为 吻合,因此牛奶样本用 PBS 按 1:2 稀释后进行检测。在牛奶 样本中添加不同浓度后,添加回收率在 94.45%~112.91%(表 2),表明本方法具有较好的稳定性和准确性。对本市大型超 市中售卖的 8 种纯牛奶进行检测,发现仅有一种牛奶样本中 检出 KAN,检出率为 12.5%,质量浓度为 1.12 ng/mL,远 低于我国残留限量标准,并比较两者检测结果,基于 PAMAM-戊二醛表面修饰 ELISA 与 UPLC-MS/MS 的检测结 果具有良好的相关性,可认为此方法是可行的^[31](表 3)。

Fig.5 Matrix effects in milk samples

表 2 样品加标回收率的测定 Table 2 Determination of recovery rates in samples

KAN 添加质量浓度	KAN 检测含量/(ng/mL)			加标回收率	
0					
1.000	1.081	1.046	1.181	110.27	
2.000	2.153	1.786	1.728	94.45	
10.000	10.150	11.628	12.094	112.91	

注: ---表明未检出。

T 11 2	
Table 3	Analysis of commercially available milk samples

样本	KAN 含量/(ng/mL)					
编号	基于 PAMAM-戊二醛表面 修饰的 ELISA	UPLC-MS/MS				
1	ND	$0.34{\pm}0.01$				
2	ND	ND				
3	ND	ND				
4	ND	ND				
5	ND	$0.89{\pm}0.07$				
6	$1.12{\pm}0.09$	1.78 ± 0.12				
7	ND	ND				
8	ND	ND				

注:ND 代表未检出。

3 讨论与结论

ELISA 凭借其简便、快速、灵敏度高的优点, 广泛应 用于食品中污染物的分析。然而, 食品中一些小分子污染 物, 如抗生素、激素等, 因分子量较小, 与酶标板相互作用 较弱, 且容易在洗涤过程中被洗掉, 从而影响 ELISA 的性 能。通过与载体蛋白(牛血清白蛋白、卵清白蛋白等)偶联 形成完全抗原, 能够帮助小分子物质吸附在孔板上。但是, 载体蛋白的物理吸附是动态可逆的, 并且完全抗原与聚苯 乙烯的直接吸附通常会改变附着靶分子的抗原性, 从而干 扰测定的灵敏度、检出限和再现性^[22]。

通过物理或化学处理在 PS 上产生官能团,将小分子半抗原直接偶联在酶标板上,获得了令人满意的效果。SATHE 等^[25]采用戊二醛作为连接剂,将甲基膦酸(*O*-pinacolyl methyl phosphonic acid, PMPA)半抗原直接固化在酶标板上,构建了直接竞争性 ELISA,其灵敏度可达6 ng/mL。HAO 等^[35]将 PAMAM 共价修饰在微孔板的玻璃表面,利用适配体作为识别分子,构建了针对人血小板衍生生长因子 BB 的分析方法,其灵敏度较常规 ELISA 提升4.5 倍。

本研究中,通过戊二醛和 PAMAM-戊二醛两种方法 对酶标板进行表面修饰处理,将 KAN 分子直接固化在板 上,并基于此构建了两种新型的 KAN 免疫分析方法。其 中,基于戊二醛表面修饰的免疫分析方法其 LOD 为 0.219 ng/mL,基于 PAMAM-戊二醛表面修饰的免疫分析 方法 LOD 为 0.119 ng/mL,相较于常规 ELISA 分别提高了 5 倍和 10 倍。同时,应用基于 PAMAM-戊二醛表面修饰的 免疫分析方法检测牛奶中的 KAN,具有较好的准确性。基 于抗原共价固化策略的免疫分析方法,加强了抗原抗体复 合物与孔板的结合力度,增强了免疫反应体系的稳定性, 具有较高的精密度和重现性,可以将其应用于复杂环境样 本的检测,提升现有免疫分析方法的灵敏度与鲁棒性,能 够有效减少复杂基质效应的影响,为食品中其他痕量污染 物的快速分析与检测提供了新的技术途径,为食品安全保 驾护航。

参考文献

- WEI DL, MENG H, ZENG K, *et al.* Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk [J]. Anal Method, 2019, 11: 70–77.
- [2] MEGOULAS NC, KOUPPARIS MA. Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography-evaporative light scattering method [J]. Anal Chim Acta, 2005, 47: 64–72.
- [3] 肖志明,王钦钦,尤艳莉,等.超高效液相色谱-串联质谱法测定饲料中9种氨基糖苷类抗生素[J].食品安全质量检测学报,2021,12(19):7563-7571.

XIAO ZM, WANG QQ, YOU YL, et al. Determination of 9 kinds of

aminoglycosides in feed by ultra performance liquid chromatographytandem mass spectrometry [J]. J Food Saf Qual, 2021, 12(19): 7563-7571.

