原子荧光双标准夹心法快速测定食品中的汞

高向阳 1,2*

(1. 郑州科技学院食品科学与工程学院,郑州 450064; 2. 郑州市食品安全快速检测重点实验室,郑州 450064)

摘 要:目的 建立原子荧光双标准夹心法测定食品中汞的分析方法。方法 以鱼罐头、大米、干香菇等为 样品,经微波消解后,用原子荧光双标准夹心法与标准曲线法对照定量测定。结果 汞的检出限为 0.015 µg/L, 相对标准偏差小于 4%(*n*=4),回收率为 93.50%~97.75%。结论 与国家标准方法相比,本研究方法无需绘制标 准曲线和测定空白溶液,结果计算简单,操作快速简便,为食品中汞的测定提供了一种新型的分析技术。 关键词: 汞;原子荧光;双标准夹心法;大米;鱼罐头;干香菇

Rapid determination of mercury in food by atomic fluorescence with double standard sandwich method

GAO Xiang-Yang^{1,2*}

(1. College of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064 China; 2. Zhengzhou City Food Safety Rapid Test Key Laboratory, Zhengzhou 450064, China)

ABSTRACT: Objective To establish a method for the determination of mercury in food by atomic fluorescence with double standard sandwich method. **Methods** The samples of canned fish, rice and dried mushroom were digested by microwave, and quantitative detected by atomic fluorescence double standard sandwich method and standard curve method. **Results** The limit of detection of mercury was 0.015 μ g/L, the relative standard deviation was less than 4% (*n*=4), and the recoveries were 93.50%–97.75%. **Conclusion** Compared with the national standard method, this method has the characteristics of no need to draw the standard curve, without deducting the blank value, fast and simple. It provides a new analytical technique for the determination of mercury in food.

KEY WORDS: mercury; atomic fluorescence; double standard sandwich method; rice; fish canned; dried mushrooms

0 引 言

汞毒性大且具有生物蓄积性,危害人的中枢神经、生殖系统、消化系统及肾脏,严重时可导致肾衰竭、肝脾中毒^[1]、神经损伤、内分泌系统损害甚至导致瘫痪,对呼吸系统、眼睛及血液也有一定的影响。汞及其化合物普遍存在于大气、土壤及水体中,通过呼吸道、食物链和皮肤接触等多种途径侵入人体^[2-3],食品和饮用水是摄入汞的主要来源^[4],联合国粮食及农业组织/世界卫生组织(WHO)推

荐摄入量不得大于 4 mg/(kg 体重·周),因此,食品中汞的 测定显得尤为重要。

食品中汞的测定有原子荧光光谱分析法^[5-7]、冷原 子吸收法^[8]、电感耦合等离子体质谱法^[9-11]、高效液相 色谱法^[12-16]、测汞仪法^[17-19]等,这些方法常用标准曲线 法定量,需要配制 5~7 个标准系列溶液。由于试液的背 景本底、测定时的环境条件如温度、湿度、大气压等与 绘制标准曲线时不完全相同,因此,需要及时校正标准 曲线和测定空白溶液,操作复杂、计算烦琐,给工作带

^{*}通信作者: 高向阳, 教授, 主要研究方向为食品质量与安全快速检测新方法、新技术的研究。E-mail: ndgaoxy@163.com *Corresponding author: GAO Xiang-Yang, Professor, College of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, 450064 China. E-mail: ndgaoxy@163.com

来诸多不便。双标准夹心法也称紧密内插法或双标准比 较法,是近年来报道的新型分析方法,具有快速简便, 计算简单的突出优点^[20]。原子荧光光谱法比较简单、检 出限较低,线性范围较宽,可共同测定多种元素。本研 究用原子荧光双标准夹心法测定鱼罐头、大米、干香菇 等食品中的汞,以期为食品中汞的快速测定提供一种新 型分析技术。

