高效液相色谱法同时测定麻花中 16 种 多环芳烃含量

伍 蓉,熊有明,姜登军,阎 睿,王宗平,陈 爽,程 燕^{*} (重庆市万州食品药品检验所,重庆 404000)

摘 要:目的 建立高效液相色谱法测定麻花中 16 种多环芳烃(polycyclic aromatic hydrocarbons, PAHs)含量的分析方法。**方法** 样品经正己烷提取,提取液经弗洛里硅藻土固相萃取小柱串联 PAHs 专用固相萃取小柱净化,Waters PAH C₁₈柱进行色谱分离,采用高效液相色谱法测定,外标法定量。**结果** 苊烯在 5~200 ng/mL 范围内呈现良好的线性关系,相关系数(r)为 0.9996,其他 15 种多环芳烃在 1~200 ng/mL 范围内呈现良好的线性关系,相关系数(r)为 0.9985~0.9998。方法的检出限为 0.4~2.5 µg/kg。在 5、10、25 µg/kg 3 个添加水平的平均回收率为 63%~95%,相对标准偏差小于 10%。**结论** 该方法净化效果好,具有较好的准确度、灵敏度和精密度,可用于麻花中多环芳烃的测定。

关键词: 高效液相色谱法; 多环芳烃; 麻花

Simultaneous determination of 16 kinds of polycyclic aromatic hydrocarbons in fried dough twists by high performance liquid chromatography

WU Rong, XIONG You-Ming, JIANG Deng-Jun, YAN Rui, WANG Zong-Ping, CHEN Shuang, CHENG Yan^{*}

(Wanzhou Institute for Food and Drug Control, Chongqing 404000, China)

ABSTRACT: Objective To establish a method for the simultaneous determination of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) in fried dough twists by high performance liquid chromatography. **Methods** The samples were extracted by n-hexane, and purified by Florian diatomite solid phase extraction column and PAHs-specific solid phase extraction column in series. The chromatographic separation was performed on Waters PAH C_{18} chromatographic column, determined by high performance liquid chromatography, and quantified by external standard method. **Results** Acenaphthylene showed good linear relationship in the range of 5–200 ng/mL, and the correlation coefficient (*r*) was 0.9996, other 15 kinds of polycyclic aromatic hydrocarbons showed good linear relationship in the range of 1–200 ng/mL, and the correlation coefficients (*r*) were 0.9985–0.9998. The limits of detection were 0.4–2.5 µg/kg. The average recoveries at 3 concentration levels of 5, 10, 25 µg/kg were in the range of 63%–95%, and the relative standard deviations were no more than 10%. **Conclusion** The method has good purification effect, good accuracy, sensitivity and precision, and can be used for the determination of polycyclic

基金项目:重庆市市场监督管理局科研计划项目(CQSJKJ2020033)、重庆市食品安全专项计划项目

Fund: Supported by the Scientific Research Program of Chongqing Market Supervision Bureau (CQSJKJ020033), and the Chongqing Special Project for Social and Livelihood Science and Technology Innovation

^{*}通信作者:程燕,工程师,主要研究方向为食品与药品检测。E-mail: chengyan1209@163.com

^{*}Corresponding author: CHENG Yan, Engineer, Chongqing Wanzhou Institute for Food and Drug Control, No.16, Longxi Road, Wanzhou 404000, China. E-mail: chengyan1209@163.com

aromatic hydrocarbons in fried dough twists.

