超高效液相色谱-串联质谱法同时测定豆芽中 18 种抗菌剂的含量

吴少明*

(福建省产品质量检验研究院,国家加工食品质量监督检验中心,福州 350002)

摘 要:目的 建立超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)测定豆芽中 18 种抗菌剂的分析方法。**方法** 豆芽样品经乙酸乙酯:乙腈(1:1, V:V) 提取,提取液经盐析,固相萃取柱净化,采用 Waters Acquity UPLC HSS T₃色谱柱(100 mm×2.1 mm, 1.8 µm), 以乙腈-0.3%甲酸水溶液为流动相分离目标物。电喷雾质谱正离子模式,多反应监测模式检测,外标法定量。 **结果** 18 种抗菌剂在 1.0~50.0 ng/mL 范围内线性关系良好,相关系数(r)均大于 0.99; 以黄豆芽和绿豆芽为基质,进行 3 水平加标回收实验,平均回收率为 85.7%~107.5%,相对标准偏差为 0.1%~8.7% (*n*=6); 方法检出限在 0.2~0.5 µg/kg 之间,方法定量限在 0.7~1.7 µg/kg 之间。**结论** 该方法检出限低、灵敏度高,且具有较好的准确度和精密度,可用于检测豆芽中 18 种抗菌剂的含量。

关键词: 超高效液相色谱-串联质谱法; 固相萃取; 抗菌剂; 豆芽

Simultaneous determination of 18 kinds of antibacterial agents in bean sprouts by ultra performance liquid chromatography-tandem mass spectrometry

WU Shao-Ming*

(Fujian Inspection and Research Institute for Product Quality, China National Quality Supervision and Testing Center for Processed Food, Fuzhou 350002, China)

ABSTRACT: Objective To establish a method for the simultaneous determination of 18 kinds antibacterial agents in bean sprouts by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). **Methods** Bean sprout samples were extracted by ethyl acetate:acetonitrile (1:1, *V:V*), the extract was salted out and purified by solid phase extraction column, the target substances were separated on Waters Acquity UPLC HSS T₃ column (100 mm× 2.1 mm, 1.8 μ m), and gradient elution was performed with acetonitrile-0.3% formic acid aqueous solution as mobile phases. Multiple reaction monitoring mode was used for detection in electrospray ionization with positive ion mode, and external standard method was used for quantification. **Results** The 18 kinds of antibacterial agents had good linear relationships in the range of 1.0–50.0 ng/mL, and the correlation coefficients (*r*) was all greater than 0.99. Using soybean sprouts and mung bean sprouts as the matrix, 3 levels spiked recovery experiments were carried out,

*通信作者: 吴少明,硕士,工程师,主要研究方向为食品安全。E-mail: 280257959@qq.com

基金项目: 福建省市场监督管理局科技项目(FJMS2019009)

Fund: Supported by the Fujian Administration for market Regulation (FJMS2019009)

^{*}Corresponding author: WU Shao-Ming, Master, Engineer, Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, China. E-mail: 280257959@qq.com

and the average recoveries were 85.7%-107.5%, and the relative standard deviations were 0.1%-8.7% (*n*=6); and the method detection limits were $0.2-0.5 \mu g/kg$, and the method quantification limits were $0.7-1.7 \mu g/kg$. **Conclusion** This method is highly sensitive, accurate, and has good reproducibility and stability, and can effectively detect the content of 18 kinds of antibacterial agents in bean sprouts.

KEY WORDS: ultra performance liquid chromatography-tandem mass spectrometry; solid phase extraction; antibacterial agents; bean sprouts

0 引 言

豆芽生产简单方便、经济实惠、营养丰富, 深受消费 者的喜爱,其所含的多酚类物质具有抗肿瘤以及预防癫痫 和抗癌功效^[1-5]。但近年来, 毒豆芽事件愈演愈烈, 生产者为 缩短生产周期、增加产量、改善豆芽外观,在生产豆芽的过 程中非法添加化学物质的现象时有发生。有报道指出, 豆芽 生产过程中可能存在非法添加抗菌剂药物的现象[6]、广谱的 抗菌药物主要涉及硝基咪唑类、喹噁啉类以及喹诺酮类药物, 这些药物不但具有抗原虫和抗菌作用,同时具有很强的抗 厌氧菌的作用,可防止豆芽根部腐烂^[7-8],增加卖相,但此 类药物滥用会通过食物链在人体内积累,导致性早熟、急性 中毒、癌症、肝肾衰竭、心肌肥大以及肺部淤血等疾病[9-15]。 而目前,相关部门对于豆芽的监管仍主要针对植物生长激 素调节剂类药物,对于抗菌类兽药残留还没有明确的规定 和监管手段,更没有相应的标准,因此建立豆芽中多种违禁 抗菌药物残留快速同步筛查技术,准确监控豆芽中违禁抗 菌类药物残留, 对规范豆芽市场具有十分重要的意义。

