婴幼儿配方乳粉中维生素 A、E 检测方法的 比较研究

魏 帅 ¹, 吕 宁 ², 梁成珠 ², 甘维佳 ¹, 孟慧琴 ², 姚世屿 ², 鲍 蕾 ^{1*}
[1. 雀巢研发(中国)有限公司雀巢食品安全研究院, 北京 100015; 2. 青岛海关技术中心, 青岛 266002]

摘 要:目的 比较 GB 5009.82-2016《食品安全国家标准 食品中维生素 A、D、E 的测定》第一法(以下简称 GB 方法)和 AOAC 2012.10/ISO20633: 2015《婴幼儿配方食品和成人营养品中维生素 A、E 的同时测定》(以下简称 AOAC/ISO 方法)检测婴幼儿配方粉中维生素 A 和维生素 E 的差异。方法 通过标准方法文本比对,分析 2 种方法的原理及技术步骤差异;通过质控样检测,分析 2 组结果的标准偏差、变异系数、95%重复性限、相对重复性限值、平均值、回收率等指标,比对 2 种方法的精密度和准确度差异;通过市售样品检测,分析 2 种方法检测结果的系统偏差和比例偏差,判别 2 种方法对婴幼儿配方乳粉的结果一致性。结果 2 种方法原理不同,步骤也存在差异。质控样检测比对结果表明,AOAC/ISO 方法的重复性和重现性标准偏差、变异系数、95%重复性限、相对重复性限值结果,均低于 GB 方法测得的同类指标; AOAC/ISO 方法和 GB 方法均表现出较好的回收率指标(100%±5%)。样品对比检测结果表明,维生素 A 的检测结果不存在系统偏差和比例偏差,结果一致;维生素 E 的检测结果既有系统偏差也有比例偏差,结果不一致。结论 AOAC/ISO 方法和 GB 方法原理及操作步骤存在明显不同,可能导致 2 种方法在测定维生素 E 含量时,结果 差异达到统计学显著水平。

关键词: 婴幼儿配方乳粉; 维生素 A; 维生素 E; 方法比较

Comparison study of analytical methods on vitamin A and vitamin E in infant formula

WEI Shuai¹, LV Ning², LIANG Cheng-Zhu², GAN Wei-Jia¹, MENG Hui-Qin², YAO Shi-Yu², BAO Lei^{1*}

(1. Nestlé Food Safety Institute, Nestlé R & D (China) Ltd, Beijing 100015, China; 2. Qingdao Customs Technical Center, Qingdao 266002, China)

ABSTRACT: Objective To compare the differences of GB 5009.82-2016 *National food safety standard-Determination of vitamin A, D, E in food* method 1 and (hereinafter referred to as the GB method) AOAC 2012.10/ISO 20633:2015 *Simultaneous determination of vitamins A and E in infant formula and adult nutritional* (hereinafter referred to as AOAC/ISO method) in the detection of vitamin A and vitamin E in infant formula powder. **Methods** The differences of the principles and technical steps between these 2 methods were compared through the text file; the precision and trueness were compared by analyzing the key parameters e.g. standard deviation, coefficient of variation, 95% repeatability limit, relative repeatability limits, mean value and recovery of standard

基金项目: 国家重点研发计划项目 (2017YFE0110800)

Fund: Supported by the National Key R&D Program (2017YFE0110800)

^{*}通讯作者: 鲍蕾, 博士, 研究员, 主要研究方向为食品安全。E-mail: lei.bao@rd.nestle.com

^{*}Corresponding author: BAO Lei, Ph.D, Professor, Nestlé Food Safety Institute (China), Beijing 100015, China. E-mail: lei.bao@rd.nestle.com

reference materials; the systematic and proportional bias of these 2 methods were analyzed by comparing the analytical results of infant formula samples purchased from China market. **Results** The method principle and the operation procedures of these 2 methods were different. The standard reference materials test results showed that, the key parameters of method repeatability and reproducibility (e.g. standard deviation, coefficient of variation, 95% repeatability limit, relative repeatability limits) were lower by performing AOAC/ISO method; and both AOAC/ISO method and GB method had good recovery (100%±5%). The comparison results of sample test showed that, there was no systematic deviation and proportion deviation between GB and AOAC/ISO method for vitamin A analysis, whereas there were both systematic deviation and proportion deviation between GB and AOAC/ISO method and GB method are different, which may lead to significant differences when performing these 2 methods to test vitamin E in infant formula samples.

