QuEChERS-超高效液相色谱-串联质谱法 同时测定枸杞子中 65 种农药残留

夏宝林¹,张亚清¹,殷晶晶¹,杨 娜¹,汪仕韬¹,李 彭²,刘 强^{2*},吴海晶³ (1. 江阴市食品安全检测中心,江阴 214400; 2. 南京财经大学食品科学与工程学院,南京 210023; 3. 南京市食品药品监督检验院,南京 211198)

摘要:目的 采用多壁碳纳米管改进的 QuEChERS-超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)建立一种能够快速、稳定地同时测定枸杞子中 65 种 农药残留的分析方法。方法 样品经粉碎后,加水溶胀,乙腈萃取,多壁碳纳米管净化,Waters Acquity UPLC BEH C₁₈柱(100 mm×2.1 mm, 1.7 μm)分离,以2 mmol/L 醋酸铵水混合溶液(含 0.1%甲酸,V/V)-2 mmol/L 醋酸铵甲 醇混合溶液(含 0.1%甲酸,V/V)为流动相进行梯度洗脱,采用电喷雾正离子多反应监测模式进行分段扫描。选择 阴性有机枸杞子作为空白基质,基质匹配外标法对 65 种农药残留进行定量分析。结果 65 种农药在线性范围内 线性关系良好,线性相关系数在 0.9962~1.0000 之间,方法的检出限为 0.5~5.0 μg/kg,定量限为 1.0~10.0 μg/kg, 加标回收率为 65.9%~117.0%,相对标准偏差为 2.9%~13.0%。采用该方法对不同来源的 40 份枸杞子进行检测,共计检出农药残留 39 种,占比为 60.0%,主要为杀虫剂、杀菌剂、杀螨剂、除草剂,其中克百威、3-羟基克百威、甲胺磷、氧乐果、甲拌磷砜、甲拌磷亚砜 6 种农药为禁限用农药。检出率最高的为苯醚甲环唑与啶虫脒,两者检出率均为 97.5%。不合格率最高的项目为克百威,不合格率达到 25%。结论 该法准确、灵敏、快速,适用于枸杞子中 65 种农药残留的检测,对实现枸杞子种植过程管控、日常监管、质量保障具有重要意义。关键词:多壁碳纳米管;改进的 QuEChERS;超高效液相色谱-串联质谱法;农药残留;枸杞子

Simultaneous determination of 65 kinds of pesticide residues in *Lycium barbarum* by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry

XIA Bao-Lin¹, ZHANG Ya-Qing¹, YIN Jing-Jing¹, YANG Na¹, WANG Shi-Tao¹, LI Peng², LIU Qiang^{2*}, WU Hai-Jing³

 Testing Center of Jiangyin Food Safety, Jiangyin 214400, China; 2. College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
 Nanjing Institute for Food and Drug Control, Nanjing 211198, China)

ABSTRACT: Objective To establish a rapid and stable method for simultaneous determination of 65 kinds of pesticide residues in *Lycium barbarum* by improved QuEChERS with multi-walled carbon nanotubes-ultra

*通信作者:刘强,博士,讲师,主要研究方向为农产品质量安全检测。E-mail: qiangliu@nufe.edu.cn

基金项目:南京市市场监督管理局科技项目(Kj2021046)、中国科协青年人才托举工程项目(2022QNRC001)、国家自然科学基金项目(32202132) Fund: Supported by the Science and Technology Project of Nanjing Market Supervision Administration (Kj2021046), the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), and the National Natural Science Foundation of China (32202132)

^{*}Corresponding author: LIU Qiang, Ph.D, Lecturer, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China. E-mail: qiangliu@nufe.edu.cn

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Methods After sample crushing, water swelling and acetonitrile extraction, the multi-walled carbon nanotubes was used for the purification. Waters Acquity UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm) was used for separation, and a gradient elution was carried out using 2 mmol/L ammonium acetate in water containing 0.1% formic acid (V/V)-2 mmol/L ammonium acetate in methanol containing 0.1% formic acid (V/V) was used as the mobile phase. The multiple reaction monitoring mode with electrospray ionization in positive ion mode was used for segmented scanning. The negative organic Lycium barbarum samples were chosen as the blank matrix, and the matrix matching external standard method was used for quantification of these target compounds. **Results** The 65 kinds of pesticides had good linear relationships within their linear ranges, and the linear correlation coefficients were 0.9962-1.0000 and the limits of detection ranged from 0.5 to 5.0 µg/kg, and the limits of quantification ranged from 1.0 to 10.0 µg/kg. The recoveries ranged from 65.9% to 117.0%, with relative standard deviations of 2.9% to 13.0%. This method was used to detect 40 Lycium barbarum samples from different sources. A total of 39 pesticides were detected, accounting for 60.0%, including insecticides, fungicides, acaricides, and herbicides. Among them, 6 kinds of pesticides such as carbofuran, 3-hydroxy carbofuran, omethoate, methamidophos, phorate-sulfoxide, and phorate-sulfone were prohibited and restricted pesticides. The highest detection rate was difenoconazole and acetamiprid, both of which had a detection rate of 97.5%. The highest non-compliance rate was carbofuran, with a non-compliance rate of 25%. Conclusion This method is accurate, sensitive, and fast, and is suitable for detecting residues of 65 kinds of pesticides in Lycium barbarum. It is of great significance to realize the control of Lycium barbarum planting process, daily supervision and quality assurance.

KEY WORDS: multi-walled carbon nanotubes; improved QuEChERS; ultra performance liquid chromatography-tandem mass spectrometry; pesticide residues; *Lycium barbarum*

0 引 言

枸杞子(Lycium barbarum)是我国传统名贵中药材,已 于 2002 年被原国家卫生部列入药食两用物品名单,因其 具有强筋健骨、清肝明目、润肺滋肾、益气补虚等功能^[1], 深受老百姓喜爱。相关研究表明,枸杞子中含多种生物活 性成分,如:枸杞多糖、黄酮、氨基酸、多酚、维生素等,可 提高人体免疫功能、延缓衰老、预防肿瘤、降血糖^[2-5]。当 前,枸杞子的种植面积扩张迅速,枸杞的病虫害状况日趋 严重,农药的使用种类、频率及用量均呈现上升趋势,其 农药残留问题不容小觑^[6-7]。因此,有必要建立一种快速、 准确、高通量测定枸杞子中农药多残留的方法,以便监测 枸杞子中农药残留状况。