- [4] 陈玲, 万宇平, 邵兵, 等. 牛奶中β-内酰胺和四环素类抗生素二联检测 试纸条的初步研究[J]. 食品与生物技术学报, 2012, 31(7): 776–783. CHEN L, WANG YP, SHAO B, *et al.* Study about combo detection strip of β-lactams and tetracyclines in milk [J]. J Food Sci Biotechnol, 2012, 31(7): 776–783.
- [5] 万译文,黄向荣,伍远安,等.固相萃取净化-高效液相色谱串联质谱 法测定鱼肉制品中链霉素,双氢链霉素,卡那霉素的含量[J].现代食 品科技,2018,34(8):255-259.

WANG YW, HUANG XR, WU YAN, *et al.* Simultaneous determination of streptomycin, dihydrostreptomycin and kanamycin residues in fish products by solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry [J]. Mod Food Sci Technol, 2018, 34(8): 255–259.

[6] 管燕, 贺耘. 一种检测血液中卡那霉素含量的在线固相萃取液相色谱 法: 中国, CN111337607A[P]. 2020-06-26.

GUAN Y, HE Y. An on-line solid phase extraction liquid chromatography method for detection of kanamycin content in blood: China, CN111337607A [P]. 2020-06-26.

[7] 刘畅. 改良 QuEChERS/超高效液相色谱-串联质谱法同时检测蔬菜中 14 种喹诺酮类抗生素残留[J]. 分析科学学报, 2019, 35(1): 124–128. LIU C. Determination of quinolones in vegetables by improved QuEChERS/ultra-high performance liquid chromatography-tandem mass spectrometry [J]. J Anal Sci, 2019, 35(1): 124–128.

 [8] 田一方.毛细管电泳和分子印迹固相萃取方法检测氨基糖苷类残 留[D]. 镇江: 江苏大学, 2015.
 TIAN YF. Determination of amino glycosides by capillary electrophoresis and molecularly imprinted solid phase extraction [D]. Zhenjiang: Jiangsu

University, 2015.
[9] 王志强,胡国媛,李志勇,等. 微生物抑制法快速检测鲜奶中多种抗生 素残留[J]. 中国食品卫生杂志, 2008, 2(9): 139–141.
WANG ZQ, HU GY, LI ZY, *et al.* Determination of antibiotics residues in raw milk by microbial inhibition method [J]. Chin J Food Hyg, 2008, 2(9): 139–141.

- [10] 王志强,胡国媛,李志勇,等. 微生物抑制法快速检测动物源性食品多种抗生素残留[J]. 中国卫生检验杂志,2008,18(9):1732–1734.
 WANG ZQ, HU GY, LI ZY, *et al.* Rapid determination of antibiotics residues in an ima derived food by microbial in habitation method [J]. Chin J Health Lab Technol, 2008, 18(9):1732–1734.
- [11] 尹情胜,任翠丽,陈殿良,等. 微生物法测定兔血清中低浓度的庆大霉素[J]. 药物分析杂志, 2006, 26(12): 1811–1813.
 YI QS, REN CL, CHEN DL, *et al.* Determination of low concentration gentamycin in rabbit's serum by microbiological method [J]. Chin J Pharm Anal, 2006, 26(12): 1811–1813.
- [12] 徐飞,栗静雅,周洁,等.可视化凝胶酶联免疫吸附分析法检测牛奶中 庆大霉素和卡那霉素[J]. 分析化学, 2015, 43(6): 881–885.
 XUF, SU JY, ZHOU J, *et al.* Determination of gentamicin and kanamycin in milk by visual gel ELISA [J]. Chin J Anal Chem, 2015, 43(6): 881–885.
- [13] VIROLAINEN NE, PIKKEMAAT MG, ELFERINK J, et al. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria [J]. J Agric Food Chem, 2008, 56(23): 11065–11070.