当前抗菌剂的研究主要针对的是动物源性食品^[16-22], 但是关于植物源性食品中抗菌剂残留的研究方法报道较少, 且主要针对的是喹诺酮类化合物^[23-29],主要以乙腈作为提取 溶剂,以不净化^[30]、QuEChERS^[31]或固相萃取柱^[25-27]净化后, 采用超高效液相色谱-串联质谱法进行测定。对于豆芽中硝基 咪唑以及喹噁啉类化合物的研究未见报道,不能满足食品安 全突发事件快速处置工作的高效率、多组分的要求。因此,本 研究采用超高效液相色谱-串联质谱法,结合固相萃取技术, 建立同时测定豆芽中喹诺酮类、硝基咪唑类以及喹噁啉类共 18种药物残留的方法,扩大对于豆芽中可能添加的抗菌剂类 药物的监控范围,为将来制修订相应地方标准或国家标准储 备技术提供技术和数据支持,为满足国家对豆芽市场监管的 更高要求提供技术支持。

1 材料与方法

1.1 材料与试剂

豆芽样品为超市、农贸市场、菜市场随机购买的样品, 包括绿豆芽和黄豆芽各 25 份。

甲硝唑、地美硝唑、异丙硝唑、塞克硝唑、奥硝唑、 替硝唑、洛硝达唑、喹乙醇、喹烯酮、卡巴氧、乙酰甲喹、 恩诺沙星、环丙沙星、洛美沙星、培氟沙星、氧氟沙星、 诺氟沙星、丹诺沙星(纯度大于 97%,德国 Dr. Ehrenstofer GmbH 公司);氯化钠(分析纯,国药集团化学试剂有限公 司);甲酸、乙腈、甲醇(色谱纯,德国 Merck 公司)。

1.2 仪器与设备

8050 质谱联用仪(配电喷雾离子源,日本岛津公司); Aanti J-E 高速冷冻离心机(美国 Beckman Coulter 公司); Milli-Q 超纯水机(美国密理波公司); DS-8510 DTH 超声波振 荡器(中国上海分析超声仪器有限公司); MS 3 basic 旋涡混均 器(德国艾卡公司); BSA224S 电子天平(感量 0.0001 g,德国赛 多利斯有限公司); HLB 固相萃取柱(60 mg/3 mL,逗点公司)。

1.3 实验方法

1.3.1 色谱条件

色谱柱: Waters Acquity UPLC HSS T₃ (100 mm× 2.1 mm, 1.8 μm); 流动相: A 相为 0.3%甲酸水溶液, B 相为 乙腈。流速为 0.3 mL/min, 柱温 40 ℃, 进样体积 2 μL, 梯 度洗脱程序见表 1。

Table 1	Gradient programs of mobile	e phase
时间/min	0.3%甲酸水溶液/%	乙腈/%
0.00	90	10
3.00	70	30
7.00	10	90
8.00	10	90
8.01	90	10
10.00	90	10

表 1 流动相梯度洗脱程序 Table 1 Gradient programs of mobile p

1.3.2 质谱条件

电离模式:电喷雾离子源正离子模式(electrospray ionization, ESI⁺);扫描模式:多反应监测(multiple reaction monitoring, MRM)模式;接口电压:400 V;加热气温度: 400 °C;脱溶剂温度:526 °C;雾化气流量:3 L/min;接口 温度:350 °C;干燥气流量:10 L/min;雾化器位置:+2。

1.3.3 标准溶液以及标准曲线配制

精确称 10 mg 各标准品于 10 mL 容量瓶中,用甲醇溶 解并定容至刻度,其中喹诺酮类药物先加入甲酸溶解,再 以甲醇定容至刻度,配制成质量浓度约为 1.0 mg/mL 的标 准储备液,转入棕色标准品瓶中于-20 ℃保存,有效期为 6 个月。将上述储备液混合稀释成质量浓度均为 10.0 mg/L 的混合标准中间液,有效期为 1 个月。分别准确吸取混合标准中间液以 10%乙腈稀释成质量浓度分别为 1.0、2.0、5.0、10.0、20.0、50.0 ng/mL 的标准系列,待测。1.3.4 样品前处理

豆芽样品经粉碎均质后,称取5g(精确至0.01g)样品,加入5mL乙腈:乙酸乙酯(1:1,V:V),涡旋振荡1min至充分 混匀,超声提取10min,待冷却后加入2g氯化钠粉末,于 5000r/min离心3min,分离上层清液,残渣分别加入5mL 乙腈/乙酸乙酯再重复提取2次,合并3次提取液,于40℃ 下氮气吹至近干,加入3mL水溶解残渣,以HLB固相萃 取柱进行净化处理(乙腈,水活化),5%甲醇水淋洗,5mL甲 醇洗脱,洗脱液于40℃ 氮气吹至近干,加入10%乙腈水 溶液1.0mL,涡旋混匀后过膜待测。

1.4 数据处理

采用 LabSolutions 软件(岛津公司)进行定量分析, Microsoft Excel 2016 统计分析处理数据, Origin 9.1 进行图 谱处理。

