超高效液相色谱-串联质谱法检测桃中 13 种高关注农药残留

何芳^{1,2},原东林^{1*},卢永报²,杜娟¹

(1. 焦作大学化工与环境工程学院, 焦作 454000; 2. 河南尚科计量检测服务有限公司, 焦作 454000)

摘 要:目的 建立超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)测定桃中 13 种高关注农药残留的分析方法。**方法** 样品采用含 1%(体积分数)乙酸的乙腈溶液超声提取,4g无水硫酸镁和1g氯化钠盐析后,不净化,直接经 Waters HSS T3 (2.1 mm×100 mm, 1.8 μm)色谱柱分离,用甲醇和 2 mmol/L 甲酸铵水溶液为流动相梯度洗脱,串联质谱电喷雾正离子扫描,多反应监测模式检测,基质匹配标准溶液-外标法定量。**结果** 13 种农药在 0.5~8 μg/kg 范围内线性关系良好,相关系数 r 均大于 0.997,在桃中添加 0.5、2 和 5 μg/kg 3 个浓度的农药标准溶液,平均回收率为 63.2%~123.0%,日内相对标准偏差(relative standard deviation, RSD)为 0.6%~10.3% (*n*=6),日间 RSD 为 2.8%~13.2% (*n*=3),定量限均为 0.5 μg/kg。**结论** 该方法简单、可靠、灵敏,适用于桃中 13 种农药残留的检测。 **关键词:** 桃;农药残留;超高效液相色谱-串联质谱法

Detection of 13 kinds of highly attentive pesticides residues in peach by ultra performance liquid chromatography-tandem mass spectrometry

HE Fang^{1,2}, YUAN Dong-Lin^{1*}, LU Yong-Bao², DU Juan¹

School of Chemical and Environmental Engineering, Jiaozuo University, Jiaozuo 454000, China;
 Henan Shangke Measuring and Testing Service Co., Ltd, Jiaozuo 454000, China)

ABSTRACT: Objective To establish a rapid method for the simultaneous detection of 13 kinds of highly attentive pesticides residues in peach by ultra performance liquid chromatography-tandem mass spectrometry. **Methods** The peach samples were extracted by ultrasonic extraction with acetonitrile containing 1% acetic acid, followed by salting out with 4 g magnesium sulfate and 1 g sodium chloride without further cleanup, then separated on a Waters HSS T3 (2.1 mm×100 mm, 1.8 µm) column by gradient elution with methanol and 2 mmol/L ammonium formate as mobile phase, ionized with positive electrospray ionization, detected under multiple reaction monitoring mode, and quantified with matrix-matched external standard calibration curves. **Results** There existed good linearities for 13 kinds of pesticides in the concentration range of 0.5–8 µg/kg, with correlation coefficients higher than 0.997. The average recoveries at three spiked levels of 0.5, 2 and 5 µg/kg in peach ranged from 63.2% to 123.0%, with intra-day relative standard deviations (RSD) of 0.6%–10.3% (*n*=6) and inter-day RSD of 2.8%–13.2% (*n*=3). The limits of

基金项目:河南省科技攻关项目(172102310604)

Fund: Supported by the Key Technology Research and Development program of Henan Province (172102310604)

^{*}通信作者: 原东林, 副教授, 主要研究方向为化学分析检验。E-mail: ydl_jzu@163.com

^{*}Corresponding author: YUAN Dong-Lin, Associate Professor, School of Chemical and Environmental Engineering, Jiaozuo University, No. 3066, Renmin Road, Jiaozuo 454000, China. E-mail: ydl_jzu@163.com

quantification for all the analytes were 0.5 μ g/kg. **Conclusion** The proposed method is simple, accurate and sensitive, which is suitable for the detection of 13 kinds of pesticide residues in peach.