不同于一般的食品基质,枸杞子因含有丰富的多糖、 色素(枸杞红色素)、有机酸等^[8],为农药多残留检测带来一 定的挑战。对于复杂基质,前处理过程显得尤为重要。常 见的前处理方式主要有固相萃取法^[9]、凝胶渗透色谱法^[10]、 薄层色谱净化法^[11]、QuEChERS^[12]。当前,QuEChERS 已 逐步成为多组分农药残留测定最常用的前处理方法^[13]。孔 祥虹等^[14]采用乙腈提取,水洗脱糖后,经 C₁₈和石墨化炭 黑(graphitized carbon black,GCB)/N-丙基乙二胺(primary secondary amine, PSA)两种固相萃取柱净化,建立了同时测 定枸杞子中 3 种农药残留的气相色谱-质谱法。王芳焕等^[15] 采用乙腈提取、PSA、C18和 GCB 3 种吸附剂净化,建立了 测定枸杞中20种农药残留的QuEChERS-气相色谱-串联质 谱法。对于高色素的样品, GCB 作为主要色素吸附剂常被 用于样品的净化,但 GCB 为多环平面结构的碳材料,在吸 附样品中色素和甾醇等干扰物质的同时,对多菌灵、嘧菌 环胺、氯吡脲等平面结构农药也有一定的吸附作用[16-17], 导致其回收率偏低。因此,对于农药多残留的测定,有必 要寻求新吸附材料对现有的 QuEChERS 法进行改进。 新型高效吸附净化材料的制备和应用是近年来研究的 热点^[18-20]。多壁碳纳米管(multi walled carbon nanotubes, MWCNTs)是近年来逐渐流行的新型纳米吸附材料,其具 有比表面积大、吸附能力强、易于功能化等特点[21],常作 为 QuEChERS 法中吸附材料, 用于鸡肉^[22-23]、果蔬^[24]、豆 类[25]、谷物[26]、茶叶[27-28]等基质中农药多残留的样品净化,并 取得了较为满意的实验结果。可见, 以 MWCNTs 为主要吸附 材料,考察其在复杂基质中净化效果具有一定现实意义。

本研究选择有机磷类、菊酯类、氨基甲酸酯类等 65 种农药作为目标物,通过比较传统的 QuEChERS 法与 MWCNTs 改进的 QuEChERS 法两种前处理方法的净化效 果差异,对液相条件、质谱条件、前处理条件等进行优化, 建立 MWCNTs 改进的 QuEChERS-超高效液相色谱-串联 质谱法同时测定枸杞子中 65 种农药残留量分析方法,为 保障枸杞子质量安全提供技术保障。

1.1 材料与试剂

40 份不同来源的枸杞子均购自网购电商平台(特别说明,本研究中提到的枸杞子均特指经加工制成的红枸杞干 果,而非枸杞鲜果,也不包括黑枸杞子)。

甲醇、乙腈、甲酸、醋酸铵(色谱纯,德国 Merck 公司); 无水硫酸镁(分析纯,天津科密欧化学试剂有限公司);萃 取包(内含4g无水硫酸镁、1g氯化钠、1g柠檬酸钠二水合 物和 0.5g柠檬酸二钠盐倍半水合物)、纯化管(内含 900 mg 无水硫酸镁、150 mg PSA)(美国 Agilent 公司); MWCNTs(外 径 110~170 nm,长度 5~9 µm,天津博纳艾杰尔公司); 65 种 农药标准品(100 mg/L,北京坛墨科技有限公司)。

1.2 仪器与设备

Acquity UPLC XEVO TQS 超高效液相色谱-串联质谱 仪、Acquity BEH UPLC BEH C₁₈色谱柱(100 mm×2.1 mm, 1.7 μm, 美国 Waters 公司); CP512 电子天平[感量 0.01 g, 中国奥豪斯仪器(常州)公司]; 2-16K 通用高速冷冻离心机 (德国 Sartorius 公司)。

1.3 方 法

1.3.1 标准溶液的配制

准确吸取 65 种农药标准品各 100 μL, 置于 10 mL 棕 色容量瓶中,乙腈定容至刻度, 配制成 1 mg/L 的 65 种农药 的混合标准溶液。选用经美国农业部 NOP 有机认证、欧盟 EU 有机认证及日本农林水产省 JAS 有机认证的有机枸杞 子为空白基质, 经前处理, 使用空白基质溶液配制一定梯 度的基质匹配混合标准工作液。

1.3.2 样品的前处理

对于水分含量较低(<11.0%)的枸杞子,使用粉碎机直 接粉碎;对于高水分(≥11.0%)枸杞子,因其呈胶稠状,需 经冷冻过夜后,再进行粉碎。称取 2.00 g已粉碎的试样于 50 mL的聚四氟乙烯离心管中,加入8 mL蒸馏水,静置 30 min, 待其充分溶胀后,加入 10 mL 的乙腈,振荡提取 10 min, 再加入萃取包,剧烈振荡 1 min 后,5000 r/min 离心 5 min。 定量吸取 1 mL 上清液至内含无水硫酸镁 150 mg 及 20 mg MWCNTs 的离心管中,涡旋离心,吸取上清液,过 0.22 μm 有机滤膜,待测。

1.3.3 分析条件

(1)色谱条件

色谱柱: Acquity BEH C₁₈ 色谱柱(100 mm×2.1 mm, 1.7 μm); 流动相: A 为 2 mmol/L 醋酸铵水混合溶液(含 0.1%甲酸, V/V), B 为 2 mmol/L 醋酸铵甲醇混合溶液(含 0.1%甲酸, V/V); 柱温: 40°C; 流速: 0.3 mL/min; 进样量: 2 μL。梯度洗脱程序: 0~1.0 min, 3% B; 1.0~1.5 min, 3%~15% B; 1.5~2.5 min, 15%~50% B; 2.5~18.0 min, 50%~70% B; 18.0~23.0 min, 70%~98% B; 23.0~27.0 min, 98% B; 27.0~27.1 min, 98%~3% B; 27.1~30.0 min, 3% B。

(2)质谱条件

采用电喷雾电离(electrospray ionization, ESI)源,正离 子扫描,脱溶剂温度为 500℃,毛细管电压为 3 kV,脱溶剂 气流量 800 L/h,锥孔气流速 150 L/h,扫描方式为多反应 监测(multiple reaction monitoring, MRM)模式,分段扫描。 各化合物的质谱参数见表 1。

编号	化合物	保留时间/min	母离子(m/z)	子离子(m/z)	锥孔电压/V	碰撞能量/V
1	阿维菌素	22.83	890.6	305.2 [*] , 567.4	30	25, 11
2	啶虫脒	3.75	223.0	126.0 [*] , 56.1	34	15, 20
3	莠去净	6.58	216.1	173.9*, 103.8	20	14, 23
4	嘧菌酯	9.34	404.1	372.0 [*] , 329.0	28	30, 15
5	联苯菊酯	23.25	440.2	181.0 [*] , 166.1	15	10, 36
6	硫线磷	17.59	271.3	159.0 [*] , 131.0	20	15, 25
7	甲萘威	5.70	202.1	144.9*, 127.1	40	8, 8
8	多菌灵	3.77	192.1	160.1*, 132.1	30	28, 18
9	克百威	5.10	222.1	164.9 [*] , 122.9	21	10, 19
10	3-羟基克百威	3.71	238.1	181.0 [*] , 162.9	20	9, 15
11	灭幼脲	15.37	309.0	155.8*, 138.8	33	13, 28
12	异噁草酮	8.07	240.1	124.9*, 88.8	30	19, 41
13	噻虫胺	3.64	250.0	168.9 [*] , 131.8	20	11, 14
14	溴氰菊酯	22.31	523.1	505.9 [*] , 280.9	10	16, 8
15	嘧菌环胺	14.13	226.1	92.9 [*] , 107.9	60	29, 25
16	二嗪磷	15.24	305.1	168.9 [*] , 152.9	50	19, 18
17	敌敌畏	5.04	221.0	108.8*, 126.8	40	17, 20
18	禾草灵	20.55	358.0	281.0 [*] , 341.0	39	12, 6
19	苯醚甲环唑	18.41/18.74	406.0	250.9 [*] , 337.0	20	23, 15
20	除虫脲	14.33	311.0	157.9 [*] , 140.8	30	11, 30
21	乐果	3.82	230.1	198.8 [*] , 124.8	20	8,20