- [14] SONG E, YU MQ, WANG YY, et al. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk [J]. Biosens Bioelectron, 2015, 72: 320–325.
- [15] 廉文静, 邢宪荣, 刘素. 分子印迹传感器检测卡那霉素[J]. 济南大学 学报(自然科学版), 2012, 26(4): 348–352.
 LIAN WJ, XING XR, LIU S. A molecularly imprinted sensor for the detection of kanamycin [J]. J Univ Jinan (Sci Technol), 2012, 26(4): 348–352.
- [16] JO MR, SON KT, KWON JY, et al. A lateral flow immunoassay kit for detecting residues of four groups of antibiotics in farmed fish [J]. Korean J Fish Aquat Sci, 2015, 48(2): 158–167.
- [17] GU X, ZHOU J, ZHOU L, et al. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis [J]. Opt Lasers Eng, 2018, 104: 252–258.
- [18] 韦达理. 几种新型氨基糖苷类抗生素免疫分析方法建立及初步应用[D]. 镇江: 江苏大学, 2020.
 WEI DL. Development of several novel immunoassay methods for aminoglycoside antibiotics and preliminary application [D]. Zhenjiang: Jiangsu University, 2020.
- [19] 苏赛飞,董相廷,潘利华,等.用于免疫分析的聚苯乙烯微孔板功能化研究[J]. 化学分析计量,2008,17(1):16–19.
 SU SF, DONG XT, PAN LH, *et al.* Study on polystyrene microplate function for the analysis of immune [J]. Chem Anal Meter, 2008, 17(1): 16–19.
- [20] NORTH SH, LOCK EH, COOPER CJ, et al. Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules [J]. ACS Appl Mater Interf, 2010, 2(10): 2884–2891.
- [21] DIXIT CK, VASHIST SK, O'NEILL FT, et al. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach [J]. Anal Chem, 2010, 82(16): 7049–7052.
- [22] GHOSHDASTIDAR S, GANGULA A, KAINTH J, et al. 'Plate-Adherent' nanosubstrate for improved ELISA of small molecules: A proof-of-concept study [J]. Anal Chem, 2020, 92(16): 10952–10956.
- [23] WEI CX, DING SB, YOU HH, et al. An immunoassay for dibutyl phthalate based on direct hapten linkage to the polystyrene surface of microtiter plates [J]. PLoS One, 2011, 6(12): e29196.
- [24] KAUR J, BORO RC, WANGOO N, et al. Direct hapten coated immunoassay format for the detection of atrazine and 2,4dichlorophenoxyacetic acid herbicides [J]. Anal Chim Acta, 2008, 607(1): 92–99.
- [25] SATHE M, GHORPADE R, MERWYN S, et al. Direct hapten-linked competitive inhibition enzyme-linked immunosorbent assay (CIELISA) for the detection of *O*-pinacolyl methyl phosphonic acid [J]. Analyst, 2012, 37(2): 406–413.
- [26] DIXIT CK, VASHUIST SK, MACCRAITH BD, et al. Multsubstratecompatible ELISA procedures for rapid and high-sensitivity immunoassays [J].

Nat Protoc, 2011, 6(4): 439-445.

- [27] FERNANDES T, DANIEL-DA-SILVA AL, TRAINDADE T. Metaldendrimer hybrid nanomaterials for sensing applications [J]. Coord Chem Rev, 2022, 460: 476–483.
- [28] YANG J, LIU Z, XU D. Experimental research of glass surface modification based on wire exploding spray coating technology [J]. High Voltages Eng, 2007, 33(2): 199–202.
- [29] SUDESHNA C, MICHAEL M, ANTJE JB. PAMAM dendrimers: A multifunctional nanomaterial for ECL biosensors [J]. Talanta, 2017, 168: 127–129.
- [30] NA S, CHEN YP, LIU N, et al. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol [J]. Talanta, 2010, 82(4): 1113–1121.
- [31] 韦达理,曾昆,康启鑫,等. 基于碳纳米管信号放大的卡那霉素高灵敏分析方法的建立[J]. 食品与生物技术学报,2020,39(7):28–35.
 WEI DL, ZENG K, KANG QX, *et al.* High sensitivity analysis of kanamycin based on signal amplification of carbon nanotubes [J]. J Food Sci Biotechnol, 2020, 39(7): 28–35.
- [32] SAI N, SUN WJ, WU YT, et al. A sensitive immunoassay for parathion based on covalent linkage between small molecules hapten microtiter plates surface [J]. J Iran Chem Soc, 2017, 14(1): 257–268.
- [33] HOLTHUES H, PFEIFER-FUKUMURA U, SOUND I, et al. Evaluation of the concept of heterology in a monoclonal antibody-based ELISA utilizing direct hapten linkage to polystyrene microtiter plates [J]. J Immunol Methods, 2005, 304(1–2): 68–77.
- [34] SUDESHNA C, MICHAEL M, ANTJE JB. PAMAM dendrimers: A multifunctional nanomaterial for ECL biosensors [J]. Talanta, 2017, 168: 126–129.
- [35] HAO XK, YANG XY, ZOU S, et al. Surface modification of poly(styrene) 96-well plates using aptamers via a dendrimer-templated strategy to enhance ELISA performances [J]. Colloids Surf B, 2022, 221: 113003.

(责任编辑:张晓寒郑 丽)

作者简介

顾鑫凯,硕士研究生,主要研究方向 为食品与环境污染物的快速检测分析。 E-mail: lucas8879xk@foxmail.com

曾 昆,博士,副教授,主要研究方向
 为食品与环境污染物的快速检测分析。
 E-mail: kjj80116@ujs.edu.cn