KEY WORDS: peach; pesticides residues; ultra performance liquid chromatography-tandem mass spectrometry

0 引 言

桃[Prunus persica (L.) Batsch.],由于果肉鲜美,营养 价值丰富,具有出色的药用及保健功效^[1-2],广受人们喜 爱。桃树生长周期长,在生产过程中易发生病虫害,当前 仍以化学农药防治为主,且使用农药种类较多,容易在桃 中造成残留问题^[3-6],导致其食用安全性受到影响。我国 GB 2763—2019《食品安全国家标准 食品中农药最大残留 限量》规定了 51 种农药在桃中的最大残留限量,但针对这 些农药的多残留快速检测方法尚未建立。因此,研究开发 简单快速测定桃中农药多残留的检测方法非常必要。

关于桃中农药残留分析方法的研究报道较多, 主要 有光谱法^[7-8]、酶联免疫吸附法 (enzyme linked immunosorbent assay, ELISA)^[9]、气相色谱法 (gas chromatography, GC)^[5,10-11]、气相色谱质谱联用法(GC-mass spectrometry, GC-MS)^[5,12-13]、液相色谱质谱联用法(liquid chromatography-tandem spectrometry, LC-MS/ mass MS)^[4,14-18]等。其中串联质谱技术因具有准确、灵敏、抗干 扰强的优势,近年来得到了广泛应用。但这些方法提取检 测过程烦琐,耗费溶剂,成本高,不利于快速检测和食品 安全突发事件的应急处置。本研究针对当前我国桃中农药 残留状况,选择近几年桃风险监测中检出率较高的 13 种 农药残留,采用超声萃取结合超高效液相色谱-串联质谱 法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS), 通过优化仪器分析条件和样 品前处理方法,建立桃中13种农药残留的分析方法,以期 为开展桃质量安全风险监测提供有效手段。

1 材料与方法

1.1 仪器与试剂

Acquity H-Class 超高效液相色谱仪、Xevo TQ-XS 三 重四极杆质谱仪(美国沃特斯公司); KQ-500DE 超声波清洗 器(昆山超声仪器公司); CenLee16R 高速离心机(湖南湘立 科学仪器公司); 实验用水由 Direct-Q 5UV 超纯水机(美国 密理博公司)制备。

甲醇、乙腈(色谱纯,德国默克公司);甲酸、甲酸铵(色 谱纯,美国 Sigma-Aldrich 公司);其他试剂均为分析纯(上 海国药集团公司)。13 种农药标准溶液(名称见表 1,质量浓 度均为 1000 mg/L,农业农村部环境保护科研监测所和北 京坛墨质检科技有限公司)。 桃样品购于当地超市、农贸市场,去核处理后,用食品粉碎机打碎,装入玻璃容器中,待测。

1.2 实验方法

1.2.1 标准溶液配制

分别移取 0.5 mL 的 13 种农药单标溶液,置于 5 mL 容量瓶中,加甲醇定容,制成 10 mg/L 的混合标准储备液, 于 4 ℃保存。取空白桃样品进行前处理,制备空白基质溶 液,过 0.22 µm 滤膜,备用。以 2%的甲醇水溶液作为溶剂, 配制质量浓度为 0.5、1、2、5、8 µg/L 的溶剂标准工作溶 液,以空白基质溶液作为溶剂,配制质量浓度为 0.5、1、2、 5、8 µg/kg 的基质匹配标准工作溶液。

1.2.2 样品前处理

称取 10.0 g 桃试样至 50 mL 具塞离心管中,加入含 1%乙酸的乙腈溶液 20 mL,振荡 2 min,利用超声波提取 15 min,加入4g无水 MgSO₄和1g NaCl,振荡1 min,在 5000 r/min 的转速下,离心 5 min,吸取上层清液,过 0.22 μm 滤膜,取 20 μL 于进样瓶中,加入980 μL 水,混匀 后上机测定。

1.2.3 超高效液相色谱-串联质谱条件

(1)超高效液相色谱条件

Waters Acquity UPLC HSS T3 柱(2.1 mm×100 mm, 1.8 μm); 柱温: 40 °C; 进样体积: 1.0 μL; 流速: 0.4 mL/min; 流动相 A 为 2 mmol/L 甲酸铵溶液, 流动相 B 为甲醇, 梯度 洗脱: 0~0.5 min, 2% B; 0.5~6.0 min, 2%~90% B; 6.0~ 8.0 min, 90% B; 8.0~8.01 min, 2% B; 8.01~13.0 min, 2% B。