2 结果与分析

2.1 质谱条件的优化

移取 1.00 mL 混合标准中间液于 10 mL 容量瓶中, 以 50%乙腈溶液稀释至刻度, 配制成 1.0 μg/mL 的混合标准 使用液, 上机测试。根据文献^[31-33]资料, 18 种抗菌剂均采 用电喷雾离子源正离子模式进行全扫描, 目标物在电喷雾 离子源(ESI⁺)电离作用下得到一个氢离子, 成为带正电荷 的母离子, 母离子进入高真空质谱, 在质谱碰撞室中与碰 撞气碰撞碎裂产生离子碎片, 选取丰度较高的 2 个子离子 分别作为定量和定性离子, 以 MRM 模式将母离子和对应 的产物离子输入仪器软件, 利用软件自动调谐功能优化每 个化合物对应的四极杆 1 (quadrupole rod 1, Q1)电压、碰撞 电压以及四级杆 3 (quadrupole rod 3, Q3)电压等相关参数, 最优定量定性离子对信息见表 2。

Table 2 Mass spectrometric parameters of 18 kinds of compounds						
序号	化合物	离子对(m/z)	Q1 电压/V	碰撞电压/V	Q3 电压/V	
1 甲花	田石造山林	172.3/128.2*	12.0	15.0	25.0	
	中仰壁	172.3/82.3	12.0	25.0	16.0	
2 ‡	抽美硝啉	142.2/96.2*	22.0	17.0	18.0	
	地大明性	170.1/81.2	23.0	24.0	15.0	
3	显丙硝唑	170.3/109.3*	26.0	23.0	21.0	
5	2114年1月1王	170.3/124.3	25.0	18.0	24.0	
4	寒壴硝唑	186.2/128.2*	27.0	15.0	24.0	
7	32) FM1.T	186.2/59.2	27.0	17.0	24.0	
5	密 石冶 山林	220.3/82.2*	14.0	30.0	16.0	
5	天明生	220.3/128.2	14.0	15.0	25.0	
ſ	井井 石光 田山	248.3/128.2*	30.0	22.0	25.0	
6	省明唑	248.3/121.2	30.0	16.0	23.0	
-	がたとして	201.2/140.2*	30.0	11.0	28.0	
1	沿 明达唑	201.2/55.3	30.0	23.0	22.0	
0	応フ 耐	264.3/143.2*	30.0	30.0	27.0	
0	生乙時	264.3/212.2	30.0	21.0	24.0	
0	本接福	307.3/273.3*	21.0	20.0	20.0	
9	에비마지 프	307.3/197.3	20.0	20.0	14.0	
10	上口気	263.2/229.2*	18.0	19.0	25.0	
	ドロス	263.2/231.2	18.0	13.0	26.0	
11	フ融田広	219.3/143.3*	15.0	21.0	28.0	
11	乙酰甲喹	219.3/185.3	15.0	18.0	21.0	

表 2 18 种化合物的质谱参数 Table 2 Mass spectrometric parameters of 18 kinds of compound

9030

主 3(4志)

					秋 2(共)
序号	化合物	离子对(m/z)	Q1 电压/V	碰撞电压/V	Q3 电压/V
12	因计学业时	360.3/342.3*	23.0	23.0	25.0
	总角伊生	360.3/316.3	23.0	19.0	23.0
12	环市冰县	332.2/314.2*	22.0	20.0	23.0
13	环因改生	332.2/288.2	22.0	18.0	21.0
14	次羊孙豆	352.2/265.2*	23.0	23.0	19.0
14	伯天伊生	352.2/308.2	22.0	19.0	23.0
15	拉氟沙昆	334.3/316.3 [*]	22.0	22.0	23.0
15	坩 新 伊 生	334.3/290.3	22.0	18.0	21.0
16	氨氟沙旱	362.2/318.2*	24.0	20.0	23.0
10	判 ,私 伊 生	362.2/261.2	24.0	26.0	19.0
17	送甸沙星	320.3/233.2*	21.0	25.0	26.0
17	相無し生	320.3/276.3	21.0	17.0	20.0
18	丹诺沙星	358.3/340.2*	24.0	24.0	25.0
10	月阳辽生	358.3/283.2	24.0	23.0	21.0

注:*为定量离子对。

2.2 色谱条件的优化

2.2.1 色谱柱的选择

对于抗菌剂的测定, 文献报道中大多采用的是 C_{18} 色 谱柱^[23-29]。因此,本研究主要对比了 Waters Acuity UPLC BEH C_{18} (100 mm×2.1 mm, 1.7 μ m)和 Waters Acuity UPLC HSS T₃ (100 mm×2.1 mm, 1.8 μ m)色谱柱的分离效果。结果 显示, HSS T₃色谱柱对 18 种化合物的整体保留能力更强, 且峰形更尖锐,各化合物的响应也更佳,因此选择 HSS T₃ 柱作为分析柱,总流离子色谱图见图 1。

注:1~18分别是: 喹乙醇、甲硝唑、地美硝唑、洛硝达唑、塞克 硝唑、诺氟沙星、氧氟沙星、培氟沙星、卡巴氧、环丙沙星、丹 诺沙星、洛美沙星、恩诺沙星、替硝唑、乙酰甲喹、奥硝唑、异 丙硝唑、喹烯酮。

图 1 18 种化合物的总流离子色谱图(20 ng/mL)

Fig.1 Total flow ion chromatogram of 18 kinds of compounds (20 ng/mL)

