基于无机多元素分析鉴别我国主要进口大米产地

颜治1,林起辉1、雷红琴2,林妮1,赵旭1,徐颖洁2,吴浩1*

(1. 深圳海关食品检验检疫技术中心,深圳 518045; 2. 伊宁海关技术中心,伊宁 835000)

摘要:目的 利用大米中无机多元素分析数据建立判别模型,鉴别我国 4个进口大米主要产地。方法 采用电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)和电感耦合等离子体发射光谱法(inductively coupled plasma optical emission spectrometry, ICP-OES)测定泰国、巴基斯坦、柬埔寨、缅甸4个产地的 76 份大米样本中磷、钾、镁、钙、锌、钠、锰、铁等 46 种无机元素含量。通过对检测数据进行 单因素方差分析、Fisher 判别分析,建立了产地判别模型。结果 4个产地大米的部分元素存在显著性差异,产地判别模型的原始校验准确率 100%,交叉验证准确率 96.1%。结论 所建方法和判别模型对泰国、巴基斯坦、柬埔寨、缅甸所产大米具有很好的产地鉴别能力。

关键词:无机多元素分析;进口大米;产地鉴别

Geographical origin identification of major rice imported to China based on inorganic multi-element analysis

YAN Zhi¹, LIN Qi-Hui¹, LEI Hong-Qin², LIN Ni¹, ZHAO Xu¹, XU Ying-Jie², WU Hao^{1*}

Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China;
 Technology Center of Yining Customs District, Yining 835000, China)

ABSTRACT: Objective To identify the origin of main imported rice in China by using the data of inorganic multi-element analysis to establish discrimination model. **Methods** The contents of 46 kinds of elements (such as P, K, Mg, Ca, Zn, Na, Mn, Fe, *etc.*) of 76 rice samples collected from Thailand, Pakistan, Cambodia, Myanmar were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Through one-way analysis of variance and Fisher discriminant analysis, the origin discrimination model was established. **Results** There were significant differences in the contents of some elements of the rice samples from 4 countries. The accurate discrimination ratio of initial verification was 100%, and the accurate discrimination ratio of cross validation was 96.1%. **Conclusion** The method and model have good identification ability for rice produced in Thailand, Pakistan, Cambodia and Myanmar.

KEY WORDS: inorganic multi-element analysis; imported rice; geographical origin identification

基金项目:海关总署科技计划项目(2019HK108)

<sup>Fund: Supported by the Science and Technology Planning Project of General Administration of Customs, P.R. China (2019HK108)
*通信作者: 吴浩,博士,高级工程师,主要研究方向主要为稳定同位素生态学、食品真实属性鉴别。E-mail: whakyo@gmail.com
*Corresponding author: WU Hao, Ph.D, Senior Engineer, Food Inspection and Quarantine Technology Center of Shenzhen Customs District, No.1011, Fuqiang Road, Futian District, Shenzhen 518045, China. E-mail: whakyo@gmail.com</sup>

0 引 言

大米是我国重要的进口农产品之一,随着"一带一路" 战略的推进,以泰国香米为代表的大米进口量逐年递增。 其中泰国香米因其软糯的口感和独特的茉莉花香味深受消 费者青睐,尽管其售价远远高于其他地区所产大米,但我 国消费市场对泰国香米的需求量仍然十分旺盛。在此供求 关系下,假冒和掺假现象日益严重。业内人士透露,常见 的造假方式是掺入或直接用外形相似的其他产地大米假冒 泰国香米,再加上打磨、抛光、熏香等工艺,对普通消费 者来说从外观上几乎可以乱真。

产地是农产品的重要特征,也是高品质农产品的标 志之一。农产品在生长过程中,体内物质的积累与其产地 的土壤、水质、气候等自然环境具有高度相关性,各种有 机成分和无机矿质元素的含量和分布因产地不同而存在差 异。但大米中的有机成分受加工工艺、贮存条件等因素影 响较大, 而无机矿质元素更加稳定, 被认为是有效的产地 标志物[1-3]。常用的矿质元素分析方法有原子吸收光谱法 (atomic absorption spectrometry, AAS)^[4]、电感耦合等离子 体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)^[5-8]、电感耦合等离子体发射光谱法(inductively coupled plasma optical emission spectrometry, ICP-OES)^[8-9], 其中 ICP-MS 和 ICP-OES 可同时快速测定多种元素,且准 确度和精密度好,已成为目前主流元素分析方法。测定得 到的大量数据需进行复杂的多元统计分析,以找出元素含 量及分布与产地之间的特征关联性,实现产地鉴别。已见 报道的常用统计分析方法包括主成分分析[10-11]、判别分 析^[12-13]、偏最小二乘法分析^[14-15]、聚类分析^[16-17]、人工神 经网络^[18-19]、支持向量机算法(support vector machines, SVM)^[20-21]等。