(2)质谱条件

电喷雾离子源(electrospray ionization, ESI), 正离子 (ESI⁺)扫描, 多反应监测(multiple reaction monitoring, MRM)模式, 电喷雾电压为 5.5 kV, 离子源温度为 150 ℃, 脱溶剂气温度为 600 ℃, 脱溶剂气流量为 1000 L/h, 碰撞 气为氩气, 流速为 0.15 mL/min, 其他参数见表 1。

2 结果与分析

2.1 质谱条件优化

取 13 种农药的混合标准溶液,在 ESI⁺和 ESI⁻模式下 进行电离监测,选择每个化合物的电离方式,并确定其母 离子。结果表明,13 种农药化合物在 ESI⁺模式下均具有较 好的响应,因此实验采用 ESI⁺采集模式。进一步做子离子 扫描,确定每个化合物的定性和定量离子对,优化碰撞能 量、锥孔电压等参数,建立 MRM 方法。13 种待测农药的 最佳质谱参数见表 1。 表1 13 种待测农药的质谱参数

第 12 卷

Table 1 MS parameters of 13 kinds of pesticides									
序号	化合物	保留时间 /min	母离子 (m/z)	子离子 (<i>m/z</i>)	锥孔电压 /V	碰撞能量 /eV			
1	矮壮素	1.02	122.0	59.0*/58.0	10/10	18/21			
2	吡虫啉	4.53	256.1	209.0*/174.9	25/25	12/20			
3	啶虫脒	4.83	223.0	126.0*/56.1	30/30	20/15			
4	噻苯隆	5.81	221.0	102.0*/93.9	10/10	15/15			
5	胺鲜酯	5.83	216.2	100.2*/71.2	20/20	16/25			
6	氯吡脲	6.40	248.1	129.0*/93.0	25/25	15/35			
7	嘧霉胺	6.79	200.0	107.0*/82.0	25/25	24/24			
8	多效唑	6.84	294.1	70.2*/125.1	10/10	20/35			
9	氟硅唑	7.16	316.0	247.0*/165.0	5/5	20/25			
10	烯效唑	7.17	292.1	69.9*/125.0	18/18	20/30			
11	戊唑醇	7.33	308.2	70.1*/124.9	30/30	24/40			
12	吡唑醚菌酯	7.43	388.1	193.9*/163.0	25/25	12/25			
13	苯醚甲环唑	7.57	406.1	250.9*/187.8	35/35	25/40			

注:*为定量离子。

2.2 色谱条件优化

2.2.1 色谱柱的选择

对比了 Waters Acquity UPLC BEH C₁₈ (2.1 mm× 100 mm, 1.7 μm)和 Waters Acquity UPLC HSS T3 (2.1 mm×100 mm, 1.8 μm) 2 种色谱柱对待测组分的分离效 果。结果发现,在 BEH C₁₈ 柱上,强极性化合物矮壮素的 保留较差,出峰过快,峰形较宽,造成定量困难和灵敏度 下降,而在 HSS T3 柱上,各待测组分保留能力较好,且各 色谱峰形和响应值较佳,因此选择 HSS T3 柱作为本方法 的色谱分离柱。

2.2.2 流动相的选择

分别以甲醇、乙腈作为有机相,以 2 mmol/L 甲酸铵 水溶液、0.1%甲酸水溶液作为水相,比较不同流动相体系 下,13 种农药的响应情况。结果发现,有机相中甲醇作为 流动相时,各组分整体响应相对优于乙腈流动相,而且就 毒性和成本而言,甲醇相对更低。与0.1%甲酸水溶液相比, 水相流动相采用2 mmol/L甲酸铵水溶液时,可改善部分色 谱峰形并获得更高的峰响应值,因此本研究选择甲醇-2 mmol/L甲酸铵水溶液作为流动相。通过优化梯度洗脱程 序,13 种农药的总离子流色谱图见图 1。