KEY WORDS: infant formula; vitamin A; vitamin E; method comparison

1 引 言

维生素 A、维生素 E 作为婴幼儿配方乳粉中的重要营养物质,是企业合规生产和政府质量监管的常见检测指标^[1]。科学界已对维生素 A、E 的检测方法进行较多研究,目前已知食品中的维生素 A 和维生素 E 检测方法包括比色法,电化学法,气相色谱法,液相色谱法,液相色谱串联质谱法等^[2-6]。维生素 A 和维生素 E 同属脂溶性维生素,具有类似的特性,可以使用一个标准方法进行检测。

目前, 针对婴幼儿配方食品中的维生素 A 和维生素 E 的液相色谱检测方法主要有2种,分别是中国食品安全国家 标准 GB 5009.82-2016《食品安全国家标准 食品中维生素 A、D、E的测定》第一法(GB方法)中规定的反相-高效液相 色谱法 (reverse phase-high performance liquid chromat ography, RF-HPLC)法^[7], 和 AOAC 2012.10/ISO 20633: 2015(AOAC/ISO 方法)为代表的正相-高效液相色谱法 (normal phase-high performance liquid chromatography, NP-HPLC)法[8]。GB方法是目前我国食品安全风险监测、监 督抽检、产品合规判断所强制采用的标准方法, AOAC/ISO 方法是国际标准化组织(International Organization for Standardization, ISO) 、国际食品法典委员会(Codex Alimentarius Commission, CAC)、美国分析化学家协会 (Association of Official Analytical Chemists, AOAC)等国际组 织指导和协调全球检测推荐的标准方法。由于2种方法在方 法原理、适用基质、检测对象、样品前处理等方面存在诸多 不同, 可能导致在测定婴幼儿配方食品所得的结果不一致。 李君绩等^[9]比较了 2 种目前已被废止的国家标准 GB/T 5009.82-2003 和 GB 5413.9-2010 与 AOAC 2012.10 方法的差 异。结果表明, GB 方法对维生素 E 的测定结果偏低, 原因是 维生素 E 较易氧化破坏。现行国家标准 GB 5009.82-2016 第 一法在原有方法上经过修订, 与废止的 GB/T 5009.82-2003

和 GB 5413.9-2010 相比,在取样量、提取溶剂、色谱柱型号、紫外检测波长等关键参数上做了较大修改,且针对维生素 E 较易氧化破环的特征,在皂化环节增加抗坏血酸和 2,6-二叔丁基对甲酚(C₁₅H₂₄O,BHT)做为还原剂进行保护,目前还没有对 GB 5009.82-2016 第一法和 AOAC 2012.10 方法进行比对的研究报道。

本研究采用婴幼儿配方奶粉为研究对象,通过方法原理文本比对和实验检测数据分析,研究 GB 5009.82-2016 第一法和 AOAC 2012.10/ISO 20633: 2015 法的差异,分析可能造成结果差异的原因,并基于数据结果判定差异可能造成的风险,为方法标准修订提出科学的优化建议。

2 材料与方法

2.1 仪器与试剂

Thermo U3000 高效液相色谱仪、Therm Precision 恒温震荡水浴锅(美国赛默飞公司); Buchi Rotavapor R-100 旋转蒸发仪(瑞士步琪公司); SPE CEREX 48 氮吹仪(美国 SPEware 公司); Shimadzu UV-1780 紫外分光光度计(日本岛津公司)。

视黄醇(纯度 \geq 97.5%)、 δ -生育酚(纯度 \geq 95%)、 β -生育酚(纯度 \geq 98%)、 γ -生育酚(纯度 \geq 93.1%)(美国 Sigma 公司); D- α -生育酚(纯度 \geq 97.1%)(德国 DR 公司); SRM1849a (美国 NIST 公司)。

甲醇(色谱纯,德国默克公司);无水乙醇、氢氧化钾、石油醚、无水硫酸钠、乙醚(分析纯,国药集团);实验室用水为 Milli-Q 超纯水。

2.2 实验方法

2.2.1 样品信息

在中国市场上采购婴幼儿配方奶粉(含特殊医学用途婴幼儿配方奶粉)样品 21 个,涉及不同配方阶段,具体信息参考表 1。

表 1 样品基本信息 Table 1 General information of the samples

	Table 1	General initi	mation of the samples	•
编号	奶粉适	用年龄段/月	品类	奶粉段
1		0~12		
2		0~12		
3		0~12		
4		0~1	特殊医学用途	N/A
5		0~12	婴幼儿配方粉	IN/A
6		0~12		
7		0~12		
8		0~12		
9		0~12		
10		0~6		
11		0~6		
12		0~6		一段
13		0~6		
14		0~6		
15		0~12	婴幼儿配方乳粉	
16		6~12		
17		6~18		二段
18		6~18		
19		12~36		
20		13~24		三段
21		12~36		

2.2.2 研究方案

方法比较分为3个部分。

一是文本比较。通过比较方法文本,找出2个方法原理、测试目标物、使用基质、样品称量方式、样品前处理、色谱条件、检出限和定量限的不同,分析这些不同可能导致的结果差异。

二是质控样检测结果比对。参照 ISO/IEC 17025: 2005^[10]、2002/657/EC^[11]、ISO 11843-1: 1997^[12]、ISO 11843-2: 2000^[13]、ISO 11843-3: 2003^[14]、ISO 16269-4: 2010^[15]、SANCO/2004/2726-rev4-december 2008^[16]、ISO 5725^[17]等国际标准文件要求设计。具体步骤为: 选用国际认可的奶粉标准物质 NIST 1849a 为标准样品,选取 2 名实验操作人员,每名实验员在 3 个不同的工作日内进行独立样品测试,共计进行 6 次测试,每次测试收集 2 个重复数据。将数据输入 Q-stat 软件验证模型统计模块"validation module(precision & trueness)",计算实验结果的精密度和准确度。