1 材料与方法

1.1 材料

豆豉鱼罐头、干香菇(新郑市航空港区超市);大米(河 南宜测科技有限公司提供)。

1.2 试 剂

硝酸(分析纯,国药集团化学试剂有限公司);高氯酸、硫酸(分析纯,天津政成化学制品有限公司);盐酸(分 析纯,烟台市双双化工有限公司);抗坏血酸、硫脲、硼氢 化钠(分析纯,天津科密欧化学试剂有限公司);过氧化氢 (分析纯,天津市祥瑞鑫化工科技有限公司);氢氧化钠(分 析纯,天津市恒星化学试剂制造有限公司)。1000 µg/mL 汞 标准溶液(编号:GBS 04- 1729 -2004,国家有色金属及电子 材料分析测试中心)。所用试剂均为分析纯,水为一级水(电 导率 0.082 mS/m)。

1.3 仪器

MARS-5型微波消解仪(美国培安科技公司); AFS-933 型原子荧光光光度计(北京吉天仪器有限公司); LB20ES 型 组织捣碎机(上海默西科学仪器有限公司); EH35A Plus 型 微控数显电热板(北京莱博泰科仪器股份有限公司)。

1.4 实验方法

1.4.1 溶液的配制

100 μg/mL 汞标准溶液储备液:准确移取 1000 μg/mL 汞标准溶液 5.00 mL 于 50 mL 容量瓶中,用水定容、摇匀。

汞双标准测定使用液:移取 100 µg/mL 的汞标准储备 液 1.00 mL 于 100 mL 容量瓶中,用水定容、摇匀,为含汞 1000 ng/mL 的浓标准测定使用液;移取 1 µg/mL 的汞标准 溶液 1.00 mL 于 100 mL 容量瓶中,用水定容后摇匀,为含 汞 10 ng/mL 的稀标准测定使用液。

1.4.2 仪器参数

汞测定波长: 253.7 nm; 光电倍增管负高压: 270 V;
汞空心阴极灯电流: 30 mA; 载气: Ar 气; 载气流量:
400 mL/min; 屏蔽气流量: 800 mL/min; 原子化器温度:
300 ℃; 读数方式: Park Area; 读数时间: 7 s; 延迟时间:
1 s; 重复读数次数: 1 次; 有效测量次数: 1 次。

1.4.3 测定方法

用不锈钢剪刀将干香菇剪至约绿豆粒大小,用"四分

法"分取约 20 g,用研钵研至细粉状,于磨口瓶中保存;大 米用高速粉碎机粉碎至粉末状,置于广口瓶中保存;豆豉 鱼罐头用组织捣碎机处理均匀。

称取固体样品 0.2 g、鱼罐头样品 0.5 g(称准至 0.001 g) 消解罐中,加入 5.0 mL 硝酸, 1.0 mL 过氧化氢,放置过夜 或加盖在 EH35A Plus 型微控数显电热板上 120 ℃预消解 2 h 后,按表 1 步骤微波消解。冷却后取出,消化液定量转 入 50 mL 塑料容量瓶中定容,混匀,待测定。

表 1 微波消解步骤 Table 1 Microwave digestion procedure

			8 1		
步骤	功率(1600 W) 变化/%	压力 /KPa	升压时间 /min	保压时间 /min	排风量 /%
1	55	378	35	10	100
2	80	756	35	15	100
3	100	1210	35	10	100

仪器炉温升至所需温度后,预热 30 min,用载流溶液 清洗 2~3 次,测定的荧光强度稳定后,在仪器测定条件下 用原子荧光双标准夹心法与标准曲线法对照测定。原子荧 光双标准夹心法选择汞标准溶液的浓度为 $\rho_1=0.4 \ \mu g/L$ 和 $\rho_2=0.1 \ \mu g/L$,在相同条件下测定,样品中汞的质量浓度 ρ_x , 按(1)式计算:

$$\rho_x = \rho_1 - \frac{\rho_1 - \rho_2}{I_1 - I_2} (I_1 - I_x)$$
(1)