表 1 65 种农药的质谱参数 Table 1 MS parameters of the 65 kinds of pesticides

表	1(续)

编号	化合物	保留时间/min	母离子(m/z)	子离子(m/z)	锥孔电压/V	碰撞能量/V
22	烯酰吗啉	9.70/10.89	388.1	300.9*, 165.0	30	20, 30
23	甲氨基阿维菌素苯甲酸盐(甲维盐)	21.56	886.6	$158.0^*, 126.0$	40	38, 37
24	苯硫磷	18.65	324.1	295.9 [*] , 156.8	25	20, 11
25	灭线磷	12.02	243.1	130.8 [*] , 96.8	30	26, 19
26	杀螟硫磷	11.31	278.2	125.1*, 109.1	40	18, 20
27	甲氰菊酯	21.09	350.0	96.8 [*] , 124.9	30	15, 26
28	倍硫磷	15.29	279.0	246.9 [*] , 168.8	30	15, 10
29	氰戊菊酯	22.47	437.2	167.0 [*] , 125.0	10	11, 48
30	氟氰戊菊酯	21.72	469.2	412.2 [*] , 181.1	30	12, 40
31	氯吡脲	7.78	248.1	129.0 [*] , 93.0	30	38, 15
32	安硫磷	16.85	258.3	124.9 [*] , 198.9	40	7, 24
33	己唑醇	16.68	314.1	$69.8^*, 158.9$	25	18, 28
34	吡虫啉	3.58	256.1	209.1*, 175.1	30	20, 15
35	氯唑磷	11.14	314.2	162.1*, 120.0	30	26, 15
36	甲基异柳磷	12.89	332.0	122.9*, 120.9	25	20, 15
37	异丙威	6.70	194.1	94.9 [*] , 136.9	20	12, 8
38	醚菌酯	14.34	314.2	$267.0^*, 222.0$	10	6, 10
39	甲霜灵	6.95	280.2	220.0 [*] , 192.0	20	12, 17
40	甲胺磷	2.52	142	94.0 [*] , 124.8	30	11, 11
41	久效磷	3.40	224.1	$126.8^{*}, 97.9$	25	10, 13
42	腈菌唑	11.56	289.1	69.8*, 124.8	10	16, 31
43	氧乐果	2.98	214.1	182.9*, 108.8	20	9,23
44	噁霜灵	4.46	279.1	$219.0^*, 131.9$	15	10, 27
45	戊菌唑	14.92	284.3	69.8 [*] , 158.8	40	30, 16
46	二甲戊灵	21.22	282.1	212.0 [*] , 194.1	30	12, 20
47	氯菊酯	22.75/23.04	408.0	183.0 [*] , 355.0	27	16, 5
48	甲拌磷	16.23	261.0	$74.8^{*}, 47.0$	10	13, 40
49	甲拌磷砜	6.74	293.1	96.8*, 114.8	15	26, 25
50	甲拌磷亚砜	6.33	277.0	198.9*, 152.9	20	9,13
51	伏杀硫磷	17.06	367.8	181.9*, 321.9	20	15, 6
52	磷胺	4.38/4.50	300.1	126.9 [*] , 173.9	20	1220
53	辛硫磷	13.99	299.3	97.0 [*] , 129.1	18	15, 20
54	咪鲜胺	16.82	376	307.9, 265.9	10	10, 14
55	廣 石利	11.77	284.0, 286.0	256.0, 258.0	35	16, 16
56	内 溴磷	19.87	373.0	302.8, 344.8	30	17, 11
57	吃媽死	22.37	365.1	309.0, 146.9	20	10, 26
58 50	電毎版	8.68	200.0	182.9, 167.9	15	21, 28
59	比 /) 还 古: ntk min	20.89	322.1	95.9, 184.9	20	12, 22
6U	以¥≌ 野 座 中 库	15.42	308.0	09.8, 124.8	40	30, 39
01 62	陸出際	5.5/ 10.90	292.0	211.2, 132.0	30 20	22, 12 12 11
62	二. P至 即内 二. n以 m直	10.80	294.1	197.0, 223.0 $100.0^{*}, 227.0$	50 20	13, 11
03 64	—— 至 臣 — 新 百 山	2 70	290.1	199.0, 227.0 $100.0^{*}, 221.0$	20	15, 12
65	以 日 玉	3.79 19.17	207.1 200 1	109.0, 221.0 185.9* 144.8	30	15, 16
05	日日日	17.1/	707.1	105.7,144.0	50	15,57

注:*定量离子。

1.3.4 基质效应评价

本研究采用公式(1)进行基质效应(matrix effect, ME) 评估^[29]。ME 在-20%~20%定义为弱基质效应; ME 在 -50%~-20%和 20%~50%定义为中等基质效应; ME 小于 -50%或大于 50%则定义为强基质效应。

1.4 数据处理

本研究采用 Microsoft Excel 2010 进行数据统计及绘图。

2 结果与分析

2.1 仪器条件优化

通过一级质谱扫描确定离子模式及加合方式,得到

65 种农药残留的母离子。阿维菌素、禾草灵、联苯菊酯、 溴氰菊酯、氰戊菊酯、氟氰戊菊酯、氯菊酯 7 种化合物加 NH₄⁺外,其余化合物均加 H⁺,所有化合物均为正离子模式 扫描。进一步确定最佳的毛细管电压、锥孔电压、脱溶剂 温度、母离子、子离子、碰撞能力等参数(表 1)。另外,本 研究对液相色谱分离条件进行优化,在流动相中加入醋酸 铵,一方面可以为部分化合物离子化时提供 NH₄⁺,另一方 面可以改变色谱峰型。因扫描模式为正离子,加入甲酸可 以使各化合物的质谱电离效果更好,因此在水相、有机相 中分别添加 0.1%的甲酸。为了保证各化合物都有足够的驻 留时间,质谱采集时间确定为 30 min,并对采集时间进行 手动分段,自动分配驻留时间,各物质的驻留时间在 0.005~0.026 s之间,色谱峰采集点数为 12.48,满足定性、 定量要求。65 种化合物的总离子流色谱图见图 1。