2.2.2 流动相的选择

本研究首先比较了乙腈和甲醇两种有机相对 18 种抗

菌剂化合物的分离效果。结果显示,采用乙腈时,大多数 化合物的分离效果及峰形优于甲醇,且采用甲醇时系统压 力明显更高,因此选择乙腈为有机相。由于 18 种抗菌剂均 采用 ESI⁺模式,在水相中加入一定比例的酸可以促进化合 物的电离^[24-25],故本研究对比了在水相中添加不同浓度的 甲酸(0.1%、0.2%、0.3%、0.4%、0.5%)对化合物响应的影 响。结果显示,随着加入甲酸浓度的增大,18 种化合物响 应略有增大,但甲酸含量超过 0.3%时,基线也明显抬高, 且 0.3%甲酸水的 pH 为 2.5,已经是色谱柱的临界点,因此, 综合考虑选择 0.3%甲酸水作为水相。

2.3 前处理条件的优化

2.3.1 提取溶剂的选择

对于硝基咪唑类化合物的提取大多采用乙酸乙 酯^[19-20], 而喹诺酮类则采用乙腈提取^[23-30]。本研究在相同 加标水平(4 μg/kg)下, 对比了不同体积比例的乙酸乙酯和 乙腈作为提取溶剂的提取效果。结果见图 2, 硝基咪唑类 化合物(奥硝唑、异丙硝唑、甲硝唑、替硝唑、地美硝唑、 洛硝达唑、塞克硝唑)的回收率随着乙腈比例的升高而逐渐 降低, 当乙腈:乙酸乙酯为 9:1 (V:V)时, 硝基咪唑类化合物 回收率仅为 43.2%~78.2%之间; 而其余化合物的回收率则 随着乙酸乙酯比例的升高逐渐降低, 当乙酸乙酯:乙腈为 9:1 (V:V)时, 回收率仅为 38.7%~66.2%; 而当乙酸乙酯:乙 腈为 1:1 时, 18 种化合物的回收率为 86.1%~97.7%, 因此选 择乙酸乙酯:乙腈为 1:1 (V:V)的混合溶液作为提取溶剂。

图 2 提取溶剂的选择(*n*=3), Fig.2 Selection of extraction solvents (*n*=3)

2.3.2 净化方式的选择

同样以 4 μg/kg 加标方式,本研究对比了文献报道的 QuEChERS (300 mg 无水硫酸镁+100 mg C₁₈)净化^[31]、HLB 固相萃取柱净化^[30]、不净化 3 种方式对 18 种化合物回收 率的影响(*n*=3),结果表明,采用 QuEChERS 净化和不净化 方式进行实验时,大多数化合物存在一定的基质抑制,回 收率普遍低于 80%,在 39.6%~117.2%之间;而采用 HLB 固 相 萃取柱净化方式时,18 种化合物的回收率为 85.5%~104.6%,因此,选择 HLB 固相萃取柱进行净化。

2.4 方法验证

2.4.1 基质效应

基质效应(matrix defect, ME)是由于待测液中的杂质和 目标化合物在离子源端竞争离子化导致目标化合物的响应 增强或者抑制的效应^[34],按照 ME/%=(基质匹配标准溶液峰 面积/溶剂标准溶液峰面积-1)×100%计算,当 ME=0 时,表 示无基质效应; ME<0,表示为基质抑制, ME>0 时,为基质 增强, ME 在±20%以内表示基质效应不明显,绿豆芽和黄豆 芽基质效应规律一致,诺氟沙星、培氟沙星、丹诺沙星和恩 诺沙星表现为基质增强效果, ME 在 5.3%~8.9%之间; 而其 余化合物则表现为基质抑制, ME 在-8.8%~2.0%之间,基 质增强和基质抑制效应均在±20%以内,说明采用本方法进 行测定,黄豆芽和绿豆芽基质效应均不明显。

2.4.2 线性范围、检出限和定量限

分别以 18 种化合物的质量浓度(X, ng/mL)为横坐标,

以溶剂标准系列中各化合物的峰面积为纵坐标(Y),绘制线性曲线,获得回归方程,并以基质加标方式计算方法检出限(*S/N*=3 计)和方法定量限(*S/N*=10 计)见表 3。在 1.0~50.0 ng/mL 范围内,18 种化合物具有较好的线性关系,相关系数(r)在 0.99 以上,方法检出限在 0.2~0.5 μg/kg 之间,方法定量限在 0.7~1.7 μg/kg 之间。

体山阳五合旱阳

42.144 - 十二十二

表 3 - 気圧力柱、恒山സ及足重敗 Table 3 Linear equations, limits of detection and limits of quantitative					
化合物	回归方程	检出限/ (µg/kg)	定量限/ (µg/kg)		
甲硝唑	<i>Y</i> =328799 <i>X</i> +645319	0.2	0.7		
地美硝唑	<i>Y</i> =166371 <i>X</i> +165903	0.3	1.0		
异丙硝唑	<i>Y</i> =339633 <i>X</i> +323077	0.3	1.0		
塞克硝唑	<i>Y</i> =349936 <i>X</i> +622536	0.2	0.7		
奥硝唑	<i>Y</i> =110185 <i>X</i> +88532	0.4	1.3		
替硝唑	<i>Y</i> =19121 <i>X</i> +23131	0.3	1.0		
洛硝达唑	<i>Y</i> =339633 <i>X</i> +323077	0.4	1.3		
喹乙醇	<i>Y</i> =93884 <i>X</i> +278914	0.3	1.0		
喹烯酮	<i>Y</i> =81557 <i>X</i> +261666	0.2	0.7		
卡巴氧	<i>Y</i> =39610 <i>X</i> +30293	0.2	0.7		
乙酰甲喹	<i>Y</i> =289901 <i>X</i> +718645	0.3	1.0		