2.3 前处理条件优化

2.3.1 提取条件的优化

本研究测定的 13 种农药的溶解性和极性范围较广, 一般采用的提取溶剂有甲醇、乙腈等。考虑到甲醇的盐析 效果较差,不利于后续盐析除杂,因此选择乙腈作为提取 溶剂。比较了乙腈、含 1%乙酸的乙腈溶液作为提取溶剂 的提取效果。如图 2 显示,含 1%乙酸的乙腈提取效果明显 优于乙腈。用乙腈提取时,矮壮素的回收率仅有约49%,苯 醚甲环唑的回收率低于 59%;用含 1%乙酸的乙腈提取时, 各目标组分的回收率均在 63%以上。因此选择含 1%乙酸 的乙腈作为提取溶剂。同时,在样品提取过程中,加入无 水 MgSO4和 NaCl 分别作为除水剂和盐析剂提高提取效率, 其用量参考文献^[19],即样品、无水 MgSO4、NaCl 的质量比 为 10:4:1。

图 1 MRM 模式下 13 种农药标准溶液的总离子流色谱图(0.5 μg/L) Fig.1 Total ion chromatograms of 13 kinds of pesticides in MRM mode (0.5 μg/L)

图 2 2种提取溶剂对桃中添加 13 种农药回收率的影响(n=3) Fig.2 Effects of 2 kinds of extraction solvents on the recoveries of 13 kinds of pesticides spiked in peach (n=3)

超声提取是常用的样品提取手段之一,具有操作方 便、高效等优势,本研究为保证提取的效果,选择先振荡 分散样品,再进行超声提取。比较了不同超声时间(5、10、 15、20 min)对目标农药提取效率的影响。结果表明,超声 15 min 和 20 min 时,提取效率无明显差异,均显著优于超 声 5 min 和 10 min,因此选择超声 15 min 作为提取条件。

桃样提取后,移取样液 20 μL,加入 980 μL 纯水,在 满足检测灵敏度的前提下,既保证了样液组成与流动相初 始比例相似,从而减少进样分析时的溶剂效应,而且稀释 待测样液同时也降低了基质本底的干扰。

2.4 基质效应分析

取 0.5 μg/kg 的基质匹配标准工作溶液进样分析,同时将相同浓度的 0.5 μg/L 的溶剂标准工作溶液直接进样分析,计算两者目标农药峰面积的比值评估基质效应(matrix

effect, ME)^[20]。当 ME=1,表示不存在基质效应; ME>1,为 基质增强效应; ME<1,为基质抑制效应。计算结果表明,13 种农药的 ME 在 0.72~1.49 之间,桃基质对 13 种农药存在 不同程度的基质效应(表 2)。故本研究采用基质匹配标准溶 液-外标法进行定量

2.5 线性关系及定量限

取 1.2.1 中配制好的系列基质匹配标准工作溶液进行 测定,以各农药定量离子对峰面积(Y)对浓度(X,μg/kg)进行 线性回归分析,13 种农药在 0.5~8 μg/kg 范围内相关系数(r) 均在 0.997 以上,线性方程与 r 见表 2。定量限(limit of quantification, LOQ)采用加标回收进行验证,符合 GB/T 27417—2017《合格评定 化学分析方法确认和验证指南》中 准确度和精密度要求的最低加标浓度,确定为方法的定量 限。结果显示,13 种农药的 LOQ 均为 0.5 μg/kg(表 2),低于 我国 GB 2763—2019 及日本^[21]相关限量要求。

2.6 回收率及精密度

采用基质匹配标准溶液-外标法定量,向空白桃样中 添加 0.5、2 和 5 μg/kg 3 个浓度的农药标准溶液,按照 1.2.2 和 1.2.3 方法进行前处理和测定,每个添加浓度做 6 次平行, 连续测定 3 d,计算回收率及相对标准偏差 (relative standard deviations, RSDs),结果见表 3。13 种农药的平均 回收率为 63.2%~123.0%,日内相对标准偏差 (relative standard deviation, RSD)为 0.6%~10.3% (*n*=6),日间 RSD 为 2.8%~13.2% (*n*=3),准确度和精密度较好,可用于桃样品 中农药残留的定量检测。