三是样品检测结果比对。参照 ISO/IEC 17025: 2005^[10]、ISO 5725: 1994^[17]、ISO 8196-3: 2009^[18]、ISO 11095: 1996^[19]、ISO 11843-5: 2008^[20]等国际标准文件设计。具体步骤为: 按照标准所规定的操作流程, 对 21 个样品进行测试, 每个样品称取 2 个平行样品, 分别进行测试。将数据输入 Q-stat 软件验证模型统计模块 validation module (trueness: reference vs. alternative), 计算 2 组实验结果 95%置信区间内的系统偏差和比例偏差。

2.2.3 实验流程

选 取 富 有 检 测 经 验 的 实 验 人 员 , 按 照 GB 5009.82-2016 第一法和 AOAC 2012.10 标准方法的要求进行检测。

3 结果与分析

3.1 方法原理比较

表 2 比较了 2 个方法的原理及关键步骤差异。从方法 原理上分析,2种方法存在较大差异,GB方法通过皂化,将 样品中酯化形式的维生素A和维生素E转化为醇或酚形态, 经提取、净化、浓缩后再利用反相色谱进行测定;而 AOAC/ISO 方法没有皂化步骤, 直接采用异辛烷提取, 采 用正相色谱同时测定醇酚形态和酯形态的维生素A和维生 素 E。从测试目标物上分析, 维生素 A 方面, AOAC/ISO 方 法与 GB 方法的主要差异是将 13-顺式-视黄醇列为目标物; 维生素 E 方面, GB 方法覆盖了包括 α -生育酚, β -生育酚, γ -生育酚, δ -生育酚的生育酚的 4 种形态, AOAC/ISO 方法的 目标物只有 α -生育酚。从适用基质上分析, GB方法适用于 所有食品, AOAC/ISO 方法则仅适用于婴幼儿配方食品和 成人营养品。从称量方式上分析, GB 方法取样量较小, AOAC/ISO 方法采用大样本复溶的方式提高取样的均一性 和代表性。从样品前处理上分析, 由于 GB 方法增加了皂 化步骤, 相比于 AOAC/ISO 方法, 操作流程更长, 步骤更 为繁琐。从色谱条件上分析, GB 方法选取反相色谱, 维生 素A和维生素E均给出了紫外检测器和荧光检测器的测定 方法, AOAC/ISO 方法选取正向色谱, 维生素 A 仅适用于 紫外检测器, 维生素 E 则需要荧光检测器。从检出限和定 量限上分析, AOAC/ISO 方法的 LOD 和 LOQ 均低于 GB 方 法。从实验试剂选择上来看, GB 方法前处理中选用了石油 醚-乙醚混合物进行样品处理, 其中石油醚对环境的污染 程度较大, 乙醚则是易制毒管控试剂, 而 AOAC 方法的提 取试剂为对环境相对友好的异辛烷。

整体上看,AOAC/ISO 方法和 GB 方法在原理上存在较大差异,且 2 种方法的测试目标物不同,可能对 2 种方法测定结果产生较大影响。从方法步骤和方法特性文本上看,AOAC/ISO 方法较 GB 方法步骤更为简便,且拥有更低的检出限和定量限。

表 2 方法文本比较

	Table 2 Text file compar	rison
方法流程	GB 5009.82-2006 方法 1	AOAC Official Method 2012.10/ISO 20633: 2015
方法原理	试样中的维生素 A 及维生素 E 经皂化(含淀粉先用淀粉酶酶解)、提取、净化、浓缩后, C_{30} 或 PFP 反相液相色谱柱分离,紫外检测器或荧光检测器检测,外标法定量。	
测试目标物	维生素 A: 全反式视黄醇及视黄醇酯; 维生素 E: α -生育酚、 β -生育酚、 γ -生育酚、 δ -生育酚。	维生素 A: 13-顺式-视黄醇、全反式视黄醇、 视黄醇棕榈酸酯、视黄醇醋酸酯; 维生素 E: α-生育酚、α-生育酚酯。
适用基质	食品	婴幼儿配方食品和成人营养品
样品称量	2~5 g 固体样品	称取 25 g 粉末溶解至 250 mL,量取 5 g 样品进行实验
样品前处理	样品中加入 20 mL 水溶解,加入 1 g 抗坏血酸和 0.1 g BHT 做为保护剂,加入 30 mL 无水乙醇,10~20 mL 氢氧化钾溶液,80 ℃水域震荡 30 min 皂化;将皂化液中加入 50 mL 石油醚-乙醚混合物萃取 2 次,提取醚层,100 mL 水洗涤 3 次后,旋蒸浓缩,过 0.22 μm 滤膜后待测。	样品中加入 5 mL 木瓜蛋白酶溶液, (37±2) ℃水浴 20~25 min 酶解, 冷却后加入 20 mL 酸化甲醇, 振荡 10 min, 正辛烷震荡提取 10 min, 离心后提取正辛烷层溶液待测。
色谱条件	色谱柱: C ₃₀ 反相色谱柱; 检测器: 紫外检测器, 维生素 A 325 nm, 维生素 E 294 nm; 荧光检测器, 维生素 A 激发波长 328 nm, 发射波长 440 nm, 维生素 E, 激发波长 294 nm, 发射波长 328 nm。	色谱柱: Zorbax NH ₂ ; 检测器: 紫外检测器, 维生素 A 325 nm; 荧光检测器, 维 生素 E 激发波长 280 nm, 发射波长 310 nm。