本研究以 76 份进口大米为样本,利用 ICP-MS 和 ICP-OES测定大米中46种矿质元素,结合方差分析和判别 分析的统计方法,筛选具有显著性差异的变量,首次建立 针对泰国、柬埔寨、缅甸、巴基斯坦4个我国进口大米主 要产地的判别模型,以期为鉴别其产地信息提供有效技术 手段。

1 材料与方法

1.1 材料与试剂

76份大米样本分别产自泰国(28份)、巴基斯坦(20份)、 柬埔寨(18份)、缅甸(10份)。所有样本均采自深圳口岸进 口大米报关样品。

硝酸(优级纯,质量分数 65%,德国 Merck 公司);46 种元素的单元素标准溶液(质量浓度 1000 mg/L,国家标准 物质中心):使用时用体积分数 5%的硝酸溶液稀释至适当 浓度; 实验用水(法国 Milli-Q 超纯水器制备)。

1.2 仪器与设备

Agilent 8800 电感耦合等离子体质谱仪(美国安捷伦 公司); Thermo iCAP6300 电感耦合等离子体发射光谱仪 (美国赛默飞世尔公司); CEM XPress 微波消解仪(美国 CEM 公司); Thomas Cain DEENA II 石墨消解仪(美国 Thomas Cain 公司); IBM SPSS Statistics 26 统计分析软件 (美国 IBM 公司)。

1.3 方法

1.3.1 样品前处理

称取 1 g 左右样品(精确至 0.001 g)于微波消解管中, 加入 7 mL 硝酸,在石墨消解仪上于 145 ℃敞口加热至棕 色烟散尽,待稍冷却,盖紧微波消解管放入微波消解仪进 行消解。微波消解参考条件见表 1。消解完成后冷却至室 温,转移定容至 25 mL,待测。若样液中待测元素浓度过大, 可适当稀释或减少称样量。同时做试剂空白实验。

表 1 《波泪解参考余件 Table 1 Reference conditions of microwave digestion							
步骤	功率/W	温度/℃	升温时间/min	保温时间/min			
1	1600	100	10	10			
2	1600	150	10	10			
3	1600	180	10	20			

1.3.2 仪器条件

(1)ICP-MS 条件

扫描类型:单杆;分析模式:碰撞模式;射频功率: 1550 W;射频匹配: 1.80 V;雾化室温度:2 ℃;载气流量: 1.05 L/min; 蠕动泵转速: 0.10 r/min;碰撞气氦气流量: 4.3 mL/min; 其他仪器条件按仪器最佳状态设置。

(2)ICP-OES 条件

波长选择:钙 315.8 nm、铁 234.3 nm、钾 769.8 nm、 镁 279.8 nm、锰 257.6 nm、钠 589.5 nm、磷 213.6 nm、锌 206.2 nm;分析泵速:25 r/min;冲洗泵速:100 r/min;射频 功率:1150 W;雾化气流量:0.70 L/min;辅助气流量: 1.0 L/min;其他仪器条件按仪器最佳状态设置。

2 结果与分析

2.1 测定结果分析

根据大米中各元素含量差别,采用 ICP-OES 测定大 米中磷 P、钾 K、镁 Mg、钙 Ca、锌 Zn、钠 Na、锰 Mn、 铁 Fe 8 种元素的含量,采用 ICP-MS 测定铷 Rb、铜 Cu、 硼 B、铝 Al、钼 Mo、镍 Ni、钡 Ba、锶 Sr、砷 As、钛 Ti、 硒 Se、铬 Cr、钴 Co、铯 Cs、铅 Pb、镉 Cd、锂 Li、钒 La、

表 2(续)

银 Ag、锑 Sb、铍 Be、铊 Tl、镧 La、铈 Ce、镨 Pr、钕 Nd、钐 Sm、铕 Eu、钆 Gd、铽 Tb、镝 Dy、钬 Ho、铒 Er、 铥 Tm、镱 Yb、镥 Lu、钪 Y、钇 Sc 38 种元素的含量。如 表 2 所示,不同元素的含量差异很大,磷、钾含量很高,均 值在 500 mg/kg 以上;镁次之;钙、锌、铜等 7 种元素平均 含量在 1~50 mg/kg之间;硼、铝、铅、镉等 14 种元素含 量较低,均值在 0.01~1 mg/kg;而锂、钒等 5 种元素和 16 种稀土元素含量则极低,均值都低于 0.01 mg/kg。此外,几 乎所有元素含量的跨度范围都很大,说明不同产地大米的 元素含量分布具有差异性,但其中确切的关联关系,尚需 进行进一步统计分析。

表 2 多元素测定结果总体分析(mg/kg) Table 2 General analysis of multi-element content (mg/kg)