Table 2 Elinear equations, correlation coefficients (r), MES and LOQS of 15 kinds of pesticides								
化合物	线性方程	r	ME	$LOQ/(\mu g/kg)$				
矮壮素	$Y = 2.48 \times 10^4 X - 6.50 \times 10^2$	0.9998	1.07	0.5				
吡虫啉	$Y = 5.36 \times 10^4 X + 6.97 \times 10^3$	0.9999	1.13	0.5				
啶虫脒	$Y = 2.86 \times 10^5 X + 1.35 \times 10^4$	0.9996	0.89	0.5				
噻苯隆	$Y=3.99\times10^{4}X-1.15\times10^{3}$	0.9998	1.03	0.5				
胺鲜酯	$Y = 4.76 \times 10^4 X - 4.61 \times 10^3$	0.9998	1.20	0.5				
氯吡脲	$Y = 9.99 \times 10^4 X + 8.59 \times 10^3$	0.9997	1.03	0.5				
嘧霉胺	$Y = 1.21 \times 10^5 X + 5.47 \times 10^3$	0.9998	1.04	0.5				
多效唑	$Y = 1.39 \times 10^5 X + 8.60 \times 10^2$	0.9998	1.02	0.5				
氟硅唑	$Y = 1.06 \times 10^5 X - 3.32 \times 10^3$	1.0000	0.72	0.5				
烯效唑	$Y = 4.23 \times 10^4 X - 7.04 \times 10^2$	0.9999	0.98	0.5				
戊唑醇	$Y = 1.21 \times 10^5 X - 7.19 \times 10^3$	0.9999	1.07	0.5				
吡唑醚菌酯	$Y = 1.62 \times 10^5 X - 4.38 \times 10^3$	0.9998	1.49	0.5				
苯醚甲环唑	<i>Y</i> =9.67×10 ⁴ <i>X</i> +5.34×10 ⁴	0.9972	1.28	0.5				

表 2 13 种农药的线性方程、相关系数、基质效应和定量限 e 2 Linear equations, correlation coefficients (r), MEs and LOOs of 13 kinds of pesticide

Table 5 Average recovertes and relative standard deviations of 15 kinds of pestedues in peach									
化合物	平均回收率/%		日内 RSD/(%, n=6)			日间 RSD/(%, n=3)			
	0.5 µg/kg	2 µg/kg	5 µg/kg	0.5 µg/kg	2 µg/kg	5 µg/kg	0.5 µg/kg	2 µg/kg	5 µg/kg
矮壮素	63.2	67.3	70.8	1.9	2.9	0.7	5.7	5.4	8.2
吡虫啉	81.6	86.9	97.0	7.5	0.9	1.0	6.2	6.1	4.2
啶虫脒	83.7	89.5	100.3	7.3	2.5	0.6	7.9	2.8	7.3
噻苯隆	83.6	86.2	94.7	5.0	4.0	4.6	11.1	4.8	5.0
胺鲜酯	87.9	75.7	98.9	3.8	0.6	0.9	10.0	7.2	4.3
氯吡脲	81.4	90.1	96.3	5.9	3.5	1.3	8.2	6.7	4.7
嘧霉胺	82.0	86.8	96.8	4.0	5.1	1.4	7.5	6.3	5.4
多效唑	86.1	91.4	98.4	6.0	3.1	2.4	6.0	7.7	5.8
氟硅唑	84.9	93.7	101.8	4.4	3.0	2.2	9.2	5.3	5.3
烯效唑	86.6	91.2	98.8	4.4	2.1	3.9	6.5	6.0	4.4
戊唑醇	85.8	88.5	98.4	6.7	5.8	10.3	6.3	5.6	4.5
吡唑醚菌酯	86.8	93.9	100.9	5.6	5.5	1.7	7.7	5.3	6.0
苯醚甲环唑	101.7	123.0	122.3	4.9	1.9	9.1	11.1	7.1	13.2

表 3 13 种农药在桃中的平均回收率和相对标准偏差 Table 3 Average veries and relative standard deviations of 13 kinds of pesticides in peach

2.7 检测方法比较

对比了几种桃中农药残留的前处理方法(表 4), 与其 他方法相比,本方法前处理程序简单,无需净化步骤,检 测时间短, 且稳定、灵敏, 适用于桃中农药残留的快速痕 量分析。虽然与文献[12]和[13]方法相比,本方法在测定农 药的数量上相对较少,但在方法的稳定性、灵敏性及操作 简便性方面占有优势。