当取样量为 5 g, 定容 10 mL 时, 维生素 A 的紫外检出限为 0.099 μg/100 g, 定量限为 0.33 μg/100 g, 视黄醇醋酸酯检 检出限及定量限 10 μg/100 g, 定量限为 30 μg/100 g; 生育酚的紫外检出限为 出限为 0.85 μg/100 g, 定量限为 2.83 μg/100 g; α-生育酚 140 μg/100 g, 定量限为 120 μg/100 g。

经单实验室和多实验室验证,视黄醇棕榈酸酯检出限为

检出限为 10 μg/100 g, 定量限为 35 μg/100 g, α-生育酚醋 酸酯检出限为: 23 μg/100 g, 定量限为 75 μg/100 g。

3.2 质控样检测比对

选用 NIST 1849a 为质控样品, 分别采用 GB 方法和 AOAC/ISO 方法进行分析。表 3 是不同方法精密度结果比 较,包括不同方法产生结果的重复性和重现性关键指标。 从平均值、标准偏差、变异系数、95%重复性限、相对重 复性限等指标进行比对。结果可知, AOAC/ISO 方法在测定 维生素 A 和维生素 E 时所获得的标准偏差、变异系数变异 系数、95%重复性限、相对重复性限等值均低于 GB 方法。 以代表数据离散程度的指标变异系数为例, GB 方法测定 维生素 A 的重复性及重现性变异系数分别为 1.18%和 1.15%, AOAC/ISO 方法测定维生素 A 的重复性及重现性变 异系数分别为 0.14%和 0.45%, 维生素 E 所得的结果与维 生素 A 相似, GB 方法的重复性及重现性变异系数分别为 2.05%和 1.78%, AOAC/ISO 方法的重复性及重现性变异系 数分别为 0.00%和 0.27%

表 4 是不同方法准确度结果比较。从结果中可以看 出 2 种方法维生素 A 和维生素 E 的检测结果均落在标准 物质参考值不确定度范围内,表明采用 GB 和 AOAC/ISO 方法均能得到与样品真值接近的数据。具体分析 2 种方 法的回收率可以看出, 在维生素 A 测定中, GB 方法的回 收率为 98.40%, AOAC/ISO 方法为 97.30%; 在维生素 E 的测定中, AOAC/ISO 方法的回收率为 100.91%, GB 方法 为 105.14%。

3.3 样品检测比对

3.3.1 维生素 A

表 5 是维生素 A 的对比实验检测结果。

利用 Qstat 软件的"Reference vs Alternative"模块功能 对数据进行分析,将 GB 5009.82 方法I作为参考方法 (reference method), 将 AOAC 2012.10 作为替代方法 (alternative method)。由于样品含量浓度范围较宽, 根据 判定标准[(max_{ref}-min_{ref})/max_{ref}=0.756>0.2), 要对比2种方 法是否在统计学意义上相同, 必须同时判断 2 种方法之 间的系统偏差和比例偏差。具体分析结果见图 1、表 6、 图 2、表 7。

图 1 是维生素 A 测试方法系统偏差分析, X 轴表示参 考方法测定样品含量值, Y 轴表示替代方法-参考方法的 值。从图中可以看出,2种方法差异的数值分布在 Y=0 参考 线的两侧,没有显示出明显的偏离。数据分析结果如表 6 所示, 偏差的中位数是 0.00, 偏差值的范围在 95%的置信 区间内包含了 0, 所以 2 种方法不存在系统偏差。

表3 方法精密度结果比较 Table 3 Precision results comparison

						-		res combarason					
‡ †	型 11 12	11 4	<u>4</u>	舟 在	亚拉佐			重复性			運	重现性	
AK.	日你彻	你作品	中瓜	里及	事	标准偏差/%	% 变异系数/%	95%重复性限/%	95%重复性限% 相对重复性限% 标准偏差%	标准偏差/%	变异系数/%	95%重复性限 /%	相对重复性限 /%
2100 6000 6000	维生素 A		µg/100 g		755.75	8.91	1.18	24.70	3.27	8.86	1.15	24.05	3.18
GB 3009.82-2016	维生素臣	MICT10402	mg/100 g	*	23.03	0.47	2.05	1.31	5.68	0.41	1.78	1.14	4.94
AOAC2012.10/ISO	维生素 A	1010 1 1 0 4 9 4	µg/100 g	7.0	747.25	1.05	0.14	2.91	0.39	3.36	0.45	9.32	1.25
20633: 2015	维生素臣		mg/100 g		22.10	0.00	0.00	0.00	0.00	90.0	0.27	0.17	0.75
方法	目标物	标准品	単位		重复多	参考值 标	下 标准品含量不确定度 平均值		回收率/% 标	标准偏差/%	测定值在参考	测定值在参考值不确定度范围内(Y/N)	围内(Y/N)
	维生素 A		нв/100 g	50		892	23	755.75	98.40	0.03		Y	
GB 5009.82-2016	维生素日		mg/100 g			21.9	1.6	23.03	105.14	0.08		Y	
AOAC2012.10/ISO	维生素 A	NIST 18498	а µg/100 g		70	892	23	747.25	97.30	0.03		Y	
20633: 2015	维生素日		mg/100 g	<u>o</u> .		21.9	1.6	22.10	100.91	0.07		Y	