KEY WORDS: high performance liquid chromatography; polycyclic aromatic hydrocarbons; fried dough twists

0 引 言

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是 含有 2 个或者 2 个以上苯环的一类污染物, 广泛存在于环 境、食品及生物体中, 具有脂溶性较高、不易降解、易积 累等特点。PAHs 暴露出的最大毒性为致癌性^[1-4], 致癌性 随苯环数量的增加而增大, 是食品安全的一个潜在风险。 美国环保署于 1979 年提出的优先控制的 PAHs 化合物有 16 种(萘、苊烯、苊、苯并[k]荧蒽、菲、蒽、苯并[a]蒽、 苯并[b]荧蒽、芘、苯并[a]芘、䓛、二苯并[a,h]蒽、芴、荧 蒽、茚并[1,2,3-c,d]芘、苯并[g,h,i]芘)。PAHs 作为食品中 的有害物质, 已被多国列为重点监测对象, 目前关于 PAHs 污染情况的研究主要集中在大气、食用油、水等方面^[4-8]。

麻花是我国的一种特色油炸面食小吃, 爽脆可口, 较 受大众喜爱, 已经成为重庆等地方的特色产品。食品中 PAHs 的污染途径之一就是加工过程, 如食品的烤、炸、熏 制等。因此麻花的制作工艺(油炸)和油的质量, 可能使麻花 存在 PAHs 污染的情况, 而目前少有相关文献报道麻花中 PAHs 的检测和污染情况, 因此有必要建立合适的方法测 定麻花中的 PAHs, 对麻花中多环芳烃的污染水平展开调 查研究。

高效液相色谱法是测定食品中多环芳烃含量较为常用的方法^[6-11],因此本研究采用高效液相色谱法,考察了不同色谱柱、不同净化方式,以期建立麻花中16种多环芳烃的检测方法,为麻花中多环芳烃的污染监测提供依据。

1 材料与方法

1.1 材料与试剂

萘、苯并[k]荧蒽、苊烯、苊、芴、苯并[a]芘、菲、 蒽、荧蒽、苯并[g,h,i]芘、二苯并[a,h]蒽、芘、苯并[a]蒽、 茚并[1,2,3-c,d]芘、䓛、苯并[b]荧蒽共 16 种 PAHs 混合标 准品(纯度 100%,北京曼哈格生物科技有限公司);乙腈、 正己烷、二氯甲烷(色谱纯,中国迪马公司);PAHs 专用固 相萃取小柱、弗洛里硅土固相萃取小柱(1 g, 10 mL,中国 CNW 公司)。

麻花样品:重庆市万州食品药品检验所在市场上随 机抽取。

1.2 仪器与设备

LC-20AT 型高效液相色谱仪(配置荧光检测器和紫外 检测器,日本岛津公司);IKA MS3 型涡旋混合器(德国 IKA 公司);Biotage Turbo VAP LV 型氮吹仪(瑞典 Biotage 公司)。

1.3 实验方法

1.3.1 样品前处理

样品前处理1:称取适量样品于50 mL 离心管中,加入 10 mL 正己烷提取2次,合并两次提取液,氮吹至3~5 mL, 将剩余液体全部转入预先用5 mL 正己烷活化好的弗洛里 硅土固相萃取小柱,用8 mL 二氯甲烷-正己烷(1:1,*V:V*)洗 脱,收集洗脱液,氮吹至近干,轻摇至干,1 mL 乙腈复溶, 涡旋混匀,过膜,待测。

样品前处理2:称取适量样品于50 mL 离心管中,加入 10 mL 乙腈提取2次,合并2次提取液,氮吹至近干,3 mL 正己烷复溶,将复溶液全部转入预先用5 mL 正己烷活化 好的弗洛里硅土固相萃取小柱,用8 mL 二氯甲烷-正己烷 (1:1, *V*:*V*)洗脱,收集洗脱液,氮吹至近干,轻摇至干,1 mL 乙腈复溶,涡旋混匀,过膜,待测。

样品前处理3:称取适量样品于50 mL 离心管中,加入 10 mL 正己烷提取2次,合并2次提取液,氮吹至3~5 mL, 将剩余液体转移到预先分别用5 mL 二氯甲烷和5 mL 正己 烷活化好的 PAHs 专用柱上,准确加入6 mL 正己烷淋洗, 弃去流出液,加入10 mL 二氯甲烷洗脱,收集洗脱液,氮 吹至近干,轻摇至干,1 mL 乙腈复溶,超声,涡旋混匀,过 膜,待测。