2.8 实际样品测定

从当地超市、农贸市场购买了6份桃样品,按本方法

进行测定,均没有检测到目标农药残留。

3 结论与讨论

本研究采用 UPLC-MS/MS 技术, 建立了测定桃中 13 种农药残留的分析方法。该方法前处理简单省时,样品经 提取、盐析处理后, 无需净化操作, 有效提高了检测效率, 解决了传统方法前处理烦琐、耗时长的问题,且方法灵敏、 可靠、稳定,适用于大批量桃样品中农药残留的定性筛查 和准确定量。

Table 4 Comparison of this method with others									
前处理方法	检测方法	检测时间/min	检测精度/%	定量限/(µg/kg)	检测农药数量	文献			
振荡提取	ELISA	> 120	3.8~6.7	14	1	[9]			
固相萃取	GC-MS	> 65	2.9~7.1	6~37	14	[12]			
分散固相萃取与分散液液 微萃取	GC-TOF/MS	> 40	3.5~22.1	0.1~36.7	25	[13]			
QuEChERs	UPLC-MS/MS	> 150	6.1~7.6	50	3	[14]			
超声提取	UPLC-MS/MS	≈31	1.0~9.3	0.5	13	本方法			

参考文献

- [1] BENTO C, GONALVES AC, SILVA BM, et al. Peach (Prunus persica): Phytochemicals and health benefits [J]. Food Rev Int, 2020, (2): 1-32.
- [2] KANT R, SHUKLA RK, SHUKLA A. A review on peach (Prunus

persica): An asset of medicinal phytochemicals [J]. Int J Res Appl Sci Eng Technol, 2018, 6(1): 2186-2199.

[3] LI ZX, NIE JY, YAN Z, et al. A monitoring survey and dietary risk assessment for pesticide residues on peaches in China [J]. Regul Toxicol Pharm, 2018, 97: 152-162.

- [4] 李海飞,聂继云,徐国锋,等.桃中农药残留分析及膳食暴露评估研究
 [J]. 分析测试学报,2019,38(9):1066–1072.
 LI HF, NIE JY, XU GF, et al. Analysis of pesticide residues in peaches and their dietary [J]. J Instrum Anal, 2019, 38(9): 1066–1072.
- [5] SAMAD A, AKHTAR S, SHAHID MM, et al. Determination of pesticide residues in peaches by using gas chromatography and mass spectrometric detection [J]. Int J Environ Anal Chem, 2019, 99(14): 1446–1458.
- [6] ALGHARIBEH GR, ALFARARJEH MS. Pesticide residues in fruits and vegetables in Jordan using liquid chromatography/tandem mass spectrometry [J]. Food Addit Contam B, 2019, 12(1): 65–73.
- [7] YASEEN T, SUN DW, PU HB, et al. Detection of omethoate residues in peach with surface-enhanced raman spectroscopy [J]. Food Anal Method, 2018, 11(9): 2518–2527.
- [8] YASEEN T, PU HB, SUN DW. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique [J]. Talanta, 2019, 196: 537–545.
- [9] 曾俊源,崔巧利,刘曙照.直接竞争酶联免疫吸附分析法测定桃中氰 戊菊酯的残留量[J].农药学学报,2014,16(1):61-65. ZENG JY, CUI QL, LIU SZ. Determination of fenvalerate residue in peach by direct competitive enzyme-linked immunosorbent assay [J]. Chin J Pestic Sci, 2014, 16(1): 61-65.
- [10] 翟硕莉,张秀丰.固相萃取-气相色谱法检测桃中多种农药残留量[J]. 衡水学院学报,2018,20(1): 8–12.
 ZHAI SL, ZHANG XF. Determination of multi-pesticide residues in peach by GC-SPE [J]. J Hengshui Univ, 2018, 20(1): 8–12.
 [11] 柳璇,刘传德,鹿泽启,等.氟啶虫酰胺和联苯菊酯在桃上的残留行为
- [11] 协派, 对传题, 肥户治, 中. 就受到成本权率新闻化化工的发出针对及膳食摄入风险评估[J]. 果树学报, 2019, 36(12): 106–113. LIU X, LIU CD, LU ZQ, *et al.* Residues and dietary intake risk assessment of flonicamid and bifenthrin in peach [J]. J Fruit Sci, 2019, 36(12): 106–113.
- [12] 陈双, 温清华, 陈雪梅, 等. GC/MS 技术检测鲜桃中 14 种菊酯类农药 残留[J]. 农药科学与管理, 2016, 37(8): 32–36.
 CHEN S, WEN QH, CHEN XM. *et al.* Determination of 14 pyrethroid pesticides residue in peach by GC/MS [J]. Pestic Sci Admin, 2016, 37(8): 32–36.
- [13] 马智玲,李凌云,刘新艳,等. 气相色谱-飞行时间质谱联用快速筛查 桃中的 25 种农药残留[J]. 热带作物学报, 2015, 36(4): 804–812.
 MA ZL, LI LY, LIU XY, *et al.* Rapid screening of 25 pesticide residues in peach by gas chromatography-time of flight mass spectrometry [J]. Chin J Trop Crop, 2015, 36(4): 804–812.
- [14] 陈莉, 贾春虹, 刘冰洁, 等. 利用 QuEChERS-液相色谱串联质谱法测 定桃中草铵膦及其代谢物残留[J]. 农药, 2020, 59(1): 41-45. CHEN L, JIA CH, LIU BJ, et al. Determination of glufosinate-ammonium and its metabolites residues in peach using QuEChERS-liquid chromatography tandem mass spectrometry [J]. Agrochemicals, 2020, 59(1): 41-45.
- [15] 王亚, 申志慧, 刘腾飞, 等. 九种常用农药在桃树生长后期使用的安全