			表 3(续)
化合物	回归方程	MDLs/ (µg/kg)	MQLs/ (µg/kg)
恩诺沙星	<i>Y</i> =5736.8 <i>X</i> -2545.2	0.3	1.0
环丙沙星	<i>Y</i> =12338 <i>X</i> -245.18	0.2	1.7
洛美沙星	<i>Y</i> =6299.4 <i>X</i> -189.62	0.4	1.3
培氟沙星	<i>Y</i> =4512.9 <i>X</i> -84.867	0.4	1.3
氧氟沙星	<i>Y</i> =34961 <i>X</i> -33097	0.4	1.3
诺氟沙星	<i>Y</i> =598.09 <i>X</i> -290.07	0.3	1.0
丹诺沙星	<i>Y</i> =5736.8 <i>X</i> -2545.2	0.5	1.7

2.4.3 准确度与精密度

以均质后的豆芽为样品基质,进行3水平6平行的加标回收实验,考察准确度与精密度。结果见表4,不同加标水平下,18种化合物在绿豆芽和黄豆芽中的平均回收率为85.7%~107.5%,相对标准偏差为0.1%~8.7%,满足GBT27404—2008《实验室质量控制规范食品理化检测附录F》的要求。

表 4 回收率以及相对标准偏差(n=6) Table 4 Recoveries and relative standard deviations (n=6)

化合物	加标水平	平均回收率/%		RSDs/%	
	/(µg/kg)	黄豆芽	绿豆芽	黄豆芽	绿豆芽
	1.00	92.3	91.8	2.6	5.1
喹乙醇	4.00	87.9	89.8	2.8	4.1
	8.00	92.3	90.7	2.8	1.1
	1.00	90.5	93.4	5.8	3.6
甲硝唑	4.00	96.1	97.1	5.7	3.6
	8.00	92.8	95.2	5.5	4.1
	1.00	92.4	95.1	5.1	5.3
地美硝唑	4.00	92.7	96.0	3.7	6.3
	8.00	96.9	97.2	2.4	1.0
	1.00	87.5	91.3	1.8	2.7
洛硝达唑	4.00	87.6	94.2	3.1	4.5
	8.00	91.2	95.4	4.5	0.1
	1.00	91.8	85.9	3.5	5.7
塞克硝唑	4.00	97.3	92.9	4.4	2.2
	8.00	91.8	93.9	1.1	0.7
	1.00	100.5	104.2	5.8	6.4
诺氟沙星	4.00	106.6	104.1	3.3	4.5
	8.00	102.8	105.6	8.7	6.7
	1.00	96.8	92.8	4.5	3.2
氧氟沙星	4.00	95.9	97.0	5.8	3.4
	8.00	96.2	88.4	1.9	6.1

					表 4(续)
化人物	加标水平	平均回收率/%		RSDs/%	
化合物	$/(\mu g/kg)$	黄豆芽	绿豆芽	黄豆芽	绿豆芽
	1.00	106.2	107.5	4.6	6.4
培氟沙星	4.00	104.3	106.4	6.9	5.8
	8.00	105.1	106.6	1.7	5.5
	1.00	96.2	89.3	2.6	2.9
卡巴氧	4.00	91.5	90.4	3.7	4.9
	8.00	90.9	90.3	3.8	0.8
	1.00	96.8	93.3	3.3	2.8
环丙沙星	4.00	91.4	90.5	6.4	3.6
	8.00	91.9	91.8	5.9	5.2
	1.00	105.6	107.1	3.5	4.5
丹诺沙星	4.00	102.0	107.4	3.2	2.3
	8.00	101.7	105.0	4.9	6.6
	1.00	86.9	93.4	3.1	3.7
洛美沙星	4.00	89.0	95.6	4.9	6.9
	8.00	97.0	91.0	5.2	1.8
	1.00	105.1	102.9	3.8	4.4
恩诺沙星	4.00	104.5	102.4	5.6	6.3
	8.00	103.7	101.3	6.5	7.6
	1.00	91.7	88.5	4.1	5.1
替硝唑	4.00	91.3	92.9	2.3	5.4
	8.00	94.7	90.0	5.1	1.7
	1.00	89.9	92.5	3.4	6.1
乙酰甲喹	4.00	92.3	97.0	5.6	3.3
	8.00	86.5	91.2	2.5	5.1
	1.00	88.0	91.3	3.9	5.8
奥硝唑	4.00	91.5	92.8	4.4	4.9
	8.00	96.4	89.5	3.9	4.8
	1.00	89.9	92.6	3.1	4.2
异丙硝唑	4.00	88.6	96.3	8.4	2.3
	8.00	96.1	97.7	2.0	7.4
	1.00	92.2	88.6	4.0	3.5
喹烯酮	4.00	85.7	87.5	3.6	6.8
	8.00	92.3	90.5	5.0	3.9