样品前处理4:称取适量样品于50 mL 离心管中,加入 10 mL 正己烷提取2次,合并2次提取液,氮吹至3~5 mL, 待净化。将预先用5 mL 正己烷活化好的弗洛里硅土固相萃 取小柱串联接在预先分别用5 mL 二氯甲烷和5 mL 正己烷 活化好的 PAHs 专用柱上,将待净化液转移到串联柱上, 准确加入 6 mL 正己烷淋洗串联柱,弃去流出液,加入 5 mL 二氯甲烷-正己烷(1:1, *V:V*)洗脱,收集洗脱液,弃去 弗洛里硅土固相萃取小柱,加入6 mL 二氯甲烷洗脱,收集 洗脱液,合并2次洗脱液,氮吹至近干,轻摇至干,1 mL 乙 腈复溶,超声,涡旋混匀,过膜,待测。

1.3.2 标准溶液制备

准确吸取一定量上述 16 种混合标准溶液, 配制苊烯 质量浓度为 5、10、20、50、100、200 ng/mL 的标准系列 溶液, 其他 15 种 PAHs 质量浓度为 1、5、10、20、50、100、 200 ng/mL 的标准系列溶液。

1.3.3 色谱条件

Waters PAH C₁₈柱(250 mm×4.6 mm, 5 µm); 流动相为: A(乙腈), B(超纯水); 梯度洗脱程序为: 0.0~2.0 min, 35% A; 2.0~28.0 min, 35%~100% A; 28.0~40.0 min, 100% A; 40.0~42.0 min, 100%~35% A; 42.0~48.0 min, 35% A; 流速 为: 1.2 mL/min; 柱温为: 25 °C; 进样体积为: 30 µL。紫外 检测器和荧光检测器检测程序见表 1。

1	Table 1 Ultraviolet detector and flue	Ultraviolet detector and fluorescent detector detection procedure of PAHs							
时间/min	紫外检测波长/nm	时间/min	荧光检测激发波长/nm	荧光检测发射波长/nm					
0.0	220	0.0	270	324					
16.0	228	20.2	248	375					
19.0	261	23.2	280	462					
20.1	251	24.2	270	385					
22.9	236	30.5	256	446					
26.0	287	32.2	292	410					
28.4	267	37.9	274	507					
30.5	255	40.0	270	324					
32.2	236	/	/	/					
33.5	297	/	/	/					
37.9	249	/	/	/					
40.0	220	/	/	/					

表 1 PAHs 紫外检测和荧光检测程序 able 1 Ultraviolet detector and fluorescent detector detection procedure of PAH

注:/表示无此数据。

2 结果与分析

2.1 色谱柱的选择

本研究选择 Waters Xbrige C_{18} 柱、CNW PAH C_{18} 柱、 Waters PAH C_{18} 柱 3 种不同的色谱柱进行比较研究。实验 发现在 Waters Xbrige C_{18} 上, 芴和苊、苯并[a]蔥和蘆不能 实现基线分离, 该色谱柱不适合 16 种多环芳烃的分离, CNW PAH C_{18} 在峰型上较 Waters PAH C_{18} 柱差,因此本研 究选择 Waters PAH C_{18} 柱进行后续实验。在最佳色谱条件 下的标准溶液色谱图见图 1。

2.2 检测器的选择

16 种 PAHs 中, 苊烯不发射荧光, 但含苯环, 具有紫 外吸收。本研究通过二极管阵列检测器(diode array detector, DAD), 得出 16 种 PAHs 的最大紫外吸收波长, 建立了紫外 检测器的吸收波长程序, 见表 1。其他 15 种 PAHs 在荧光 检测器下, 响应值较高, 灵敏度更好, 为实现在较高灵敏 度条件下同时测定 16 种 PAHs, 本研究将紫外检测器和荧 光检测器串联使用, 检测波长程序见表 1。本研究最终选 择紫外检测器串联荧光检测器进行检测。