表 5 样品中维生素 A 含量方法比对检测结果 Table 5 Concentration of vitamin A in comparison samples

松口ぬ口	GB 5009	.82 反相 HPLC/(µg/1	00 g)	AOAC2012.1	0/ISO 20633:2015 正向	HPLC/(μg/100 g)
样品编号 -	重复 1	重复 2	均值	重复1	重复 2	均值
1	346	345	346	343	344	344
2	233	232	233	224	225	225
3	284	284	284	276	278	277
4	389	390	390	392	395	394
5	553	555	554	553	558	556
6	194	194	194	216	235	226
7	315	313	314	310	314	312
8	199	197	198	229	248	239
9	397	394	396	403	404	404
10	221	219	220	211	221	216
11	302	302	302	298	295	297
12	368	362	365	408	414	411
13	136	137	137	128	129	129
14	199	199	199	221	217	219
15	185	185	185	177	177	177
16	242	238	240	245	239	242
17	136	134	135	138	135	137
18	351	348	350	347	345	346
19	396	391	394	413	407	410
20	456	449	453	460	445	453
21	209	207	208	202	194	198

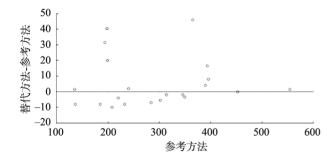


图 1 维生素 A 测试方法差异分析-系统偏差 Fig.1 Analytical differences of vitamin A-Systematic bias

图 2 是维生素 A 测试方法比例偏差分析, 线 2 代表以 GB 方法测定结果为 X 值, 以 AOAC/ISO 方法为 Y 值所做 的回归曲线 Y=4.074+1.005X, 平行于线 2 的 2 条线分别代

表该回归曲线的 95%置信区间范围, 线 3 代表替代值=参考值。可以看出, 线 3 完全落在回归曲线 95%置信区间范围内, 表明代表实际测试结果的回归曲线 Y=4.074+1.005X 与标志着 2 种方法结果—致的参考曲线 Y=X 在统计学上差异不显著(P<0.05)。数据分析结果如表 7 所示,该回归曲线的斜率中值为 1.005, 其 95%置信区间范围是 0.934~1.076,包含 1; 截距中值为 4.074, 其 95%置信区间范围为 -17.872~26.020,包含 0,与图 2 所示结果—致, 2 种方法不存在比例偏差。

以上结果表明, 2 种方法在分析这 21 个婴幼儿配方乳粉产品时, 所得结果既不存在系统偏差, 也不存在比例偏差, 2 种方法结果在统计学(95%置信区间)上判定为一致。3.3.2 维生素 E

表 8 是维生素 E 的对比实验检测结果。

表 6 维生素 A 测试方法差异分析-系统偏差 Table 6 Analytical differences of vitamin A-Systematic bias

样品数量	样品浓度范围	围/(µg/100 g)			偏差
件吅奴里	最小值	最大值	偏差中位数	标准偏差/%	偏差值范围是否包括 0(95%置信区间)/(Y/N)
21	128.5	555.5	0.00	10.435	Y

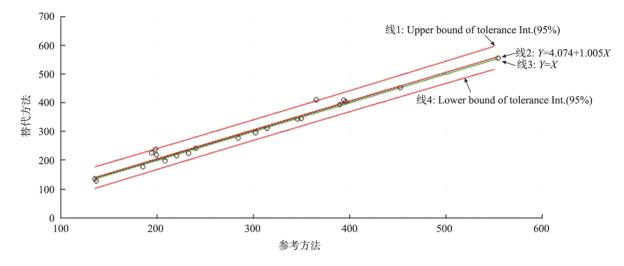


图 2 维生素 A 测试方法差异分析-比例偏差

Fig.2 Analytical differences of vitamin A-Proportional bias

表 7 维生素 A 测试方法差异分析-比例偏差 Table 7 Analytical differences of vitamin A-Proportional bias

	浓度范围	/(µg/100 g)		斜	率			截距
样品数量	最小值	最大值	斜率 中值	斜率范围	斜率范围是否包含 1 (95%置信区间)(Y/N)	截距 中值	截距范围	截距范围是否包含 0 (95%置信区间)(Y/N)
21	128.5	555.5	1.005	0.934~1.076	Y	4.074	-17.872~26.020	Y