2.2 样品前处理条件的优化

2.2.1 加水量的优化

对于干样,为了提高目标物的提取效率,通常会往样 品中加入一定量的水^[30]。一方面可以提高乙腈的穿透性, 增加提取效率;另一方面可以使得枸杞子中水溶性的色 素、多糖等杂质在分层时得以除去。本研究考察了加水量 对目标物提取效率的影响,在2g枸杞子中分别加入2、4、 6、8和10 mL水。结果显示,当加水量为6 mL时,枸杞 子可以完全溶胀。为了进一步除去水溶性杂质,适当增加 了加水量。最终确定加水量为8 mL。

2.2.2 MWCNTs 用量的优化

为了考察 MWCNTs 的净化效果,本研究选择阴性枸 杞子进行加标实验(25 μg/kg),按照 1.3.2 进行样品前处理, 考察吸附剂的用量(5、10、20、30、40 mg)对 65 种农药回 收率的影响,并观察净化液澄清度。因本研究涉及的化合 物较多,未一一列出,从中选择具有代表性的农药,考察 其受吸附剂用量影响,结果见图 2。

当 MWCNTs 的用量从 5 mg 增加到 20 mg, 多数化合物的回收率均有所增加。当用量达到 20 mg 时, 15 种目标化合物的回收率在 86.1%~104.0%之间,多菌灵、嘧菌环胺两种平面结构化合物的回收率保持在 80%以上,满足农业部公告 2386 号规定的加标回收率要求。然而,随着

MWCNTs 用量进一步增加, 阿维菌素、苯醚甲环唑、除虫 脲、氯吡脲、甲氨基阿维菌素苯甲酸盐等化合物回收率均 呈下降趋势, 当用量达到 40 mg 时, 以上化合物回收率均 低于 70%, 这可能是由于过量的 MWCNTs 对农药也有一 定吸附作用^[31]。虽然吸附剂用量超过 20 mg 时, 联苯菊酯、 克百威、噻虫胺、吡虫啉等化合物回收率有所下降, 但净 化液更加澄清。因此, 考虑到仪器污染问题, 本研究确定 以 20 mg 作为 MWCNTs 最佳用量。

图 2 MWCNTs 用量对代表性农残回收率的影响(n=3) Fig.2 Effects of MWCNTs dosages on recoveries of representative pesticides (n=3)

2.2.3 净化方式的比较

目前,QuEChERS净化法在农药残留检测领域有着广 泛而成熟的应用,其主要选用PSA、C₁₈、GCB等物质对提 取液的净化,本研究称其为"传统的QuEChERS净化法"; 而以MWCNTs代替传统的净化材料,对提取液进行净化, 本研究称之为"改进的QuEChERS净化法"。本研究从基质 效应、加标回收率及净化液的颜色3个方面综合比较传统的 QuEChERS净化法与改进的QuEChERS净化法的净化效果。 考虑到GCB对平面结构农药有一定的吸附作用^[16-17],因此, 传统的QuEChERS净化法选用适用于果蔬类的纯化管(内 含900 mg无水硫酸镁、150 mg PSA),用量参考GB 23200.121—2021《食品安全国家标准植物源性食品中331 中农药及其代谢物残留量的测定液相色谱-质谱联用法》, 每毫升提取液使用150 mg无水硫酸镁、25 mg PSA进行净 化,而改进的QuEChERS净化法则按照每毫升提取液使用 150 mg无水硫酸镁、20 mg MWCNTs进行净化。

(1)基质效应的比较

由图 3 可知,改进的 QuEChERS 净化法各化合物的基 质效应更加集中,而传统的 QuEChERS 净化法相对分散。 改进的 QuEChERS 净化法的基质效应在--38.07%~22.62% 之间,信号强度增强与抑制的化合物占比分别为 38.5%、 61.5%,弱、中等、强基质效应的农药占比分别为 90.8%、 9.2%、0%;传统的 QuEChERS 净化法的基质效应在 -60.44%~10.68%之间,信号强度增强与抑制的化合物占比 分别为 26.2%、73.9%,弱、中等、强基质效应的农药占比 分别为 78.5%、18.5%、3.1%。因此,从基质效应角度考察, MWCNTs 的净化效果优于传统的 PSA 的净化效果。 MWCNTs 能吸附样品中的色素、酚类、甾醇类和有机酸等 杂质,而 PSA 主要吸附提取液中有机酸类干扰物,对色素 类干扰物吸附能力较弱,故其净化效果不如 MWCNTs。虽 然改进的 QuEChERS 净化法的弱基质效应的化合物占比 可达到 90.8%,为了进一步减少基质效应对结果的影响, 本研究采用基质匹配工作曲线外标法定量。

图 3 使用不同净化方法时枸杞子中各目标农药的基质效应(n=3) Fig.3 Matrix effects of the target pesticides in *Lycium barbarum* using different purification methods (n=3)

(2)加标回收率的比较

选用阴性枸杞子在低(5 µg/kg)、中(25 µg/kg)、高(30 µg/kg) 3 个水平进行加标实验(n=3),结果显示,改进的 QuEChERS 净化法的回收率在<70%、70%~120%、>120%范围内的占比 分别为1.2%、98.8%、0%;而传统的 QuEChERS 净化法则依 次为5.1%、93.7%、2.2%。可见,改进的 QuEChERS 净化法 的回收率更稳定,净化效果优于传统净化方式。

(3)净化液颜色的比较

Table 2

净化液的颜色一定程度上也可以反应净化的效果。由 图 4c 可知,未净化的枸杞提取液色素含量较高,由图 4a~b 可知,两种净化方式均具有一定去除色素的能力,但 MWCNTs 去除色素的能力明显优于传统的 QuEChERS 净 化法,主要是由于 MWCNTs 具有比表面积大、吸附性好, 能吸附样品中的色素类杂质^[9]。

综合基质效应、加标回收率及净化液颜色3个方面可知, 改进的QuEChERS净化法优于传统的QuEChERS净化法。

注: a. 改进的 QuEChERS 净化方法; b. 传统 QuEChERS 净化方法; c. 未净化。 图 4 净化液颜色的比较 Fig.4 Comparison of the color of the purified liquid

2.3 方法学验证

采用基质匹配工作曲线外标法定量,根据各物质 的灵敏度,配制一定梯度的标准系列混合标准溶液,上 机测试。以目标物峰面积为纵坐标(Y),质量浓度为横 坐标(X,ng/mL),绘制标准曲线。采用空白基质加标的 方法考察方法的检出限和定量限,方法的检出限(limit of detection,LOD)和定量限(limit of quantitation,LOQ)分别定 义为产生3倍和10倍信噪比时化合物的质量浓度,65种农 药的线性方程、线性范围、相关系数、检出限、定量限等 结果见表 2。在相应的线性范围内,各农药均具有较好的 线性关系,相关系数(r²)在 0.9962~1.0000 之间,65 种农药 的 LODs 在 0.5~5.0 µg/kg 之间,LOQs 在 1.0~10.0 µg/kg 之 间,符合农药多残留检测要求。