	目上体	日上住	亚屿体	中台店
兀系	最小值	最大值	半均值	甲位值
Р	535.0	1387	702.8	698.8
K	412.7	886.2	581.8	584.8
Mg	89.21	457.7	155.0	143.8
Ca	24.42	78.01	42.45	39.68
Zn	8.693	19.70	15.00	15.32
Na	1.458	34.64	8.853	4.515
Mn	4.868	10.43	7.350	7.388
Rb	0.896	8.419	3.118	2.802
Fe	0.493	12.13	2.145	1.654
Cu	1.242	2.773	1.830	1.788
В	0.295	1.973	0.753	0.605
Al	0.000	3.242	0.720	0.481
Мо	0.175	1.489	0.539	0.481
Ni	0.057	0.834	0.278	0.224
Ba	0.020	0.607	0.243	0.212
Sr	0.070	0.489	0.204	0.145
As	0.085	0.241	0.144	0.135
Ti	0.016	0.426	0.106	0.094
Se	0.000	0.149	0.031	0.020
Cr	0.000	0.343	0.023	0.012
Co	0.006	0.044	0.017	0.014
Cs	0.001	0.069	0.015	0.008
Pb	0.000	0.148	0.015	0.004
Cd	0.001	0.050	0.012	0.009
Ce	0.000	0.046	0.008	0.006
Li	0.000	0.028	0.006	0.001

元素	最小值	最大值	平均值	中位值
La	0.000	0.023	0.004	0.003
Y	0.000	0.014	0.003	0.002
Nd	0.000	0.011	0.002	0.000
Gd	0.000	0.015	0.001	0.001
Pr	0.000	0.006	0.001	0.001
V	0.000	0.005	0.001	0.001
Ag	0.000	0.004	0.001	0.001
Dy	0.000	0.004	0.001	0.001
Er	0.000	0.026	0.001	0.000
Sm	0.000	0.004	0.001	0.000
Sb	0.000	0.006	0.000	0.000
Sc	0.000	0.003	0.000	0.000
Eu	0.000	0.002	0.000	0.000
Yb	0.000	0.002	0.000	0.000
Tl	0.000	0.001	0.000	0.000
Tb	0.000	0.001	0.000	0.000
Но	0.000	0.001	0.000	0.000
Lu	0.000	0.001	0.000	0.000
Tm	0.000	0.000	0.000	0.000
Be	0.000	0.000	0.000	0.000

2.2 元素含量单因素方差分析

单因素方差分析通常被用来研究一个变量因素的不同水平是否对指标产生了显著影响。单因素方差分析的检验统计量是根据组内方差和组间方差构造的,统计证明,组间方差除以组内方差的比值服从 F 分布,当检验统计量 F > F_0.05 则认为该变量因素对指标产生了显著影响。用单因素方差分析来分析同一种元素的不同含量对产地差异性 是否有显著影响,本研究样品中锑、钪、铕、镱、铊、铽、钬、镥、铥、铍 10 种元素因含量普遍太低不作方差分析,其余 36 种元素分析结果及其对产地显著性差异标记如表 3 所示。

结果显示不同产地大米的元素含量分布有各自特征。 巴基斯坦大米中磷、钙、锌、钠、锰、铷、铁、铜、硼、 锶、铈、锂、钇、镨、钒 15 种元素含量与其他 3 个产地大 米存在显著差别(P<0.05);缅甸大米的磷、镁、钙、铷、砷、 铈、钒 7 种元素含量与其他 3 个产地大米有显著不同 (P<0.05);泰国大米和柬埔寨大米较为相近,大部分元素 含量的分析结果均同属一组,但在铷、铜、硼、镍、钡、 银 6 种元素含量上也存在显著差异(P<0.05)。此外还可以 看到,部分元素的标准偏差较大,说明这些元素可能在同 一产区(国家)的不同具体位置土壤中含量分布差异较大。