表 8 样品中维生素 E 含量方法比对检测结果
Table 8 Concentration of vitamin E in comparison samples

				r		
样品编号 -	GB	3 5009.82 反相 HPLC/	(mg/100 g)	AOAC2012.10/IS	SO 20633: 2015 正向 H	HPLC/(mg/100 g)
竹田畑 ケー	重复1	重复 2	均值	重复 1	重复 2	均值
1	21.7	21.6	21.7	19.6	19.6	19.6
2	12.3	12.2	12.3	11.1	11.0	11.1
3	20.4	20.4	20.4	18.2	18.2	18.2
4	18.2	18.1	18.2	16.7	16.8	16.8
5	27.1	27.0	27.1	24.4	24.4	24.4
6	14.8	14.8	14.8	14.3	15.3	14.8
7	10.6	10.5	10.6	9.68	9.52	9.60
8	7.70	7.67	7.69	7.14	7.88	7.51
9	13.3	13.4	13.4	12.4	12.2	12.3
10	11.8	11.6	11.7	10.6	10.5	10.6

续表8

样品编号 -	GB	3 5009.82 反相 HPLC/	(mg/100 g)	AOAC2012.10/IS	O 20633: 2015 正向 I	HPLC/(mg/100 g)
件前编号 -	重复1	重复 2	均值	重复 1	重复2	均值
11	12.8	12.8	12.8	11.7	11.5	11.6
12	20.3	20.1	20.2	19.5	19.7	19.6
13	12.8	12.8	12.8	11.7	11.5	11.6
14	11.5	11.4	11.5	11.3	11.6	11.5
15	14.5	14.4	14.5	13.0	12.9	13.0
16	9.60	9.50	9.55	8.72	8.61	8.67
17	5.08	5.04	5.06	5.36	5.32	5.34
18	15.2	15.0	15.1	13.8	13.6	13.7
19	10.7	10.6	10.7	10.3	10.5	10.4
20	21.7	21.3	21.5	19.8	19.2	19.5
21	15.3	15.1	15.2	13.9	14.3	14.1

利用 Qstat 软件的"Reference vs Alternative"模块功能 对数据进行分析,将 GB 5009.82 方法I作为参考方法,将 AOAC2012.10/ISO 20633: 2015 作为替代方法。由于样品含量浓度范围较宽,根据判定标准[(max_{ref} - min_{ref})/ max_{ref} =0.813>0.2],要对比 2 种方法是否在统计学意义上相同,必须同时判断 2 种方法之间的系统偏差和比例偏差。具体分析结果见图 3、表 9、图 4、表 10。

图 3 是维生素 E 测试方法系统偏差分析, X 轴表示参考方法测定样品含量值, Y 轴表示替代方法-参考方法的值。从图中可以看出, 2 种方法差异的数值多分布在 Y=0 参考线的下侧,显示出 AOAC/ISO 方法的测定结果普遍低于GB 方法。数据分析结果如表 9 所示,偏差的中位数是-1.150,偏差值的范围在 95%的置信区间内不包含了 0, 所以 2 种方法存在系统偏差。

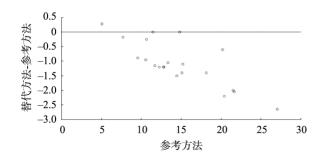


图 3 维生素 E 测试方法差异分析-系统偏差 Fig.3 Analytical differences of vitamin E-Systematic bias

图 4 是维生素 E 测试方法比例偏差分析,线 3 代表以GB 方法测定结果为 X 值,以 AOAC/ISO 方法为 Y 值所做的回归曲线 Y=0.594+0.885X,平行于线 3 的 2 条线分别代表该回归曲线的 95%置信区间范围,线 1 代表替代值=参考值。图中可以看出,线 1 没有完全落在回归曲线 95%置信区间范围内,表明代表实际测试结果的回归曲线 Y=0.594+0.885X 与标志着 2 种方法结果一致的参考曲线 Y=X 在统计学上不一致。具体看图可以发现,随着 X 值增大,线 3 与线 1 的偏差逐步增大,当 X 大于 15 时,线 1 已不能落在线 2 范围内,提示随着样品中维生素 E 含量的升高,2 种方法的测定结果差异逐步增大。数据分析结果如表10 所示,该回归曲线的斜率中值为0.885,其95%置信区间范围是 0.842~0.929,不包含 1;截距中值为-0.594,其 95%置信区间范围为-0.077~1.265,包含 0,与图 4 所示结果一致,2 种方法存在比例偏差。

以上结果表明,2种方法在分析这21个婴幼儿配方乳粉产品时,所得结果既存在系统偏差,也存在比例偏差,2种方法结果在统计学(95%置信区间)上判定为不一致。

4 讨论及建议

高效液相色谱法是目前分析食品中维生素最主要的技术手段,其中 NP-HPLC 方法和 RF-HPLC 方法均可用于维生素 A 和维生素 E 的检测。本研究选取 RF-HPLC 方法的代表 GB 5009.82-2016 第一法和 NP-HPLC 方法的代表 AOAC 2012.10/ISO 20633: 2015 法,从方法原理、标准物质检测、样品检测对 2 种方法进行比对,结果分析如下:

表 9 维生素 E 测试方法 Table 9 Analytical differences o	
要范围/ (mg/100 g)	偏差

样品浓度范围	围/ (mg/100 g)		偏差	
最小值	最大值	偏差中位数	标准偏差/%	偏差值范围是否包括 0(Y/N)
5.06	27.05	-1.150	0.674	N
			40.	线3: <i>Y=X</i>
	最小值		最小值 最大值 偏差中位数	最小值 最大值 偏差中位数 标准偏差/% 5.06 27.05 -1.150 0.674