式中, ρ_x 为待测样品中汞的质量浓度,ng/mL; ρ_1 、 ρ_2 为汞标 准溶液浓度,ng/mL(要求 $\rho_1 > \rho_x > \rho_2$); I_1 、 I_2 为汞标准溶液的 相对荧光强度; I_x 为待测样品中汞的相对荧光强度;按(2) 式计算出样品中汞的质量分数 ω_{\circ}

$$\omega = \frac{\rho_x \times 50}{m} \tag{2}$$

式中: ω—样品中汞的质量分数, ng/g; 50—定容总体积, mL; m—称取样品质量, g。

2 结果与分析

2.1 仪器条件的确定

参考仪器给出的条件,选用 30 mA 工作电流,在 260~290 V 负高压范围测定 0.100~1.000 μg/L 的汞标准溶 液,结果见表 2。

由表 2 知,在 30 mA 电流下,负高压为 270 V 汞标 准曲线的相关系数最佳。因此,固定负高压为 270 V,在 20~40 mA 测定 0.100~1.000 μg/L 的汞标准溶液,结果如 表 3。

		表 2 3 Table 2 Detection	0 mA 电流下不同电压的 results of different voltage	检测结果 es at 30 mA of current
元素	负高压/V	质量浓度 ρ/(μg/L)	相对荧光强度(I)	相关系数(r)
		0.100	26.00	

元素	负高压/V	质量浓度 ρ/(μg/L)	相对荧光强度(I)	相关系数(r)	曲线回归方程	
		0.100	36.00			
	260	0.400	144.97	0.9996	I=363.7864 p-0.1361	
		1.000	362.39			
		0.100	50.16			
	270	0.400	206.42	1.0000	<i>I</i> =518.9289 <i>p</i> +0.0758	
Hg		1.000	519.29			
-		0.100	63.48			
	280	0.400	257.40	0.9999	<i>I</i> =643.4121 <i>p</i> +0.9732	
		1.000	641.38			
		0.100	98.96			
	290	0.400	363.01	0.9995	<i>I</i> =903.7607 <i>p</i> +3.1488	
		1.000	908.97			

表 3 270 V 电压下不同电流的测定结果 Table 3 Detection results of different currents under 270 V voltage

元素	电流/mA	质量浓度 ρ/(μg/L)	相对荧光强度(I)	相关系数(r)	曲线方程
		0.100	33.70		
	20	0.400	135.60	0.9998	I=345.4526 <i>p</i> -1.0933
Hg		1.000	345.94		
		0.100	50.16		
	30	0.400	206.42	1.0000	$I = 518.9289 \rho + 0.0758$
		1.000	519.29		
		0.100	69.94		
	40	0.400	270.75	0.9997	<i>I</i> =678.0411 <i>p</i> +1.3547
		1.000	678.98		

由表 3 知,在 270 V 负高压下,工作电流为 30 mA 时 汞标准曲线的相关系数最佳。

2.2 酸种类与酸度的影响

汞在硫酸、硝酸和盐酸中均能被硼氢化钠还原成为汞 原子蒸气,酸的种类和酸度对汞的测定影响极小^[21]。用 2%~5%盐酸作载流,检测汞原子荧光强度的结果表明:汞 在 5%的盐酸中的荧光强度最高。

2.3 标准曲线绘制

分别吸取 10 ng/mL 汞标准溶液 0.00、0.10、0.20、0.40、 0.60、0.80、1.00 mL 于 10 mL 容量瓶中,用水定容,配制 浓度为 0、0.10、0.20、0.40、0.60、0.80、1.00 μg/L 标准 系列。按国家标准 GB 5009.17-2014 第一法测定^[5],以汞的 质量浓度为横坐标,相对荧光强度为纵坐标绘制标准曲线,如图 1 所示,线性回归方程为: Y=486.39X+5.2497,相关系数 r=0.99995,线性关系良好。