2.4.4 实际样品测定

实验选取了市场上出售的黄豆芽和绿豆芽各 25 份共 计 50 批次样品(编号 1~20 为农贸市场样品,编号 21~25 为 超市样品)进行测定,结果如表 5 所示。有 8 批次检出甲硝 唑,含量在 4.6~149 μg/kg之间;3 批次检出诺氟沙星,含量 分别为 49.8、65.5、1120 μg/kg;1 批次检出环丙沙星,含量 为 47.6 μg/kg;2 批次检出恩诺沙星,含量分别为 74.3 和 1490.0 μg/kg; 共计14批次检出,检出率为28%,其中包含 9 批次绿豆芽,4 批次黄豆芽,均来自于农贸市场样品,但 这也可能和农贸市场样本量大有关。

表 5 实际豆芽样品中 18 种抗菌剂的测定结果 Table 5 Determination results of 18 kinds of antimicrobial agents in actual bean sprout samples

出口泊旦	含量/(µg/kg)				
竹印细石	甲硝唑	诺氟沙星	环丙沙星	恩诺沙星	
绿豆芽 2	ND	ND	ND	74.3	
绿豆芽3	22.8	ND	ND	ND	
绿豆芽4	ND	ND	47.6	ND	
绿豆芽6	ND	65.5	ND	ND	
绿豆芽 7	15.5	ND	ND	ND	
绿豆芽 8	ND	1120	ND	ND	
绿豆芽 10	4.6	ND	ND	ND	
绿豆芽 12	34.7	ND	ND	ND	
绿豆芽 15	64.4	ND	ND	ND	
黄豆芽1	58.0	ND	ND	1490.0	
黄豆芽4	149.0	ND	ND	ND	
黄豆芽6	ND	49.8	ND	ND	
黄豆芽 7	40.7	ND	ND	ND	

注:ND 表示低于检出限。

3 结 论

本研究通过对前处理方法、色谱条件和质谱条件的优 化,建立了超高效液相色谱-串联质谱法同时测定豆芽中 18种抗菌剂的方法。在现有针对豆芽中喹诺酮类研究的基 础上,增加了硝基咪唑和喹噁啉类的研究,并将所建立的 方法成功应用于 50 份实际豆芽样品的测定。该方法具有高 通量、高准确度、高灵敏度等特点,可为相关监管部门对 于豆芽中抗菌剂残留的监测提供技术支持,接下来,可进 一步研究该方法对于其他植物源性食品中抗菌剂残留测定 的适用性,扩大其应用范围。

参考文献

[1] 杨睿. 水溶性壳聚糖处理对豆芽品质的影响[D]. 杭州: 浙江工商大学, 2018.

YANG R. Effect of water-soluble chitosan treatment on bean sprout quality [D]. Hangzhou: Zhejiang University of Technology and Industry, 2018.

[2] 靳颖.大豆在发芽过程中抗原蛋白和营养特性变化及应用[D].郑州: 郑州轻工业大学,2020.

JIN Y. Changes and application of antigenic protein and nutritional characteristics of soybean during germination [D]. Zhengzhou: Zhengzhou University of Light Industry, 2020.

[3] 肖金玲、沈蒙、葛云飞,等. 萌发绿豆中多酚类物质动态变化规律及 其抗氧化活性的研究[J]. 中国粮油学报, 2020, 35(7): 36-43. XIAO JL, SHEN M, GE YF, *et al.* Study on the dynamic changes and antioxidant activity of polyphenols in germinating mung beans [J]. J Cere Oils Ass, 2020, 35(7): 36–43.