表 2 65 种化合物的线性方程、线性范围、相关系数、检出限、定量限 Regression equations, linear ranges, correlation coefficients (r²), LODs, LOOs of the 65 kinds of pesticides

编号	化合物	回归方程	线性范围/(ng/mL)	相关系数(r ²)	LODs (LOQs)/(µg/kg)			
1	阿维菌素	<i>Y</i> =809.707 <i>X</i> -127.599	0.5~100	0.9999	2.5 (5.0)			
2	啶虫脒	<i>Y</i> =64143.3 <i>X</i> +9583.51	0.5~100	0.9999	2.5 (5.0)			
3	莠去净	<i>Y</i> =110784 <i>X</i> +17489.6	0.1~50	0.9999	0.5 (1.0)			
4	嘧菌酯	<i>Y</i> =233172 <i>X</i> +16420.7	0.1~100	0.9993	0.5 (1.0)			
5	联苯菊酯	<i>Y</i> =16431.2 <i>X</i> -2600.21	0.5~100	0.9994	2.5 (5.0)			
6	硫线磷	<i>Y</i> =199328 <i>X</i> +29655.9	0.1~100	0.9999	0.5 (1.0)			
7	甲萘威	<i>Y</i> =3243.27 <i>X</i> +1142.76	1~200	0.9993	5.0 (10.0)			
8	多菌灵	<i>Y</i> =195811 <i>X</i> +43899.0	0.1~50	0.9993	0.5 (1.0)			
9	克百威	<i>Y</i> =290088 <i>X</i> +39303.7	0.1~50	0.9995	0.5 (1.0)			
10	3-羟基克百威	<i>Y</i> =16079.9 <i>X</i> -464.751	0.5~100	0.9993	2.5 (5.0)			
11	灭幼脲	<i>Y</i> =43634.1 <i>X</i> +3348.15	0.5~100	0.9999	2.5 (5.0)			
12	异噁草酮	<i>Y</i> =194062 <i>X</i> +11726	0.1~50	0.9999	0.5 (1.0)			
13	噻虫胺	<i>Y</i> =7348.94 <i>X</i> +3209.17	0.5~100	0.9997	2.5 (5.0)			

					表 2(续)
编号	化合物	回归方程	线性范围/(ng/mL)	相关系数(r ²)	LODs (LOQs)/(µg/kg)
14	溴氰菊酯	<i>Y</i> =7551.68 <i>X</i> -588.702	0.5~100	0.9986	2.5 (5.0)
15	嘧菌环胺	<i>Y</i> =28180.0 <i>X</i> -2440.98	0.5-100	0.9999	2.5 (5.0)
16	二嗪磷	<i>Y</i> =117502 <i>X</i> +6971.77	0.5~100	0.9998	2.5 (5.0)
17	敌敌畏	<i>Y</i> =48486.5 <i>X</i> +4444.91	0.5~100	0.9999	2.5 (5.0)
18	禾草灵	<i>Y</i> =8678.55 <i>X</i> +650.671	0.5~100	0.9997	2.5 (5.0)
19	苯醚甲环唑	<i>Y</i> =40452.55 <i>X</i> -527.321	0.5~100	0.9999	2.5 (5.0)
20	除虫脲	<i>Y</i> =56059.1 <i>X</i> +3381.7	0.5~100	0.9987	2.5 (5.0)
21	乐果	<i>Y</i> =58162.2 <i>X</i> +9002.38	0.5~100	0.9998	2.5 (5.0)
22	烯酰吗啉	<i>Y</i> =79049.6 <i>X</i> +5025.8	0.5~100	0.9999	2.5 (5.0)
23	甲氨基阿维菌素苯甲酸盐(甲维盐)	<i>Y</i> =204461 <i>X</i> +62209.8	0.1~50	0.9999	0.5 (1.0)
24	苯硫磷	<i>Y</i> =17045.6 <i>X</i> +599.268	0.5~100	0.9997	2.5 (5.0)
25	灭线磷	<i>Y</i> =93753.8 <i>X</i> +3457.56	0.1~100	0.9996	0.5 (1.0)
26	杀螟硫磷	<i>Y</i> =3512.56 <i>X</i> -1567.18	1~100	0.9983	5.0 (10.0)
27	甲氰菊酯	<i>Y</i> =31157.0 <i>X</i> +2795.6	0.5~100	0.9999	2.5 (5.0)
28	倍硫磷	<i>Y</i> =27500.3 <i>X</i> +1866.84	0.5~100	0.9998	2.5 (5.0)
29	氰戊菊酯	<i>Y</i> =538.739 <i>X</i> -731.53	1~100	0.9993	5.0 (10.0)
30	氟氰戊菊酯	<i>Y</i> =2724.45 <i>X</i> -427.07	0.5~100	0.9998	2.5 (5.0)
31	氯吡脲	<i>Y</i> =101230 <i>X</i> +18786.2	0.1~100	0.9997	0.5 (1.0)
32	安硫磷	<i>Y</i> =84727.1 <i>X</i> +9785.35	0.5~100	0.9999	2.5 (5.0)
33	己唑醇	<i>Y</i> =59476.5 <i>X</i> +5641.33	0.5~100	0.9999	2.5 (5.0)
34	吡虫啉	<i>Y</i> =16324.8 <i>X</i> +3739.54	0.5~100	0.9999	2.5 (5.0)
35	氯唑磷	<i>Y</i> =125625 <i>X</i> +9463.72	0.1~100	0.9999	0.5 (1.0)
36	甲基异柳磷	<i>Y</i> =11804.8 <i>X</i> +359.37	0.5~100	0.9999	2.5 (5.0)
37	异丙威	<i>Y</i> =33748.8 <i>X</i> +3390.54	0.5~100	0.9998	2.5 (5.0)
38	醚菌酯	Y = 9628.1X + 470.196	0.5~100	0.9998	2.5 (5.0)
39	甲霜灵	Y = 161640X + 45007.5	0.1~100	0.9964	0.5 (1.0)
40	甲胺磷	<i>Y</i> =5414.26 <i>X</i> -55.7381	0.5~100	0.9999	2.5 (5.0)
41	久效磷	<i>Y</i> =27167.9 <i>X</i> +103.516	0.5~100	0.9999	2.5 (5.0)
42	唐 南唑	Y = 91065.1X + 24234.7	0.5~100	0.9992	2.5 (5.0)
43	氧乐果	Y = 16334.1X + 828.069	0.5~100	0.9998	2.5 (5.0)
44	嚥霜灵	Y = 61056.2X + 11969.8	0.5~100	0.9995	2.5 (5.0)
45	戊菌唑	Y = 2321.64X + 248.619	1~100	0.9970	5.0 (10.0)
46	二甲戊灵	Y = 10905.8X + 235.078	0.5~100	0.9999	2.5 (5.0)
47	氢菊酯	Y = 5199 18X - 1133 98	0.5~100	0.9993	2.5(5.0)
48	甲拌磷	$Y = 2432 \ 71 \ X = 1726 \ 05$	1~100	0.9993	5.0 (10.0)
49	甲拌磷砜	$Y = 14947 \ 6X + 2084 \ 89$	0.5~100	0.9994	2 5 (5 0)
50	甲拌磷亚砜	Y = 44663 5X + 6494 03	0.5~100	0.9995	2.5(5.0)
51	伏杀硫磷	Y = 80593 7X + 6209 25	0.5~100	0.9999	2.5(5.0)
52	磷胺	Y = 670475 X - 230468	0.5~100	0.9999	2.5(5.0)
53	主硫磷	$Y = 38771 \ 4X = 2841 \ 34$	0.5~100	0.9998	2.5 (5.0)
54	咪催胺	V = 51825 8Y + 912 449	0.5~100	0.9999	2.5(5.0)
55	腐震利	V = 20081 0V 10040 8	0.5-100	0.9975	2.5(5.0)
56	丙溴磷	Y = 88595 1 Y + 9717 88	0.5~100	0.9975	2.5 (5.0)
57	r 3 1天 194 広輔 記	Y = 210884Y + 152418	0.5-100	0.0007	2.5(3.0)
58	·····································	$Y = 10510 \ 2Y + 545 \ 728$	0.1-50	0.9000	2.5 (5.0)
50	山母似	$Y = \frac{1}{2} $	0.5~100	0.2222	2.5(3.0)
59	20月ビイルャー 宣振 私加 行	$I = 244342A \pm 12300.0$ $V = 41872 \ 6 \ V \pm 4520.21$	0.1~30	0.3902	0.3(1.0)
61	八型王盱 曜 由 畴	1-410/3.0A+4329.21	0.5~100	0.9998	2.3 (3.0)
62	空民衆	I-10133.2A+10949.4	0.5~100	0.9999	2.5 (5.0)
02 62	四王 四二 一 二 一 一 二 一 一 二 一 一 二 一 一 一 二 一 一 一 一	I=31188./X+392/.82	0.5~100	0.9999	2.5 (5.0)
05	二理野	I = 13/38.0X + 103/.4/	0.5~100	1.0000	2.5 (5.0)
64	改日 虫	r=49/92.7X+7/51.28	0.5~100	0.9998	2.5 (5.0)
65	肟菌酯	<i>Y</i> =225088 <i>X</i> +16644.8	0.1~50	0.9999	0.5 (1.0)