2.4 对照测定结果

按照 1.4 方法操作, 与 GB 5009.17—2014 进行对照测 定, 每个样品各进行 4 平次行测定, 质量浓度的测定结果 如表 4。

由表 4 知, 试液中汞的质量浓度处于标准曲线之内, 综 合 考 虑 , 汞 的 双 标 准 选 择 $\rho_1=0.4 \ \mu g/L$, $\rho_2=0.1 \ \mu g/L(\rho_1 > \rho_x > \rho_2)$ 。通过 F 检验和 t 检验^[22]表明:在置信度为 95%时, 2 种方法之间不存在显著性差异。由表 4 中样品的 质量浓度 ρ_x 和式(2)计算出的豆豉鱼罐头、干香菇和大米的 质量分数依次为 15.6、34.5、18.5 ng/g, 平行测定的相对标 准偏差小于4%。

2.5 检出限与定量限

对样品空白平行测定 11 次, 按 3 倍标准偏差计算的 检出限为 0.015 µg/L, 按 10 倍标准偏差计算的定量限为 0.051 µg/L。

2.6 回收率

豆豉鱼罐头和干香菇为样品,各加入0.40 μg/mL汞标 准溶液,分别按照标准曲线法和双标准荧光法进行回收率 测定,结果见表 5。

Table 4 Determination results of mercury mass concentration(µg/L)								
样品	双标准夹心法	平均值	标准偏差	相对标准偏差 /%	国标法	平均值	标准偏差	相对标准偏差 /%
豆豉鱼罐头	0.163 0.154	0.156	0.0048	3.1	0.158、0154	0.152	0.0052	3.4
	0.155、0.152				0.146 0.150			
干香菇	0.140, 0.133,	0.138	0.0041	3.0	0.131、0.134、	0.133	0.0051	3.8
	0.135 0.141				0.128、0.133			
大米	0.075、0.076、	0.074	0.0022	3.0	0.075、0.074、	0.076	0.0026	3.4
	0.073、0.071				0.077、0.080			

	表 4	质量浓度的测定结果(μg/L)
1 4	D / · /·	

表 5 汞的加标回收率 Table 5 Standard recoveries of mercury

Table 5 Standard recoveries of mercury								
标准曲线法测定数据					双标准夹心法测定数据			
样品	加标前 /(µg/mL)	加标量 /(µg/mL)	加标后 /(µg/mL)	回收率 /%	加标前 /(µg/mL)	加标量 /(µg/mL)	加标后 /(µg/mL)	回收率 /%
豆豉鱼罐头	0.148	0.40	0.529	95.25	0.156	0.40	0.530	93.50
干香菇	0.122	0.40	0.536	103.50	0.132	0.40	0.523	97.75

由表 5 知,标准曲线法的回收率为 95.25%~103.50%, 双标准法的回收率为 93.50%~97.75%。

3 结 论

用双标准夹心法测定食品中的汞,无需绘制标准曲 线和测定空白值、成本低,简便快速,计算简单,工作效率 得到很大地提高。样品经微波消解、处理后,与国家标准 方法对照测定,经 F 检验和 t 检验表明,2 种测定方法之间 无显著性差异。样品平行测定的相对标准偏差小于 4.0%, 汞的检出限为 0.015 μg/L,定量限为 0.051 μg/L。豆豉鱼罐 头、干香菇和大米样品测得的质量分数依次为 15.6 ng/g、 34.5 ng/g 和 18.5 ng/g,均未超过国家规定的污染物限量^[23], 为食品中总汞的测定提供了一种新型的分析技术,有一定 创新性和参考、应用价值。