- [4] DONG YT, YIN M, DONG N. Metabolomic analysis of the polyphenols in germinating mung beans (*Vigna radiata*) seeds and sprouts [J]. J Sci Food Agric, 2014, 94(8): 256–264.
- [5] 巩蔼, 任顺成, 常云彩, 等. 云南特色豆类的酚类含量及其抗氧化活 性[J]. 中国粮油学报, 2015, 30(4): 1–5. GONG AI, REN SC, CHANG YC, *et al.* Phenolic content and antioxidant activity of Yunnan characteristic beans [J]. J Cere Oils Ass, 2015, 30(4): 1–5.
- [6] 袁嫦静. 理性、科学地直面中国食品安全持久战(上)——2014 年食品 安全热点科学解读[J]. 食品工业科技, 2015, 36(4): 22–26.
 YUAN CJ. Facing the protracted war of China's food safety rationally and scientifically (Part I)—Scientific interpretation of food safety hotspots in
- 2014 [J]. Food Ind Sci Technol, 2015, 36(4): 22–26.
 [7] 孟继秋,曹金博,孙亚宁,等.豆芽中生长调节剂类违禁添加物的检测方法研究进展[J].食品与机械, 2020, 36(2): 224–228.
 MENG JQ, CAO JB, SUN YN, *et al.* Research progress on detection methods of growth regulators in bean sprouts [J]. Food Mach, 2020, 36(2): 224–228.
- [8] 梅再胜,梅晗璐,戴馨怡. 豆芽生产过程中发生腐烂的原因与防治技术[J]. 科学种养, 2015, (4): 36.
 MEI ZS, MEI HL, DAI XY. Causes and control technology of decay in bean sprout production [J]. Sci Plant Breed, 2015, (4): 36.
- [9] HUANG SW, YANG J, SUN YM, et al. Effects of 6-benzylaminopurine on soybean sprouts growth and determination of its residue [J]. J Southern Agric, 2015, 83(2): 11–18.
- [10] WANG W, WANG B, LIU Z, et al. Developmental toxicity and alteration of gene expression in zebrafish embryo exposed to 6-benzylaminopurine [J]. Chemosphere, 2019, 233(5): 336–346.
- [11] 杨婕,黄少文,孙远明,等. 4.氯苯氧乙酸钠对绿豆芽生长的影响及其残留分析[J]. 食品工业科技, 2015, 36(15): 104-108.
 YANG J, HUANG SW, SUN YM, *et al.* Effect of sodium 4-chlorophenoxyacetate on the growth of mung bean sprouts and its residue analysis [J]. Food Ind Sci Technol, 2015, 36(15): 104-108.
- [12] 高宗林,曹旭妮. 二维液相色谱测定绿豆芽中赤霉素、6-苄基腺嘌呤、4-氯苯氧乙酸和 2,4-二氯苯氧乙酸[J]. 化学试剂, 2019, 41(1): 63–68.
 GAO ZL, CAO XN. Determination of gibberellin, 6-benzyladenine, 4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid in mung bean sprouts by two-dimensional liquid chromatography [J]. Chem Reagent, 2019, 41(1): 63–68.
- [13] 刘红,曾志杰,李传勇,等. 4.氯苯氧乙酸钠对小鼠的毒性及其残留分析[J]. 食品科学, 2016, 37(3): 197–204.
 LIU H, ZENG ZJ, LI CY, *et al.* Toxicity and residue analysis of sodium 4-chlorophenoxyacetate in mice [J]. Food Sci, 2016, 37(3): 197–204.
- [14] MCGOWAN E. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado [J]. Environ Sci Technol, 2006, 40(23): 7445.
- [15] MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environ Pollut, 2007, 148(2): 570–579.
- [16] 李佩佩,张小军,梅光明,等.分散固相萃取-超高效液相色谱-串联质 谱检测水产品中 14 种喹诺酮类药物[J].食品科学,2014,35(24): 265-270.

LI PP, ZHANG XJ, MEI GM, *et al.* Determination of 14 quinolones in aquatic products by dispersive solid phase extraction ultra-high -performance liquid chromatography tandem mass spectrometry [J]. Food

Sci, 2014, 35(24): 265-270.

- [17] ZHOU J, XUE X, FANG C, *et al.* Simultaneous determination of seven fluoroquinolones in royal jelly by ultrasonic-assisted extraction and liquid chromatography with fluorescence detection [J]. J Separat Sci, 2015, 32(7): 955–964.
- [18] RAMOS M, ARANDA A, GARCIA E, et al. Simple and sensitive determination of five quinolones in food by liquid chromatography with fluorescence detection [J]. J Chromatogr B, 2003, 789(2): 373–381.
- [19] 李蓉,杨璐齐,罗阳丹,等. QuEChERS/UPLC-Q-Orbitrap HRMS 法测定水产及水产加工品中 16 种苯并咪唑类与 13 种硝基咪唑类药物残留
 [J]. 分析测试学报, 2018, 37(5): 547–555.
 LI R, YANG LQ, LUO YD, *et al.* Determination of 16 benzimidazoles and 13 nitroimidazoles residues in aquatic products and aquatic products by
- QuEChERS/UPLC-Q-Orbitrap HRMS [J]. J Anal Test, 2018, 37(5): 547–555.
 [20] MOEMA D, NANDI MM, DUBE S. Development of a dispersive liquid-liquid
- [20] MOLMA D, NARDI MM, DOBE S. Development of a dispersive inquici-inquid microextraction method for the determination of fluoroquinolones in chicken liver by high performance liquid chromatography [J]. Anal Chim Acta, 2012, 730: 80–86.
- [21] SCHNEIDER MJ, BRADEN SE, REYES HI, et al. Simultaneous determination of fluoroquinolones and tetracyclines in chicken muscle using HPLC with fluorescence detection [J]. J Chromatogr B, 2007, 846(1-2): 8–13.
- [22] GAJDA A, POSYNIAK A, ZMUDZKI J, et al. Determination of (fluoro) quinolones in eggs by liquid chromatography with fluorescence detection and confirmation by liquid chromatography-tandem mass spectrometry [J]. Food Chem, 2012, 135(2): 430–439.
- [23] 闵宇航,魏宇涛,杜钢,等. 超高效液相色谱串联质谱法测定豆芽中 15 种喹诺酮类药物[J]. 食品科技, 2020, 45(7): 332–337.
 MIN YH, WEI YT, DU G, *et al.* Determination of 15 quinolones in bean sprouts by ultra performance liquid chromatography-tandem mass spectrometry [J]. Food Sci Technol, 2020, 45(7): 332–337.
- [24] 施元旭,盛华栋,张水锋,等.同位素稀释法-超高效液相色谱-串联质 谱法测定豆芽中 6 种喹诺酮类药物残留[J].食品安全质量检测学报, 2020,11(11):3551-3557.