注:Y为峰面积;X为农药的质量浓度,ng/mL。

选择有机枸杞子作为阴性基质,进行 5、25 和 250 µg/kg 3 水平的加标回收实验(n=6),结果表明,65 种 化合物的加标回收率在 65.9%~117.0%之间,相对标准偏 差为 2.9%~13.0%之间,表明该方法加标回收率高且重复 性好,对枸杞子中 65 种农药残留检测均具有较好的准确 度和精密度。

2.4 实际样品的检测

采用本研究建立的方法对 40 份不同来源的枸杞子开 展65 种农药残留的监测,结果见表3,实际样品的总离子流 色谱图见图 5。40 份枸杞子均为阳性样品, 共检出 39 种农药, 占比为 60.0%, 其中 6 种为禁限用农药, 分别为克百威、3-羟基克百威、甲胺磷、氧乐果、甲拌磷砜、甲拌磷亚砜。

从用途来看, 主要为杀虫剂、杀菌剂、杀螨剂、除草 剂, 占比分别为: 53.8%、35.9%、5.1%、5.1%。从检出率 来看, 检出率最高的为苯醚甲环唑与啶虫脒, 两者检出率 均为 97.5%, 其后依次为吡虫啉(95%)、甲氰菊酯(92.5%)、 噻虫嗪(90.0%)、多菌灵(87.5%)、噻虫胺(87.5%)、联苯菊 酯(80.0%)、戊唑醇(62.5%)、克百威(50.0%)、3-羟

编号	化合物	主要用途	是否禁用	最大残留限量 /(mg/kg)	检出率/%	最大值 /(mg/kg)	超标率/%
1	阿维菌素	杀虫剂	否	0.1	17.5	0.062	0
2	啶虫脒	杀虫剂	否	2	97.5	3.2	10
3	莠去津	除草剂	否	-	27.5	0.0065	-
4	嘧菌酯	杀菌剂	否	-	10.0	0.042	-
5	联苯菊酯	杀虫剂/杀螨剂	否	-	80.0	0.079	-
6	多菌灵	杀菌剂	否	5	87.5	2.5	-
7	克百威	杀虫剂	是	0.02	50.0	0.31	2.5%
8	3-羟基克百威	杀虫剂	是	0.02	50.0	1.1	25%
9	灭幼脲	杀虫剂	否	-	12.5	0.032	-
10	异噁草酮	除草剂	否	-	2.5	0.0015	-
11	噻虫胺	杀虫剂	否	-	87.5	0.29	-
12	溴氰菊酯	杀虫剂	否	-	12.5	0.0093	-
13	二嗪农	杀虫剂	否	-	2.5	0.030	-
14	苯醚甲环唑	杀菌剂	否	0.3	97.5	2.1	15
15	乐果	杀虫剂	否	0.05	7.5	0.061	2.5
16	烯酰吗啉	杀菌剂	否	-	7.5	0.016	-
17	甲氨基阿维菌素苯甲酸盐	杀虫剂	否	-	12.5	0.011	-
18	甲氰菊酯	杀虫剂	否	-	92.5	0.06	-
19	倍硫磷	杀虫剂	否	-	5.0	0.0093	-
20	己唑醇	杀菌剂	否	2	15.0	0.075	0
21	吡虫啉	杀虫剂	否	1	95.0	0.86	0
22	异丙威	杀虫剂	否	-	5.0	0.0051	-
23	醚菌酯	杀菌剂	否	-	10	0.14	-
24	甲霜灵	杀菌剂	否	-	7.5	0.0021	-
25	甲胺磷	杀虫剂	是	-	10	0.042	-
26	腈菌唑	杀菌剂	否	-	2.5	0.015	-
27	氧乐果	杀虫剂	是	-	5.0	0.0053	-
28	噁霜灵	杀菌剂	否	-	2.5	0.0051	-
29	甲拌磷亚砜	杀虫剂	是	0.01	5.0	0.082	2.5
30	甲拌磷砜	杀虫剂	是	0.01	5.0	0.049	2.5
31	咪鲜胺	杀菌剂	否	-	2.5	0.38	-
32	丙溴磷	杀虫剂	否	-	42.5	0.032	-
33	哒螨灵	杀螨剂	否	3	47.5	0.15	0
34	吡丙醚	杀虫剂	否	-	47.5	0.29	-
35	戊唑醇	杀菌剂	否	-	62.5	0.19	-
36	噻虫嗪	杀虫剂	否	-	90.0	3.4	-
37	三唑酮	杀菌剂	否	-	42.5	0.011	-
38	三唑醇	杀菌剂	否	-	12.5	0.010	-
39	肟菌酯	杀菌剂	否	-	5.0	0.011	-