2.3 净化方式的优化

多环芳烃类化合物难溶于水,易溶于有机溶剂,在参考文献^[9-14]和 GB 5009.265—2021《食品安全国家标准 食品中多环芳烃的测定》的基础上,本研究采用正己烷作为提取溶剂。食品基质复杂、杂质多、干扰大,提取液需进行净化,在参考文献^[15-20]的基础上,本研究比较了弗洛里硅土固相萃取小柱、PAHs 专用固相萃取小柱、弗洛里硅土固相萃取小柱串联 PAHs 专用固相萃取小柱的净化效果。

弗洛里硅土固相萃取小柱的填料是硅胶键合氧化镁, 是一种强极性的高选择性吸附剂,可以从非极性溶液中吸 附极性化合物从而实现极性物质的回收或除去。样品经样 品前处理1处理后,有油状物质残留。为减少油脂的残留, 本研究将提取溶剂换成乙腈,样品经样品前处理2处理后, 仍然有少量油脂残留,净化效果见图2。实验结果表明弗 洛里硅藻土固相萃取小柱能有效去除极性较大的杂质,使 色谱过程的前段基线较平稳,杂质峰较少,但是除油效果 较差,极性较小的目标化合物受杂质干扰较大。

PAHs 专用固相萃取小柱以分子印迹聚合物 (molecular imprinted polymer, MIP)为填料,聚合物上的结 合位点是 MIP 具有特异选择性的关键结构,目标化合物与 这些结合位点通过氢键作用、离子作用、π-π 电子和空穴 识别等作用吸附在固相萃取小柱上,再用淋洗液除去结合 作用较弱的或不结合的非目标化合物,从而达到除去油脂 和杂质的作用。实验结果表明 PAHs 专用柱能有效去除油 脂,在一定程度上能去除目标化合物附近的杂质,样品基 线更平稳,但是无法除去极性较大杂质,净化效果见图 3。

综上,为达到理想的净化效果,将上述 2 种固相萃取 小柱进行串联使用,净化结果见图 4。样品经串联柱净化 后,整个分析过程内,基线更平稳、杂质干扰更小。因此 本研究最终选择弗洛里硅土固相萃取小柱串联 PAHs 专用 固相萃取小柱进行净化。

2.4 方法学考察

2.4.1 线性范围和检出限

配制质量浓度为 5、10、20、50、100、200 ng/mL 的 苊烯标准溶液,质量浓度为 1、5、10、20、50、100、200 ng/mL 的其他 15 种 PAHs 混合标准溶液,以目标化合物的质量浓度 (X, ng/mL)为横坐标,峰面积(Y)为纵坐标建立线性回归方程, 所得的线性方程见表 2,16 种 PAHs 的相关系数均大于 0.9985, 苊烯在 5~200 ng/mL 范围(相关系数为 0.9996),其他 15 种 PAHs 在 1~200 ng/mL 范围(相关系数为 0.9985~0.9998), 线性关系良好。以 3 倍信噪比(S/N)计算检出限,16 种 PAHs 的检出限为 0.4~2.5 μg/kg,能够满足检测的要求。

注: 1. 萘; 2. 苊烯; 3. 苊; 4. 芴; 5. 菲; 6. 蒽; 7. 荧蒽; 8. 芘; 9. 苯并[a]蒽; 10. 䓛; 11. 苯并[b]荧蒽; 12. 苯并[k]荧蒽; 13. 苯并[a]芘; 14. 二苯并[a,h]蒽; 15. 苯并[g,h,i]芘; 16. 茚并[1,2,3-c, d]芘; A. 紫外检测器的色谱图; B. 荧光检测器的色谱图, 下同。