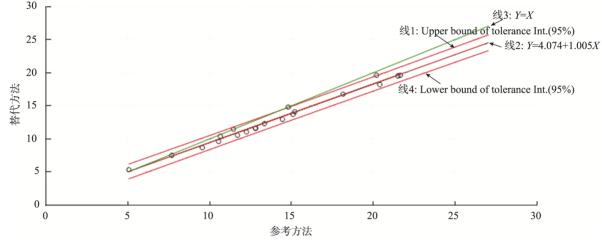


图 4 维生素 E 测试方法差异分析-比例偏差 Fig.4 Analytical differences of vitamin E-Proportional bias

表 10 维生素 E 测试方法差异分析-比例偏差 Table 10 Analytical differences of vitamin E-Proportional bias

	浓度范围/	(mg/100 g)		斜率	<u> </u>		截距	
样品数量	最小值	最大值	斜率中值	斜率范围	斜率范围是否包含 1 (95%置信区间)(Y/N)	截距中值	截距范围	截距范围是否包含 0 (95%置信区间)(Y/N)
21	5.06	27.05	0.885	0.842~0.929	N	-0.594	-0.077~1.265	Y

从方法文本比对结果上看 GB 方法和 AOAC/ISO 方法 存在 3 方面差异: 一是分析原理不同, GB 方法前处理需要 将样品皂化,将所有酯化形态的维生素 A 和维生素 E 转化 为醇或酚后测定; OAC/ISO 方法则是采用异辛烷萃取后, 直接测定醋酸酯和棕榈酸酯。2 种方法各有优劣, 其中 AOAC/ISO 方法没有皂化, 操作步骤较 GB 方法更为简单, 但是婴幼儿配方乳粉中含有较高含量的脂肪, 会对脂溶性 维生素的提取效率产生负面影响, 理论上的提取不完全可 能导致 AOAC/ISO 测定结果偏低^[21]。二是检测目标物不一 致, 维生素 A方面, AOAC/ISO方法 13-顺式-视黄醇列为目 标物, 而GB方法只检测全反式视黄醇, 由于13-顺式-视黄 醇也具有维生素 A 的生物活性[22], 所以 AOAC/ISO 方法所 得结果理论上更具有实际参考价值;维生素 E 方面, GB 方 法覆盖了包括 α -生育酚、 β -生育酚、 γ -生育酚、 δ -生育酚的 生育酚的 4 种形态, AOAC/ISO 方法的目标物只有 α -生育 酚, 原因是 GB 方法的目标物除了婴幼儿配方粉外, 也适 用于其他食品基质, 在实际工作中, 多数婴幼儿配方粉均 添加天然维生素 E, 仅含有 α -生育酚组分, 所以理论上目

标物的差异并不影响婴配产品的检测结果^[23]。三是称量方式及色谱条件等其他细节参数设计,环境友好试剂选择、精密度、适用浓度范围等描述上存在差异。总的看来,AOAC/ISO 方法较 GB 方法步骤更为简便,精密度表述上也更为清晰,且拥有更低的检出限和定量限。

采用标准物质 NIST 1849a 的检测结果来比较 2 种方法精密度、准确度。从方法的精密度上看, AOAC/ISO 方法在测定维生素 A 和维生素 E 时所获得的标准偏差、变异系数、95%重复性限、相对重复性限等值均低于 GB 方法。从方法的准确度上看, AOAC/ISO 方法和 GB 方法测定维生素 A、E 时均表现出较好的回收率(100%±5%)。其中, GB 方法测定维生素 A 的回收率为 98.40%, AOAC/ISO 方法回收率为 97.30%, 这与本研究原理比较得出 AOAC/ISO 回收率偏低的结论一致;维生素 E 的 AOAC/ISO 方法的回收率为 100.91%, GB 方法为 105.14%。

从数理统计角度分析 2 种方法是否能得出相同的结果,是评判方法是否存在差异重要依据。采用 21 个样品进行检测分析的结果表明,2 种方法在分析 21 个婴幼儿配方

乳粉产品时,维生素 A 所得结果一致,而维生素 E 则会得到具有统计学差异的结果。其中维生素 E 2 种方法间既存在系统偏差也存在比例偏差,GB 相对于 AOAC/ISO方法往往能得到更高的测定结果,且随着样品中维生素 E 含量升高,测定结果的偏差也在逐步增大,提示 GB 方法对维生素 E 的测定线性范围较窄,可能不适用于维生素 E 含量较高产品的检测。

依据以上方法比对结果,可以看出 AOAC/ISO 方法和 GB 方法在方法原理、检测目标物、样品称量方式及色谱条件细节上存在差异,并可能导致检测结果存在不一致。建议现行国标 GB 5009.82-2016 在后续的修订过程中,在检测目标物方面考虑将具有维生素 A 生物活性的 13-顺式视黄醇计入总量,在样品称量方式上采用大样本复溶取样的方式提高样品的代表性,在萃取试剂选择上采用异辛烷替代石油醚/乙醚混合溶剂,提高方法的安全及环境友好度,并进一步明确方法的适用浓度范围及方法精密度信息。