SHI YX, SHENG HD, ZHANG SF, *et al.* Determination of six quinolones residues in bean sprouts by isotope dilution ultra performance liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2020, 11(11): 3551–3557.

[25] 张今君,夏慧丽,高海波.分散固相萃取-超高效液相色谱-串联质谱法 测定豆芽中 6 种喹诺酮类药物[J].食品工业科技,2020,41(23): 260-271.

ZHANG JJ, XIA HL, GAO HB. Determination of six quinolones in bean sprouts by dispersive solid phase extraction ultra-high-performance liquid chromatography tandem mass spectrometry [J]. Food Ind Sci Technol, 2020, 41(23): 260–271.

- [26] 徐潇颖,赵超群,梁晶晶,等. 全自动固相萃取-高效液相色谱-串联质 谱法测定豆芽中15种喹诺酮类药物的残留量[J]. 理化检验(化学分册), 2020, 56(5): 583–589.
 XU XY, ZHAO CQ, LIANG JJ, et al. Determination of 15 quinolones residues in bean sprouts by automatic solid phase extraction high performance liquid chromatography tandem mass spectrometry [J]. Phys
- [27] 程志,宿书芳,魏莉莉,等.通过式固相萃取净化-液相色谱-串联质谱 法测定豆芽中 10 种喹诺酮类抗生素[J].分析试验室,2020,39(2): 131-136.

Test Chem Anal Part B, 2020, 56(5): 583-589

CHENG Z, SU SF, WEI LL, *et al.* Determination of 10 quinolone antibiotics in bean sprouts by solid phase extraction purification liquid chromatography tandem mass spectrometry [J]. Anal Lab, 2020, 39(2): 131–136.

[28] 陶志成,朱丹倩,骆灿,等. 豆芽中6种喹诺酮类抗生素药物残留量的 同时测定高效液相色谱-串联质谱法测定[J]. 化工管理, 2019, (11): 41-42.

TAO ZC, ZHU DQ, LUO C, *et al.* Simultaneous determination of six quinolone antibiotic residues in bean sprouts by high performance liquid chromatography tandem mass spectrometry [J]. Chem Manage, 2019, (11): 41–42.

- [29] 张宪臣,华洪波,张朋杰,等. SA-HPLC-MS/MS 法快速检测豆芽中 4 种喹诺酮类药物残留量[J]. 吉林农业大学学报, 2012, 34(2): 216–220. ZHANG XC, HUA HB, ZHANG PJ, et al. Rapid determination of four quinolones residues in bean sprouts by SA-HPLC-Ms/MS [J]. J Jilin Agric Univ, 2012, 34(2): 216–220.
- [30] 颜伟华,周莹,郭浩炜,等. UPLC-MS/MS 快速筛查豆芽中 27 种植物 生长调节剂和抗生素类药物[J].食品科学,2021,42(12):302-308.
 YAN WH, ZHOU Y, GUO HW, *et al.* Rapid screening of 27 plant growth regulators and antibiotics in bean sprouts by UPLC-MS/MS [J]. Food Sci, 2021,42(12):302-308.
- [31] 孙晓冬,郝杰,毛婷,等. 超高效液相色谱-串联四极杆质谱快速筛查 豆芽中51种抗生素类药物的残留[J]. 食品科学, 2017, 38(20): 327-333. SUN XD, HAO J, MAO T, et al. Rapid screening of 51 antibiotic residues in bean sprouts by ultra-high-performance liquid chromatography tandem quadrupole mass spectrometry [J]. Food Sci, 2017, 38(20): 327-333.
- [32] 杨旺火,吴少明,蔡小明,等. 液相色谱-串联质谱法测定猪肉中咪唑 类药物及其代谢物[J]. 色谱, 2017, 35(10): 1062–1067.
 YANG WH, WU SM, CAI XM, *et al.* Determination of imidazole drugs and their metabolites in pork by liquid chromatography tandem mass spectrometry [J]. Chromatography, 2017, 35(10): 1062–1067.
- [33] 陈琳,黄雪玲,孙建华.高效液相色谱-串联质谱法同时测定养殖池塘 沉积物中喹诺酮类、四环素类和磺胺类抗生素[J].水产科技情报,2017, 44(4): 55–69.

CHEN L, HUANG XL, SUN JH. Simultaneous determination of quinolones, tetracyclines and sulfonamides in aquaculture pond sediments by high performance liquid chromatography tandem mass spectrometry [J]. Aquat Sci Technol Inf, 2017, 44(4): 55–69.

[34] 吴少明, 蔡小明, 周鹏, 等. 超高效液相色谱-串联质谱法同时测定水 产品中 6 种丁香酚类物质的残留量[J]. 食品科学, 2020, 41(16): 320-326.

WU SM, CAI XM, ZHOU P, *et al.* Simultaneous determination of six eugenols residues in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry [J]. Food Sci, 2020, 41(16): 320–326.

(责任编辑: 郑 丽 张晓寒)

作者简介

吴少明,硕士,工程师,主要研究方向 为食品安全。 E-mail: 280257959@qq.com