元素含量单因素方差分析可以为区分不同产地大米提供重要的差异化信息,但用于产地鉴别还不够直观和系统。

	Table 3 One-v	vay analysis of variance results	of elemental contents (mg/kg)	
元素	巴基斯坦	柬埔寨	缅甸	泰国
Р	740.5±41.99ª	647.8±69.51 ^b	950.6±242.7°	622.7±94.64 ^b
Κ	611.5±137.5 ^a	554.2±98.06 ^a	690.2±112.7 ^b	539.7±86.01 ^ª
Mg	165.2±26.54ª	$134.3{\pm}17.43^{ab}$	254.4±109.2°	125.4±28.05 ^b
Ca	51.16±5.065ª	38.16±6.801 ^b	44.90±15.41°	38.12±5.223 ^b
Zn	11.92±2.020 ^a	16.75±2.260 ^b	15.24±2.011 ^b	$15.98{\pm}2.054^{b}$
Na	19.50±10.88ª	4.742 ± 3.476^{b}	8.431±6.652 ^b	$4.039{\pm}1.548^{b}$
Mn	5.641±0.581ª	$8.437{\pm}1.658^{b}$	7.854±1.135 ^b	$7.691{\pm}0.855^{b}$
Rb	1.171±0.285ª	5.631±1.521 ^b	2.211±1.046°	$3.217{\pm}0.770^{d}$
Fe	3.465±2.260ª	1.737 ± 1.202^{b}	2.323±1.249 ^b	$1.401{\pm}0.793^{b}$
Cu	1.843±0.284ª	$2.240{\pm}0.348^{b}$	1.592±0.275°	1.642±0.202°
В	1.388±0.288ª	0.612 ± 0.101^{b}	$0.718 {\pm} 0.113^{b}$	$0.402 \pm 0.069^{\circ}$
Al	$1.301{\pm}0.537^{a}$	$0.325{\pm}0.266^{b}$	1.475±1.192 ^a	$0.289{\pm}0.174^{b}$
Мо	0.607 ± 0.169^{a}	$0.651{\pm}0.437^{a}$	$0.453{\pm}0.087^{a}$	$0.449{\pm}0.069^{a}$
Ni	0.134±0.063ª	$0.472 {\pm} 0.227^{b}$	$0.386{\pm}0.156^{b}$	0.216±0.083ª
Ba	0.145±0.029ª	$0.395{\pm}0.109^{b}$	0.157±0.163ª	0.247±0.109°
Sr	0.376±0.113ª	$0.145{\pm}0.034^{b}$	$0.185{\pm}0.089^{b}$	$0.125{\pm}0.052^{b}$
As	$0.158{\pm}0.043^{a}$	$0.136{\pm}0.031a^{b}$	0.185±0.036°	$0.126{\pm}0.021^{b}$
Ti	$0.124{\pm}0.047^{a}$	$0.095{\pm}0.054^{a}$	$0.170{\pm}0.117^{b}$	$0.078{\pm}0.036^{a}$
Se	$0.049{\pm}0.036^{a}$	$0.018{\pm}0.022^{b}$	$0.016{\pm}0.022^{b}$	$0.032{\pm}0.026a^{b}$
Cr	$0.043{\pm}0.074^{a}$	$0.0061 {\pm} 0.013^{a}$	$0.032{\pm}0.014^{a}$	$0.016{\pm}0.019^{a}$
Co	$0.0086{\pm}0.0012^{a}$	$0.023{\pm}0.0068^{b}$	$0.013{\pm}0.0099^{a}$	$0.021{\pm}0.011^{b}$
Cs	$0.0013{\pm}0.00047^{a}$	$0.019{\pm}0.016^{b}$	$0.0023{\pm}0.00082^{a}$	$0.027 {\pm} 0.020^{b}$
Pb	$0.015{\pm}0.020^{a}$	$0.011{\pm}0.014^{a}$	$0.017{\pm}0.015^{a}$	0.016±0.035a
Cd	$0.012{\pm}0.018^{a}$	$0.0073{\pm}0.0060^{a}$	$0.014{\pm}0.0085^{a}$	$0.015{\pm}0.0089^{a}$
Ce	0.014 ± 0.011^{a}	$0.0034{\pm}0.0036^{\rm b}$	$0.0098 {\pm} 0.0063^{\circ}$	$0.0048{\pm}0.0033^{b}$
Li	$0.022{\pm}0.0045^{a}$	$0.00017{\pm}0.00038^{b}$	$0.0018{\pm}0.0013^{\rm b}$	$0.00043{\pm}0.00063^{\rm b}$
La	$0.0068{\pm}0.0049^{a}$	$0.0022{\pm}0.0022^{\rm b}$	$0.0062{\pm}0.0070^{a}$	$0.0026{\pm}0.0026^{\rm b}$
Y	$0.0044{\pm}0.0036^{a}$	$0.0018{\pm}0.0019^{b}$	$0.0033{\pm}0.0020^{ab}$	$0.0019{\pm}0.0024^{\rm b}$
Nd	$0.0034{\pm}0.0028^{a}$	$0.0011 {\pm} 0.0023^{a}$	$0.0019{\pm}0.0027^{a}$	$0.0014{\pm}0.0023^{a}$
Gd	$0.0016{\pm}0.0014^{a}$	$0.00056{\pm}0.00051^{a}$	$0.0019{\pm}0.0046^{a}$	$0.00064{\pm}0.00083^{a}$
Pr	$0.0016{\pm}0.0013^{a}$	$0.00044{\pm}0.00070^{b}$	$0.00090{\pm}0.0011^{b}$	$0.00057{\pm}0.00069^{b}$
V	$0.0022{\pm}0.0012^{a}$	$0.00033{\pm}0.00059^{b}$	$0.0013 \pm 0.0013^{\circ}$	$0.00043{\pm}0.00057^{b}$
Ag	$0.0014{\pm}0.0013^{a}$	$0.0014{\pm}0.00098^{a}$	$0.00090{\pm}0.00057^{a}$	$0.00018{\pm}0.00039^{b}$
Dy	$0.0013{\pm}0.0011^{a}$	$0.00050 {\pm} 0.00062^{a}$	$0.00060{\pm}0.00070^{\rm a}$	$0.00064{\pm}0.00087^{a}$
Er	$0.00095{\pm}0.0010^{a}$	$0.0018{\pm}0.0061^{a}$	$0.00040{\pm}0.00070^{\rm a}$	$0.00021{\pm}0.00042^{a}$
Sm	$0.00095 {\pm} 0.0012^{a}$	$0.00039{\pm}0.00070^{a}$	$0.00090 {\pm} 0.0017^{a}$	$0.00071{\pm}0.00094^a$