图 1 16 种 PAHs 的标准溶液色谱图

Fig.1 Chromatograms of standard solutions of 16 kinds of PAHs

图 2 弗洛里硅土固相萃取小柱净化的样品溶液色谱图 Fig.2 Chromatograms of sample solutions purified by Florian diatomite solid phase extraction column sample solution

2.4.2 回收率和精密度

在已知本底含量的样品中添加 5、10、25 μg/kg 的 3 个水平的混合标准溶液,进行加标回收实验,每个浓度水 平 3 个平行,结果见表 2。在 3 个不同添加水平下,16 种 PAHs 的平均回收率为 63%~95%,相对标准偏差(relative standard deviations, RSDs)均不大于 10%,说明该方法具有 良好的准确度和精密度。

2.5 实际样品测定

采用本研究建立的方法对40批麻花进行含量测定,

所有样品均有检出 PAHs,总量范围为 18.2~ 220.5 μg/kg。检出的 PAHs 以 2~4 环为主,其浓度超过 16种 PAHs 浓度总量的 90%,萘、芴、菲、荧蒽、芘、 苊、苊烯为麻花中的突出组分,检出率超过 70%,其中 萘的含量最高,高达 82.5 μg/kg,毒性较大的 5~6 环的 含量和检出率均比较低。由此可见,麻花中存在 PAHs 污染的情况, PAHs 的组成以 2、3、4 环为主,需要引起 相关部门的重视。

图 3 PAHs 专用固相萃取小柱净化的样品溶液色谱图 Fig.3 Chromatograms of sample solutions purified by PAHs-specific solid phase extraction column

图 4 弗洛里硅藻土固相萃取小柱串联 PAHs 专用固相萃取小柱净化的样品溶液色谱图 Fig.4 Chromatograms of sample solutions purified by Florian diatomite solid phase extraction column and PAHs-specific solid phase extraction column in series

表 2 16 种	PAHs 的线性方程、平均回收	率和相对标准体					表 2(续)	
Table 2 Linear equations, average recoveries, and relative standard deviations of 16 kinds of PAHs (n=3)					名称	线性方程	平均回收率 /%	RSDs /%
名称	线性方程	平均回收率	RSDs		芘	<i>Y</i> =220980 <i>X</i> +216040	84~91	4.3
芋	V 54194 5 V 107522	(2,75	2.0		苯并[a]蒽	<i>Y</i> =267735 <i>X</i> +326341	89~94	3.2
佘	<i>Y</i> =54184.5 <i>X</i> +12/533	63~/5	3.9		崫	<i>Y</i> =300093 <i>X</i> +280508	80~83	2.8
苊烯	<i>Y</i> =437.716 <i>X</i> +442.488	66~70	4.7		苯并[b]荧蒽	<i>Y</i> =137610 <i>X</i> +119085	77~90	6.4
苊	<i>Y</i> =122072 <i>X</i> +135212	70~75	4.9		苯并[k]荧蒽	<i>Y</i> =675112 <i>X</i> +608016	89~92	5.1
芴	<i>Y</i> =360661 <i>X</i> +283810	73~78	5.9		苯并[a]芘	<i>Y</i> =630975 <i>X</i> +586800	88~94	4.7
丰	<i>Y</i> =125717 <i>X</i> +127543	77~81	6.1		二苯并[a,h]蒽	<i>Y</i> =205483 <i>X</i> +189903	85~91	3.9
茵	<i>Y</i> =272517 <i>X</i> +303291	82~86	4.8		苯并[g,h,i]芘	<i>Y</i> =173235 <i>X</i> +143810	85~88	4.2
荧蒽	<i>Y</i> =63819.8 <i>X</i> +57109.7	89~95	2.1	_	茚并[1,2,3-c,d]芘	<i>Y</i> =23756.4 <i>X</i> +10887.2	79~85	5.5

表 2 16 种 PAHs 的线性方程、平均回收率和相对标准偏差(n=3)