表 3 40 份枸杞子中农药残留的检测结果 Table 3 Detection results of the pesticides in the 40 actual samples

注:-表示没有数据;克百威含量以克百威与3-羟基克百威之和计;甲拌磷含量以甲拌磷、甲拌磷砜及甲拌磷亚砜之和计。

基克百威(50.0%)、哒螨灵(47.5%)、吡丙醚(47.5%)、丙溴 磷(42.5%)、三唑醇(42.5%)(仅列出检出率在 40%以上的农 药残留)。参照 GB 2763—2021《食品安全国家标准 食品 中农药残留最大限量》及 DBS 64/001—2022《食品安全地 方标准 枸杞》,9 种农药残留已超过枸杞干果的最大残留 限量,分别为阿维菌素、啶虫脒、克百威(以克百威与 3-羟基克百威之和计)、乐果、己唑醇、蚍虫林、甲拌磷(以 甲拌磷、甲拌磷砜、甲拌磷亚砜之和计)、哒螨灵、苯醚甲 环唑。不合格率最高的项目为克百威,该项目的不合格率 为 25%,最大值为 1.81 mg/kg,超标 89.5 倍。其次为苯醚 甲环唑(15%, 2.1 mg/kg)、啶虫脒(10%, 3.2 mg/kg)、乐果 (2.5%, 0.061 mg/kg)、甲拌磷(2.5%, 0.13 mg/kg)(括号内数值 依次为该项目的不合格率及最大值)。

值得注意的是,多菌灵、噻虫嗪在枸杞子中检出率均 超过85.0%,最大值超过2mg/kg,有必要开展相关的研究, 制定其在枸杞子中的最大残留限量。

3 结 论

本研究使用 MWCNTs 对传统的 QuEChERS 法进行改进,建立了 MWCNTs 改进的 QuEChERS 结合超高效液相 色谱-串联质谱法同时测定枸杞子中多种农药残留的分析 方法。经方法学验证,该方法回收率、准确度及正确度均 满足药物残留分析要求。与 GB 23200.121—2021 相比较,本 方法操作简单、灵敏度高、稳定性好,适用于枸杞子中农药 多残留的监测,为枸杞子农药多残留的风险监测、质量控制 提供技术支持,并可进一步推广、应用于复杂基质中农药多 残留的检测,对保障食品质量安全具有重要意义。

参考文献

 YAO R, HEINRICH M, WECKERLE SC. The genus *Lyciumas* food and medicine: A botanical, ethnobotanical and historical review [J]. J Ethnopharmacol, 2018, 212: 50–66.

- [2] KULCZYNSKI B, GRAMZA-MICHALOWSKA A. Goji berry (Lycium barbarum): Composition and health effects-A review [J]. Pol J Food Nutr Sci, 2016, 66(2): 67–76.
- [3] WOJDYLO A, NOWICKA P, BABELEWSKI P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties [J]. J Funct Foods, 2018, 48: 632–642.
- [4] MASCI A, CARRADORI S, CASADEI MA, et al. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects: A review [J]. Food Chem, 2018, 254: 377–389.
- [5] CHEN J, KOU T, FAN Y, et al. Antioxidant activity and stability of the flavonoids from *Lycium barbarum* leaves during gastrointestinal digestion *in vitro* [J]. Int J Food Eng, 2020, 16(7): 417–422.
- [6] 徐常青,刘赛,徐荣,等. 我国枸杞主产区生产现状调研及建议[J]. 中国中药杂志, 2014, 39(11): 1979–1984.
 XU CQ, LIU S, XU R, *et al.* Investigation of production status in major wolfberry producing areas of China and some suggestions [J]. China J
- [7] 樊桂红. 宁夏枸杞农药使用情况调查分析[J]. 农业与技术, 2018, 38(12): 8-9.

Chin Mater Med, 2014, 39(11): 1979-1984.

FAN GH. Investigation and analysis of pesticide use of *Lycium barbarum* in Ningxia [J]. J Agric Technol, 2018, 38(12): 8–9.

[8] 许引虎,谢再斌,杨萌,等. 枸杞果酒酿造工艺的研究进展[J]. 酿酒科技, 2023, 343(1): 117–122.
 XU YH, XIE ZB, YANG M, *et al.* Research progress in the production

technology of wolfberry wine [J]. Liquor-Making Sci Technol, 2023, 343(1): 117–122.

- [9] LIANG L, WANG XH, SUN Y, et al. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles [J]. Talanta, 2018, 179: 512–519.
- [10] PARK JI, AL-MUTAIRI A, MARAFIE AMJ, et al. The characterization of metal complexes in typical kuwait atmospheric residues using both GPC coupled with ICP-MS and HT GC-AED [J]. J Ind Eng Chem, 2016, 34: 204–212.
- [11] 滕卫林,陈咪佳,吴俊,等.高效薄层条带快速净化检测猪肉中瘦肉精的残留[J].中国卫生检验杂志,2016,26(21):3089–3092.
 TENG WL, CHEN MJ, WU J, et al. Rapid detection of clenbuterol residues in pork with high performance thin layer clean-up technique [J]. Chin J Health Chem, 2016, 26(21): 3089–3092.
- [12] GUO JG, TONG MM, TANG J, et al. Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method [J]. Food Chem, 2019, 274: 452–459.
- [13] 刘远晓,关二旗,卞科,等. QuEChERS 法在食品有机污染物检测中的研究进展[J]. 食品科学, 2017, 38(19): 294–300.
 LIU YX, GUAN ERQ, BIAN KE, *et al.* A review of the application of QuEChERS in the determination of organic contaminants in foods [J]. Chin J Food Chem, 2017, 38(19): 294–300.
- [14] 孔祥虹,何强,李春艳. 气相色谱-质谱法同时检测枸杞子中的克百威、氧环唑、莎稗磷[J]. 农药, 2010, 49(3): 188–190, 198.
 KONG XH, HE Q, LI CY. Determination of carbofuran, azaconazole and anilofos in barbary wolfberry fruit using gas chromatography-mass spectrometry [J]. Agrochemicals, 2010, 49(3): 188–190, 198.
- [15] 王芳焕, 任翠娟, 马辉, 等. QuEChERS-气相色谱-串联质谱法测定枸 杞中农药残留[J]. 色谱, 2019, 37(10): 1042–1047.

WANG FH, REN CJ, MA H, et al. Determination of pesticide residues in wolfberry using QuEChERS-gas chromatography-tandem mass spectrometry [J].Chin J Chromatogr, 2019, 37(10): 1042–1047.