表 3 元素含量单因素方差分析结果(mg/kg) Table 3 One-way analysis of variance results of elemental contents (mg/k

注: a、b、c、d 代表具有显著性差异的不同组别,处于不同组别表示该元素含量对相应产地差异性具有显著影响(P<0.05)。

2.3 不同产地的 Fisher 判别分析

以多元素含量指标为自变量,利用 Fisher 判别分析方 法构建产地的典则判别函数。各产地大米的判别函数系数 见表 4,其确定的原则是使产地间区别最大,产地内区别 最小。选用典型相关性最高的 2 个典则判别函数分别计算 每个样品的判别得分,以 2 个函数的判别得分为横坐标和 纵坐标做散点图,直观展示判别效果。2 个典则判别函数 的特征值见表 5。样品判别得分见表 6。判别结果统计见表 7。4 个产地大米判别模型效果见图 1。

由图 1 可见,所构建的判别模型对泰国、柬埔寨、缅 甸、巴基斯坦 4 个产地大米的产地信息具有较好的区分能 力。综合所有样本的判别准确性如表 7 所示,所有的原始 样本数据能 100%准确判别到已分组的对应产地信息;而 在交叉验证中,每个单独的样本数据都由除该样本以外的 所有样本派生的函数进行判别,仅有 3 个样本判别有误, 总体判别准确率为 96.1%。

表 4 判别函数系数 Table 4 Discriminant function coefficient

无机	产地						
元素	巴基斯坦	柬埔寨	缅甸	泰国			
Li	19479.546	-1690.937	-605.336	320.438			
В	2.551	-27.103	-27.108	-52.038			
Al	4.572	14.811	18.849	11.562			
Ti	-246.851	-212.256	-234.879	-259.380			
V	7179.407	3088.708	-2375.766	-1519.568			
Cr	29.268	42.956	-174.717	-95.623			
Co	1085.523	-621.885	1147.715	45.845			
Ni	79.760	-35.488	83.916	-62.031			
Cu	-0.249	51.697	-57.257	4.628			
As	320.764	545.204	743.882	339.488			
Se	-462.799	-117.869	-120.055	-30.711			

无机	产地					
元素	巴基斯坦	柬埔寨	缅甸	泰国		
Rb	4.684	18.711	-1.999	5.733		
Sr	118.062	157.502	129.259	106.387		
Y	-511.293	525.539	-325.284	433.356		
Mo	-11.245	71.434	78.478	74.666		
Ag	4977.859	-11378.285	-14459.816	-11634.253		
Cd	4203.922	-583.637	-354.480	-336.294		
Cs	184.614	-378.337	-1522.877	-686.931		
Ba	45.677	73.103	-122.605	-7.508		
La	5081.619	1402.823	2719.220	2436.077		
Ce	-615.698	959.665	1746.383	1082.439		
Pr	-6041.281	-7482.222	-10441.883	-8133.061		
Nd	-3490.085	-3507.952	-3092.199	-2499.920		
Sm	3779.967	2863.569	2145.156	1888.313		
Gd	-4393.641	-3861.738	-4634.450	-3899.113		
Dy	-16139.698	-3426.565	-8506.056	-9183.972		
Er	-404.464	947.908	-799.220	-58.622		
Pb	-461.592	-167.363	-154.194	-143.221		
Ca	0.220	-0.083	0.712	0.118		
Fe	8.616	-3.084	0.194	-0.780		
Κ	0.110	-0.030	0.140	0.116		
Mg	-0.761	-0.498	-0.263	-0.401		
Mn	-26.611	16.293	7.589	19.509		
Na	0.573	1.470	-0.343	1.149		
Р	0.274	0.158	0.189	0.152		
Zn	16.473	4.981	13.106	7.206		
(冨重)	-397.529	-270.192	-284.486	-206.334		

	表 5	典则判别函数特征值	
Table 5	Characteristic	value of canonical disc	riminant function
函数	特征值	方差百分比/%	典型相关性
1	98.387ª	77.3	0.995
2	21.557ª	16.9	0.978