3 结论与讨论

本研究采用正己烷提取, 经弗洛里硅土固相萃取小柱串 联 PAHs 专用固相萃取小柱净化后, 采用高效液相色谱法测 定, 通过色谱柱的选择、净化方式的优化等, 建立了同时测定 麻花中 16 种 PAHs 的定量分析方法。该方法具有较好的检出 限和灵敏度, 可用于麻花中 16 种 PAHs 含量的测定, 对基质 复杂、含油量高的样品的净化, 该方法亦具有一定的参考价 值。40 批麻花样品的测定结果表明, 麻花中存在 PAHs 污染 的情况, PAHs 含量较高的批次, 不排除是制作过程中使用的 油存在质量问题, 后续将对 PAHs 的迁移展开研究。

参考文献

- WANG XL, WANG SF, LI FH, *et al.* Occurrence of polycyclic aromatic hydrocarbons in Youtiao and exposure assessment from Shandong province, China [J]. Food Control, 2020, 111: 1–8.
- [2] ERIN LP, ADOLFO G, MAICKEL A, et al. Chronic PAH exposures and associated declines in fish health indices observed for ten grouper species in the gulf of Mexico [J]. Sci Total Environ, 2020, 703: 1–14.
- [3] ZHANG CC, LI LY, WANG CL, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment [J]. Mar Pollut Bull, 2020, 153: 1–9.
- [4] ESSAM N, LEE H, ZURIATI Z, et al. Health risk assessment of polycyclic aromatic hydrocarbons through aquaculture fish consumption, Malaysia [J]. Environ For, 2016, 17(1): 97–106.
- [5] 邝伟明,林彩,林辉,等. 南海海洋生物体内多环芳烃污染特征及风险 评价[J]. 环境保护科学, 2021, 47(4): 127–132.
 KUANG WM, LIN C, LIN H, *et al.* Characteristics and risk assessment of polycyclic aromatic hydrocarbons in marine organisms from South China Sea [J]. Environ Protect Sci, 2021, 47(4): 127–132.
- [6] 张志玮,马永建,刘华良,等. 江苏省市售食用植物油中多环芳烃污染 状况分析[J]. 江苏预防医学, 2012, 23(5): 57–58. ZHANG ZW, MA YJ, LIU HL, *et al.* Investigation of polycyclic aromatic hydrocarbons contents in edible vegetable oil in Jiangsu [J]. Jiangsu J Prev Med, 2012, 23(5): 57–58.
- [7] 王姝婷, 王小芳, 刘少颖, 等. 杭州市区油炸及烧烤类食品中多环芳烃 含量的调查分析[J]. 中国卫生检验杂志, 2017, 27(19): 2846–2853.
 WANG ST, WANG XF, LIU SY, *et al.* Investigation and analysis of polycyclic aromatic hydrocarbons contents in fried and grilled food samples in Hangzhou [J]. Chin J Health Lab Technol, 2017, 27(19): 2846–2853.
- [8] 乌日娜,金芬,杨莉莉,等. 食用油脂中多环芳烃污染来源及控制技术 研究展望[J]. 食品与发酵工业, 2015, 41(9): 225–229.
 WU RN, JIN F, YANG LL, *et al.* Review on the pollution sources and control techniques of polycyclic aromatic hydrocarbons (PAHs) in edible oil [J]. Food Ferment Ind, 2015, 41(9): 225–229.
- [9] KIM HR, HAN DK. Benzopyrene exposure induced increase of mitochondrial mass and mitochondrial DNA copy number in leukemia and blood cells [J]. Int J Lab Hematol, 2012, 34: 120–121.
- [10] 刘红. 快速溶剂萃取 GC-MS 测定土壤中多环芳烃的方法研究[J]. 当代 化工研究, 2021, 16: 38–41
 LIU H. Study on determination of polycyclic aromatic hydrocarbons in soil by rapid solvent extraction GC-MS [J]. Mod Chem Res, 2021, 16: 38–41.
- [11] 王春蕾,刘华良,马永建,等. 在线固相萃取-高效液相色谱法检测食用油中 15+1 种欧盟优控多环芳烃[J]. 分析化学,2015,43(11): 1743-1748.