参考文献

- [1] 章肇敏, 杨凯琳. 我国婴幼儿配方乳粉的营养素分布[J]. 食品安全质量检测学报, 2019, 10(5): 1153-1160.
 - Zhang ZM, Yang KL. Distribution of nutrients in infant and follow-up formula milk powder in China [J]. J Food Saf Qual, 2019, 10(5): 1153–1160
- [2] Christie AA, Dean AC, Millburn BA. The determination of vitamin E in food by colorimetry and gas-liquid chromatography [J]. Analyst, 1973, 98(1164): 161–167.
- [3] 郑熠斌. 食品中维生素 A、D、E 的检测方法研究[D]. 杭州: 浙江工业 大学. 2016.
 - Zheng YB. Study on the analysis methods of vitamin A, vitamin D, and vitamin E in food [D]. Hangzhou: Zhejiang University of Technology, 2016.
- [4] Woollard DC, Bensch A, Indyk H, et al. Determination of vitamin A and vitamin E esters in infant formulae and fortified milk powders by HPLC: Use of internal standardization [J]. Food Chem, 2016, 197(15): 457–465.
- [5] Kadioglu Y, Demirkaya F, Demirkaya AK. Quantitative determination of underivatized α-tocopherol in cow milk, vitamin and multivitamin drugs by GC-FID [J]. Chromatographia, 2009, 70(3): 665–670.
- [6] Plozza T, Trenerry VC, Caridi D. The simultaneous determination of vitamins A, E and β-carotene in bovine milk by high performance liquid chromatography—ion trap mass spectrometry (HPLC—MSn) [J]. Food Chem, 2012, 134(1): 559–563.
- [7] GB 5009.82-2016 食品安全国家标准 食品中维生素 A、D、E 的测定 [S]
 - GB 5009.82-2016 National food safety standard-Determination of vitamin A, D, E in food [S].
- [8] AOAC Official method 2012.10. Simultaneous determination of vitamins E and A in infant formula and adult nutritionals normal-phase high-performance liquid chromatography [S].
- [9] 李君绩, 汪国权, 戴承兵, 等. 婴幼儿配方食品和成人营养品中脂溶性 维生素 A 和维生素 E 标准测定方法的比较[J]. 理化检验-化学分册, 2017, 53(8): 898–904.

- Li JJ, Wang GQ, Dai CB, *et al.* Comparison of standard methods for determination of fat-soluble vitamin a and vitamin E in infant formulary foodstuffs and adult nutritives [J]. Phys Test Chem Anal Part B, 2017, 53(8): 898–904.
- [10] ISO/IEC 17025: 2005 General requirements for the competence of testing and calibration laboratories [S].
- [11] 2002/657/EC Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results [Z].
- [12] ISO 11843-1: 1997 Capacity of detection-Part 1: Terms and definitions [S1.
- [13] ISO 11843-2: 2000 Capacity of detection-Part 2: Methodology in the linear calibration case [S].
- [14] ISO 11843-3: 2003 Capacity of detection-Part 3: Methodology for determination of the critical value for the response variable when no calibration data are used [S].
- [15] ISO 16269-4: 2010 Statistical interpretation of data-Part 4: Detection and treatment of outliers [S].
- [16] SANCO/2004/2726 Guidelines for the implementation of decision 2002/657/EC [S].
- [17] ISO 5725-1: 1994 Accuracy (trueness and precision) of measurement methods and results [S].
- [18] ISO 8196-3: 2009 Definition and evaluation of the overall accuracy of alternative methods of milk analysis-Part 3: Protocol for the evaluation and validation of alternative quantitative methods of milk analysis [S].
- [19] ISO 11095: 1996 Linear calibration using reference materials [S].
- [20] ISO 11843-5: 2008 Capacity of detection-Part 5: Methodology in the linear and non-linear calibration cases [S].
- [21] 刘彩丽. 饲料中维生素 A 测定的前处理条件研究[J]. 粮油食品科技, 2017, 25(5): 56-58.
 - Liu CL. Research on the pretreatment conditions for determination of vitamin A in feed [J]. Sci Technol Cere Oils Foods, 2017, 25(5): 56–58.
- [22] Formelli F, Cavadini E, Mascheroni L, et al. Pharmacokinetics and effects on plasma retinol concentrations of 13-cis-retinoic acid in melanoma patients [J]. Brit J Cancer, 1997, 76(12): 1655–1660.
- [23] 张晓雷. 婴儿配方乳粉中维生素 E 稳定性研究[D]. 长沙: 中南林业科 技大学, 2012.

Zhang XL. Study on stability of vitamin E in infant formulas [D]. Changsha: Central South University of Forestry & Technology, 2012.

(责任编辑:张晓寒)

作者简介

魏 帅,博士,主要研究方向为食品安全。

E-mail: shuai.wei@rd.nestle.com

鲍 蕾, 博士, 研究员, 主要研究方向 为食品安全。

E-mail: lei.bao@rd.nestle.com