表 6 样品判别得分 able 6 Discriminant function score of same

Table 6 Discriminant function score of samples							
样品编号	产地	函数1得分	函数2得分	样品编号	产地	函数1得分	函数2得分
样品 1	巴基斯坦	14.08810	0.15786	样品 39	缅甸	-3.54573	-8.63581
样品 2	巴基斯坦	15.93405	-0.39117	样品 40	缅甸	-3.24203	-11.35544
样品 3	巴基斯坦	16.38404	0.22329	样品 41	缅甸	-3.41284	-8.81344
样品 4	巴基斯坦	14.47994	0.67520	样品 42	缅甸	-3.87778	-9.37006
样品 5	巴基斯坦	17.09108	0.45633	样品 43	缅甸	-5.77282	-9.38027
样品 6	巴基斯坦	16.22530	0.73381	样品 44	缅甸	-4.75844	-10.56460
样品 7	巴基斯坦	17.00800	1.52081	样品 45	缅甸	-3.70747	-9.57453
样品 8	巴基斯坦	15.17162	-0.23467	样品 46	缅甸	-3.74429	-10.54935
样品 9	巴基斯坦	15.45094	0.79777	样品 47	缅甸	-4.89863	-8.64423

表 4(续)

							表 6(续)
样品编号	产地	函数1得分	函数2得分	样品编号	产地	函数1得分	函数2得分
样品 10	巴基斯坦	16.72454	0.87219	样品 48	缅甸	-4.37867	-9.41273
样品 11	巴基斯坦	15.69454	-0.15043	样品 49	泰国	-6.45985	-1.82409
样品 12	巴基斯坦	16.13464	0.83822	样品 50	泰国	-5.56409	-1.02522
样品 13	巴基斯坦	16.24791	0.80404	样品 51	泰国	-5.56981	-0.59597
样品 14	巴基斯坦	19.65493	2.82190	样品 52	泰国	-4.59596	-0.93553
样品 15	巴基斯坦	17.51330	0.20533	样品 53	泰国	-6.46059	0.96398
样品 16	巴基斯坦	16.54494	1.66473	样品 54	泰国	-5.93712	0.61323
样品 17	巴基斯坦	14.08707	-0.32405	样品 55	泰国	-4.79749	-1.31728
样品 18	巴基斯坦	17.31454	0.58816	样品 56	泰国	-5.09496	-0.42277
样品 19	巴基斯坦	15.03645	1.34688	样品 57	泰国	-5.06323	-1.08055
样品 20	巴基斯坦	14.71956	1.94346	样品 58	泰国	-4.30797	-0.03276
样品 21	柬埔寨	-6.47393	3.32359	样品 59	泰国	-4.15415	-0.78333
样品 22	柬埔寨	-7.51950	5.96133	样品 60	泰国	-4.13176	-0.99978
样品 23	柬埔寨	-5.58977	5.84830	样品 61	泰国	-6.66068	0.21213
样品 24	柬埔寨	-6.26185	6.21333	样品 62	泰国	-4.38972	0.11335
样品 25	柬埔寨	-7.07988	4.33513	样品 63	泰国	-5.85093	0.31255
样品 26	柬埔寨	-7.91301	5.00000	样品 64	泰国	-4.93783	0.15537
样品 27	柬埔寨	-6.40591	6.18417	样品 65	泰国	-6.21327	-1.65834
样品 28	柬埔寨	-6.84470	6.57864	样品 66	泰国	-5.55415	-1.59391
样品 29	柬埔寨	-7.91205	8.26483	样品 67	泰国	-6.81434	-1.93168
样品 30	柬埔寨	-6.67647	5.41016	样品 68	泰国	-5.23960	-2.90979
样品 31	柬埔寨	-8.54791	8.22954	样品 69	泰国	-4.51205	-0.85303
样品 32	柬埔寨	-6.98904	6.20531	样品 70	泰国	-5.21807	-1.28126
样品 33	柬埔寨	-8.77426	6.06729	样品 71	泰国	-5.37389	-2.07239
样品 34	柬埔寨	-8.33326	4.89424	样品 72	泰国	-5.63902	1.12399
样品 35	柬埔寨	-6.86758	6.06390	样品 73	泰国	-5.03754	-1.45677
样品 36	柬埔寨	-6.80906	4.39527	样品 74	泰国	-6.33067	-0.23780
样品 37	柬埔寨	-7.06003	5.27625	样品 75	泰国	-6.41000	-0.45719
样品 38	柬埔寨	-8.06757	5.41244	样品 76	泰国	-3.72226	-1.93815

表 7 判别结果 Table 7 Discriminate results

		र्जे भूम		预测组成员			兴计
		广坦	巴基斯坦	柬埔寨	缅甸	泰国	- 芯灯
		巴基斯坦	20	0	0	0	20
東埔寨 0 计数 缅甸 0 原始 泰国 0	<u>}</u> +.*/r	柬埔寨	0	18	0	0	18
	1 奴	缅甸	0	0	10	0	10
	0	0	28	28			
厉如		巴基斯坦	100.0	0.0	0.0	0.0	100.0
判别准确率/%	业时间准备 卖 /0/	柬埔寨	0.0	100.0	0.0	0.0	100.0
	升肋(把)(170	缅甸	0.0	0.0	100.0	0.0	100.0
		泰国	0.0	0.0	0.0	100.0	100.0
\ [. \\/-le		巴基斯坦	20	0	0	0	20
	<u>}</u> +.*/r	柬埔寨	1	17	0	0	18
	1 奴	缅甸	0	0	10	0	10
交叉		泰国	0	2	0	26	28
验证		巴基斯坦	100.0	0.0	0.0	0.0	100.0
	¥II.91/牟孫亥/0/	柬埔寨	5.6	94.4	0.0	0.0	100.0
	ナリカリ1日1明2年/70	缅甸	0.0	0.0	100.0	0.0	100.0
		泰国	0.0	7.1	0.0	92.9	100.0