WANG CL, LIU HL, MA YJ, *et al.* Determination of 15+1 European priority polycyclic aromatic hydrocarbons in edible oil by online solid phase extraction and high-performance liquid chromatography [J]. Chin J Anal Chem, 2015, 43(11): 1743–1748.

[12] 周婵媛,蒙眺,杨春艳,等.管内填充磁性碳纳米管固相萃取-气相色 谱/质谱法测定环境样品中多环芳烃[J].分析实验室,2021,40(9): 1015-1020.

ZHOU CY, MENG T, YANG CY, *et al.* Solid-phase extraction based in tube filled-magnetic carbon nanotubes coupled with GC-MS for analysis of polycyclic aromatic hydrocarbons in environmental samples [J]. Chin J Anal Lab, 2021, 40(9): 1015–1020.

- [13] 杨惟喜. 全自动固相萃取—气相色谱质谱法分析水中 16 种多环芳烃 的方法研究[J]. 质量技术监督研究, 2021, 4: 11–14.
 YANG WX. Determination of 16 PAHs in water by automatic SPE-GC/MS [J]. Qual Technol Superv Res, 2021, 4: 11–14.
- [14] 阮井萍,刘华良,马永建,等. 高效液相色谱-荧光法测定果蔬及谷物中 15 种欧盟优先控制多环烃[J]. 江苏预防医学, 2018, 29(1): 11–17. RUAN JP, LIU HL, MA YJ, et al. Determination of the 15 kinds of polycyclic aromatic hydrocarbons controlled by European Union with priority in fruits, vegetables and cereals by HPLC-FLD [J]. Jiangsu J Prev Med, 2018, 29(1): 11–17.
- [15] WATABE Y, KUBO T, TANIGAWA T, et al. Trace level determination of polycyclic aromatic hydrocarbons in river water with automated pretreatment HPLC [J]. J Sep Sci, 2013, 36(3): 1128–1134.
- [16] TOYHWO A, SIKORSKI ZE. Polycyclic aromatic hydrocarbons in smoked fish–A critical review [J]. Food Chem, 2005, 91(2): 303–311.
- [17] NISBET ICT, LA GOY PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regul Toxicol Pharm, 1992, 16(3): 290–300.
- [18] 魏莉莉,薛霞,孙珊珊,等. 高效液相色谱 荧光法测定油炸型膨化食品中 4 种多环芳烃[J]. 食品工业科技, 2019, 40(22): 228-233. WEI LL, XUE X, SUN SS, *et al.* Determination of four polycyclic aromatic hydrocarbons in fried expanded food by high performance liquid chromatography-fluorescent detection [J]. Sci Technol Food Ind, 2019, 40(22): 228-233.
- [19] YUAN HZ, ZHANG EL, LIN Q, et al. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai lake a low-latitude and high-altitude lake in southwest China [J]. Environ Sci Pollut, 2016, 23(5): 4430–4441.
- [20] 谭顺中,程燕,杨文武,等. 烤肉中多环芳烃的污染情况和健康风险评价[J]. 食品工业科技, 2019, 40 (9): 213–217.
 TAN SZ, CHENG Y, YANG WW, *et al.* Pollution situation and health risk assessment of polycyclic aromatic hydrocarbons in barbecue [J]. Sci Technol Food Ind, 2019, 40(9): 213–217.

(责任编辑: 于梦娇 郑 丽)

作者简介

伍 蓉,副主任药师,主要研究方向 为食品与药品检测。 E-mail: 185634082@qq.com

程 燕, 工程师, 主要研究方向为食 品与药品检测。 E-mail: chengyan1209@163.com