性[J]. 农药学学报, 2020, 22(4): 617-626.

WANG Y, SHEN ZH, LIU TF, *et al.* Safety of nine pesticides commonly applied to peach tree in the late growth stage [J]. Chin J Pestic Sci, 2020, 22(4): 617–626.

- [16] DONG MF, MA L, ZHAN XP, et al. Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment [J]. Regul Toxicol Pharm, 2019, 108: 104447.
- [17] 刘倩宇,刘颖超,董丰收,等. 超高效液相色谱-串联质谱检测桃中吡 唑醚菌酯和啶酰菌胺残留和消解[J]. 现代农药, 2020, 19(1): 46–49.
 LIU QY, LIU YC, DONG FS, *et al.* Determination of pyraclostrobin and boscalid residue and dissipation dynamics in peaches using UPLC-MS/MS
 [J]. Mod Agrochem, 2020, 19(1): 46–49.
- [18] 徐小民,何华丽,吕美玲,等. 液质联用法测定桃中三种杀菌剂的含量 分布[J]. 食品安全质量检测学报, 2013, 4(1): 94–98.
 XU XM, HE HL, LV ML, *et al.* Distribution of three fungicides in peaches determined by liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2013, 4(1): 94–98.
- [19] 张爱芝, 王全林, 曹丽丽, 等. QuEChERS-超高效液相色谱-串联质谱 法测定蔬菜中 250 种农药残留[J]. 色谱, 2016, 34(2): 158–164. ZHANG AZ, WANG QL, CAO LL, et al. Determination of 250 pesticide residues in vegetables using QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry [J]. Chin J Chromatogr, 2016, 34(2): 158–164.
- [20] 皮環渔,吴迪,周临,等. 超高效液相色谱-串联质谱法测定鸭蛋中 7 种四环素类药物残留[J]. 分析试验室, 2020, 39(9): 76–79.
 PI JY, WU D, ZHOU L, *et al.* Determination of 7 tetracyclines residues in duck eggs by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chin J Anal Lab, 2020, 39(9): 76–79.
- [21] The Japan Food Chemical Research Foundation. Maximum residue limits (MRLs) list of agricultural chemicals in foods [DB/OL]. http://db.ffcr.or.jp/front/. [2021-03-15].

(责任编辑:于梦娇)

作者简介

何 芳, 讲师, 主要研究方向为食品 化学分析检验。 E-mail: hefang jzu@163.com

原东林,副教授,主要研究方向为化 学分析检验。 E-mail: ydl jzu@163.com