Fig.1 Discriminant model of rice from 4 countries

2.4 判别模型的验证

随机选取4个样本按前述方法测定无机元素含量,其 中泰国大米2个,柬埔寨大米1个,巴基斯坦大米1个,将 检测结果代入构建的判别模型以验证判别效果,见图2所 示,验证样本均准确落到相应产地信息集内。

Fig.2 Verification of discriminant model

3 结论与讨论

本研究以泰国、巴基斯坦、柬埔寨、缅甸4个产地的 76 份进口大米样本为对象,对其46种无机元素含量进行 测定和统计分析,建立了针对我国 4 个主要进口大米产地 的判别模型。结果表明,该模型的原始校验判别准确率达 100%,交叉验证判别准确率为 96.1%,随机样本对模型的 验证显示均能正确识别到对应产地。本研究所建大米产地 判别模型准确度高、稳定性好,对我国 4 个主要进口大米 产地的鉴别具有切实可行性和较高的实际应用价值,为有 效识别进口大米产地溯源信息、助力海关等监管部门执法 把关提供积极参考。

参考文献

- YASUI A, SHINDOH K. Determination of the geographic origin of brown-rice with trace- element composition [J]. Bunseki Kagaku, 2000, 49: 405–410.
- [2] 赵海燕,郭波莉,魏益民.谷物原产地溯源技术研究进展[J].核农学报,2011,25(4):768-772.

ZHAO HY, GUO BL, WEI YM. Determining geographical origin of cereals [J]. J Nucl Agric Sci, 2011, 25(4): 768–772.

- [3] 康海宁,杨妙峰,陈波,等.利用矿质元素的测定数据判别茶叶的产地和品种[J]. 岩矿测试,2006,25(1):22-26.
 KANG HN, YANG MF, CHEN B, *et al.* Trace element determination in teas and discrimination analysis for teas [J]. Rock Miner Anal, 2006, 25(1):22-26.
- [4] 李瑞琴,白滨,于安芬,等. 基于矿物元素指纹分析的药食兼用百合产 地溯源[J]. 中国食物与营养, 2019, 25(12): 15–18.
 LI RQ, BAI B, YU AF, *et al.* Traceability of origin of medicine and edible lily based on fingerprint analysis on mineral elements [J]. Food Nutr China, 2019, 25(12): 15–18.
- [5] KELLY S, BAXTER M, CHAPMAN S, et al. The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice [J]. Europ Food Res Technol, 2002, 214: 72–78.
- [6] POTORTÌ AG, DI BELLA G, MOTTESE AF, et al. Traceability of protected geographical indication (PGI) interdonato lemon pulps by chemometric analysis of the mineral composition [J]. J Food Comp Anal, 2018, 69: 122–128.
- [7] 鹿保鑫,马楠,王霞,等. 基于电感耦合等离子体质谱仪分析矿物元素 含量的大豆产地溯源[J]. 食品科学, 2018, 39(8): 288-294.
 LU BX, MA N, WANG X, *et al.* Tracing the geographical origin of soybeans based on inductively coupled plasma spectrometry (ICP-MS) analysis of mineral elements [J]. Food Sci, 2018, 39(8): 288-294.
- [8] 王小平,李柏. ICP-OES 和 ICP-MS 测定中日两国大米中 27 种矿质元 素含量[J]. 光谱学与光谱分析, 2010, 30(8): 2260-2264.
 WANG XP, LI B. Analysis of 27 mineral elements in the rice samples collected from China and Japan by using ICP-OES and ICP-MS [J].
 Spectrosc Spect Anal, 2010, 30(8): 2260-2264.
- [9] 曾亚文, 汪禄祥, 杜娟, 等. ICP-AES 法检测云南稻精米和糙米与土壤 矿质元素间的关联性[J]. 光谱学与光谱分析, 2009, 29(5): 1413–1417. ZENG YW, WAGN LX, DU J, *et al.* Correlation of mineral elements between milled and brown rice and soils in Yunnan studied by ICP-AES [J]. Spectrosc Spect Anal, 2009, 29(5): 1413–1417.
- [10] 邵圣枝,陈元林,张永志,等.稻米中同位素与多元素特征及其产地溯

源 PCA-LDA 判別[J]. 核农学报, 2015, 29(1): 119–127. SHAO SZ, CHEN YL, ZHANG YZ, *et al.* Determination of the geographic origin of rice by PCA-LDA based on the stable isotopes and multi-elements concentrations [J]. J Nucl Agric Sci, 2015, 29(1): 119–127.