- [16] 邓慧芬,张建莹,黄科,等. QuEChERS-液相色谱-串联质谱法测定蔬菜中 105 种农药残留[J]. 色谱, 2018, 36(12): 1211–1222.
 DENG HF, ZHANG JY, HUANG K, *et al.* Determination of 105 pesticide residues in vegetables by QuEChERS-liquid chromatography-tandem mass spectrometry [J]. Chin J Chromatogr, 2018, 36(12): 1211–1222.
- [17] KINROSS AD, HAGEMAN KJ, DOUCETTE WJ, et al. Comparison of accelerated solvent extraction (ASE) and energized dispersive guided extraction (EDGE) for the analysis of pesticides in leaves [J]. J Chromatogr A, 2020, 1627: 461414–461423.
- [18] 孟二琼,念琪循,李峰,等. 磺酸化磁性氮化碳固相萃取-超高液相色 谱-串联质谱筛检淡水鱼中孔雀石绿和隐色孔雀石绿[J]. 色谱, 2023, 41(8): 673-682.

MENG ERQ, NIAN QX, LI F, *et al.* Sulfonated magnetic graphite carbon nitride solid phase extraction ultra performance liquid chromatography tandem mass spectrometry for screening malachite green and leucomlachite green in fresh water fish [J]. Chin J Chromatogr, 2023, 41(8): 673–682.

- [19] LIANG M, CHEN RQ, XIAN YP, et al. Determination of bongkrekic acid and isobongkrekic acid in rice noodles by HPLC-Orbitrap HRMS technology using magnetic halloysite nanotubes [J]. Food Chem, 2021, 344: 1–8.
- [20] 宋伟,周典兵,郭春丽,等. 磁性富勒烯分散固相萃取-液相色谱-串联 质谱法测定菊花中农药残留[J]. 分析化学, 2021, 49(9): 1587–1596. SONG W, ZHOU DB, GUO CL, et al. Determination of multiresidue of pesticide in chrysanthemum by magnetic fullerene dispersive solid phase extraction with liquid chromatography-tandem mass spectrometry [J]. Chin J Anal Chem, 2021, 49(9): 1587–1596.
- [21] 张朋杰,张宪臣,李云松,等. QuEChERS 结合超高效液相色谱-四级 杆/静电场轨道肼高分辨质谱法快速测定畜禽肉中 157 种农药残留[J]. 食品安全质量检测学报,2022,13(16):5391-5400.
 ZHANG PJ, ZHANG XC, LI YS, *et al.* Rapid determination of 157 kinds of pesticide residues in livestock and poultry meat by QuEChERS

combined with ultra performance liquid chromatography-quadrupole/ electrostatic field orbitrap high resolution mass spectrometry [J]. J Food Saf Qual, 2022, 13(13): 5391–5400.

[22] 吕佳宁,丁葵英,郭礼强,等. 多壁碳纳米管分散固相萃取-液相色谱
 串联质谱法测定鸡肉中 26 种农药残留[J]. 肉类工业, 2022, 493(5): 39–45.

LV JN, DING KY, GUO LQ, *et al.* Determination of 26 kinds of pesticide residues in chicken by multi-walled carbon nanotubes dispersive solid phase extraction coupled liquid chromatography -tandem mass spectrometry [J]. Meat Ind, 2022, 493(5): 39–45.

- [23] 杨俊, 丁红梅, 何薛纯, 等. 多壁碳纳米管小柱 液质联用法测定鸡肉 中兽药残留方法的研究[J]. 粮食与食品工业, 2022, 29(1): 54–58. YANG J, DING HM, HE XC, *et al.* Determination of veterinary drug residues in chicken by multi-walled carbon nanotube column-liquid mass spectrometry [J]. Cere Food Ind, 2022, 29(1): 54–58.
- [24] 黄华,谢文东,谷雨,等. 多壁碳纳米管分散固相萃取净化超高效液相 色谱串联质谱测定果蔬中 50 种农药残留量[J]. 食品与发酵工业,2022, 48(17): 282–290.

HUANG H, XIE WD, GU Y, et al. Determination of 50 pesticide residues in fruits and vegetables by QuEChERS extraction with multi-walled carbon nanotubes (MWCNTs) coupled to UPLC-MS/ MS [J]. Food Ferment Ind, 2022, 48(17): 282-290.

[25] 李巧莲, 罗景阳, 张宏宏, 等. 多壁碳纳米管改进 QuEChERS-液相色 谱-串联质谱法测定豆类中 12 种酰胺类杀菌剂残留量[J]. 粮食与油脂, 2023, 36(1): 157–162.

LI QL, LUO JY, ZHANG HH, *et al.* Determination of 12 amide fungicides in legumes by multi-walled carbon nanotubes QuEChERS-liquid chromatography-tandem mass spectrometry [J]. Cere Oils, 2023, 36(1): 157–162.

- [26] 薛科宇,田继锋,宋国华,等. 多壁碳纳米管-液质联用法检测小麦中 农药残留[J]. 粮食与油脂, 2022, 35(9): 153–157. XUE KY, TIAN JF, SONG GH, *et al.* Determination of residues in wheat by multi-walled carbon nanotubes combined with HPLC-MS/MS [J]. Cere Oils, 2022, 35(9): 153–157.
- [27] YU CC, HAO DY, CHU Q, et al. A one adsorbent QuEChERS method coupled with LC-MS/MS for simultaneous determination of 10 organophosphorus pesticide residues in tea [J]. Food Chem, 2020, 321(15): 126657–126665.
- [28] 许芮菡,谢倩文,李旭军,等. 基于多壁碳纳米管改进 QuEChERS 法 结合气相色谱-串联质谱检测茶叶中 10 种拟除虫菊酯类农药残留[J]. 色谱, 2022, 40(5): 469–476. XU RH, XIE QW, LI XJ, et al. Modified QuEChERS method based on multi-walled carbon nanotubes coupled with gas chromatography-tandem mass spectrometry for the detection of 10 pyrethroid pesticide residues in

tea [J]. Chin J Chromatogr, 2022, 40(5): 469–476.
[29] RAJSKI L, LOZANO A, UCLES A. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass

[30] 邹攀,段圣省,胡西洲,等.改良的 QuEChERS-超高效液相色谱-三重 四极杆质谱法检测银耳和木耳中米酵菌酸[J].色谱,2021,39(12): 1368-1373.

spectrometry [J]. J Chromatogr A, 2013, 1304: 109-120.

ZOU P, DUAN SS, HU XZ, *et al.* Determination of bongkrekic acid in tremella and auricular by improved QuEChERS method combined with ultra-high performance liquid chromatography triple quadrupole mass spectrometry [J]. Chin J Chromatogr, 2021, 39(12): 1368–1373.

[31] ZHU BQ, XU XY, LUO JW, et al. Simultaneous determination of 131 pesticides in tea by on line GPC-GC-MSMS using graphitized multi walled carbon nanotubes as dispersive solid phase extraction sorbent [J]. Food Chem, 2019, 276(15): 202–208.

(责任编辑:郑 丽 张晓寒)

作者简介

夏宝林,硕士,工程师,主要研究方向 为食品安全检测技术。 E-mail: 514377123@qq.com

刘 强,博士,讲师,主要研究方向为 农产品质量安全检测。 E-mail: qiangliu@nufe.edu.cn