- [11] 吴浩,周昱,陈靖博,等. 基于元素含量和稳定同位素比值的宁夏贺兰山东麓地区有机葡萄酒甄别[J]. 食品科学, 2017, 38(16): 251–255.
 WU H, ZHOU Y, CHEN JB, *et al.* Differentiation between organic and non-organic wines from Helan mountain east region based on elemental contents and stable isotope ratios [J]. Food Sci, 2017, 38(16): 251–255.
- [12] 赵旭,王丙涛,张思娴,等.元素含量分析应用于泰国香米产地鉴别
 [J]. 常州大学学报(自然科学版), 2018, 30(4): 36–40.
 ZHAO X, WANG BT, ZHANG SX, *et al.* Regional discrimination of Thai rice by multi-element analysis [J]. J Changzhou Univ (Nat Sci Ed), 2018, 30(4): 36–40.
- [13] 石春红,曹美萍,胡桂霞.基于矿物元素指纹图谱技术的松江大米产 地溯源[J]. 食品科学, 2020, 41(16): 300–306.
 SHI CH, CAO MP, HU GX. Geographical origin traceability of Songjiang rice based on mineral elements fingerprints [J]. Food Sci, 2020, 41(16): 300–306.
- [14] 陈波,颜治,赵旭,等.元素含量分析应用于十种中国名茶的产地鉴别
 [J]. 湘潭大学自然科学学报,2016,38(1): 61-67.
 CHEN B, YAN Z, ZHAO X, *et al.* Region discrimination of 10 kinds of Chinese famous tea by multi-element analysis [J]. Nat Sci J Xiangtan Univ, 2016, 38(1): 61-67.
- [15] 周健,成浩,曾建明,等.基于近红外的多相偏最小二乘模型组合分析 实现茶叶原料品种鉴定与溯源的研究[J].光谱学与光谱分析,2010, 30(10):2650-2653.

ZHOU J, CHENG H, ZENG JM, *et al.* Study on identification and traceability of tea material cultivar by combined analysis of multi-partial least squares models based on near infrared spectroscopy [J]. Spectrosc Spect Anal, 2010, 30(10): 2650–2653.

- [16] 李勇,魏益民,潘家荣,等. 基于 FTIR 指纹光谱的牛肉产地溯源技术 研究[J]. 光谱学与光谱分析, 2009, 29(3): 647-651.
 LI Y, WEI YM, PAN JR, *et al.* Determination of geographical origin of beef based on FTIR spectroscopy analysis [J]. Spectrosc Spect Anal, 2009, 29(3): 647-651.
- [17] 武琳霞,李玲,张国光,等.基于主成分及聚类分析的不同产地冬枣品

质特征分析 [J]. 食品科学, 2021, https://kns.cnki.net/ kcms/detail/11.2206.TS.20210413.1535.026.html

WU LX, LI L, ZHANG GG, *et al.* Analysis on quality characteristics of winter jujube from different region on principal component analysis and cluster analysis [J]. Food Sci, 2021, https://kns.cnki.net/kcms/detail/11.2206.TS.20210413.1535.026.html

- [18] 黎永乐,郑彦婕,汤璐,等. 基于无机元素分析对地理标志五常大米鉴别技术的研究[J]. 光谱学与光谱分析, 2016, 36(3): 834-837.
 LI YL, ZHENG YJ, TANG L, *et al.* Study on the identification of geographical indication Wuchang rice based on the content of inorganic elements [J]. Spectrosc Spect Anal, 2016, 36(3): 834-837.
- [19] WU H, TIAN L, CHEN B, et al. Verification of imported red wine origin into China using multi isotope and elemental analyses [J]. Food Chem, 2019, 125137. DOI: 10.1016/j.foodchem.2019.125137
- [20] LI SC, YU XW, ZHEN ZP, et al. Geographical origin traceability and identification of refined sugar using UPLC-QTof-MS analysis [J]. Food Chem, 2021, 2: 1701.
- [21] 罗浩东,刘翠玲,孙晓荣,等.基于高光谱成像技术的大米溯源研究[J].中国酿造, 2021, 40(4): 183–186.

LUO HD, LIU CL, SUN XR, *et al.* Research on rice traceability based on hyperspectral imaging technology [J]. China Brew, 2021, 40(4): 183–186.

(责任编辑: 于梦娇 张晓寒)

作者简介

颜 治,硕士,高级工程师,主要研究方
 向为食品安全检测、食品真实属性鉴别。
 E-mail: 282388016@qq.com

吴浩,博士,高级工程师,主要研究方 向为稳定同位素生态学、食品真实属性鉴别。 E-mail: whakyo@gmail.com