参考文献

- 王天顺,牙禹,黄芳,等.金汞齐富集--测汞仪法直接测定果蔗中的总 汞[J]. 化学研究与应用,2015,27(12):1896—1899.
 WANG TS, YA Y, HUANG F, *et al.* Direct determination of total mercury in chewing cane by gold amalgam trap-mercury analyzer [J]. Chem Res Appl, 2015, 27(12): 1896–1899.
- [2] PEI L, JUAN Y, ENJIAN Y, et al. Determination of mercury in food and water samples by displacement –dispersive liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry [J]. Food Anal Methods, 2015, (8): 236–242.
- [3] 杨玲春,丁元明,王英,等. HPLC-ICP-MS 法测定牛肝菌中汞的形态
 [J]. 食品研究与开发, 2018, 39(9): 108-112.
 YANG LC, DING YM, WANG Y, *et al.* Determination of mercury species in boletus by HPLC-ICP-MS [J]. Food Res Dev, 2018, 39(9): 108-112.
- [4] ZHANG H, FENG X B, LAR SSEN T, et al. In inland China, rice, rather

than fish, is the major pathway for methylmercury exposure [J]. Environ Health Per, 2010, 118(9): 1183 - 1188.

[5] GB 5009. 17—2014 食品安全国家标准 食品中总汞和有机汞的测定[S].

GB 5009. 17—2014 National food safety standard-Determination of total and organic mercury in food [S].

- [6] 陆建平, 覃梦琳, 布静龙, 等. 分散液液微萃取 原子荧光光度法测定 大米中的汞[J]. 光谱学与光谱分析, 2017, 37(11): 3606–3609.
 LU JP, JIN ML, BU JL, *et al.* Determination of mercury in rice with dispersive liquid – liquid microextraction and atomic fluorescesce spectromet [J]. Spectrosc Spectral Anal, 2017, 37(11): 3606–3609.
- [7] 王振旭,程海芳,赵芳,等.食品中汞含量测定方法的优化研究[J].食品研究与开发,2018,39(6):159–162.
 WANG ZX, CHENG HF, ZHAO F, *et al.* Research on optimization method for determination of mercury content in food [J]. Food Res Dev, 2018, 39(6): 159–162.
- [8] 窦文湖,杨嘉慧,侯军沛,等. 微波消解-冷原子吸收测汞仪测定枇杷 中汞的质量浓度[J]. 广东化工, 2018, 45(13): 233-234.
 DOU WY, YANG JH, HOU JP, *et al.* Cold vapor atomic absorption measure mercury method would be adopted to measure hg in myrtle fruit sampled by microwave digestion [J]. Guangdong Chem Ind, 2018, 45(13): 233-234.
- [9] 王海涛, 邢立学, 王文雯, 等. 微波消解-电感耦合等离子体质谱法测 定鲍鱼配合饲料中铅、砷、铬、镉、汞[J]. 饲料工业, 2017, 38(22): 54-56. WANG HT, XING LX, WANG WW, *et al.* Determination of Pb, As, Cr, Cd and Hg in abalone compound feed by microwave digestion and inductively coupled plasma mass spectrometry [J]. Feed Ind, 2017, 38(22): 54-56.
- [10] 陈岩,刘永涛,赵晓丽,等. HPLC-ICP-MS 联用技术测定水产品中的 汞形态[J]. 食品研究与开发, 2016, 37(23): 129–133.
 CHEN Y, LIU YT, ZHAO XL, *et al.* Determination of mercury species in aquatic products by HPLC-ICP-MS [J]. Food Res Dev 2016, 37(23): 129–133.
- [11] 陈贺,周慧兰. 液液萃取-HPLC-ICPMS 联用技术测定水体中甲基汞
 [J]. 中国环境监测, 2015, 31(1): 109-112.
 CHEN H ZHOU HL. Determination of methyl mercury in water by HPLC-ICPMS with liquid-liquid extraction [J]. Environ Monit China, 2015, 31(1): 109-112.
- [12] 贾彦博,陆吉琛,朱蓓,等.高效液相色谱--电感耦合等离子体质谱联用法测定东海乌参样品中的二价汞、甲基汞、乙基汞和苯基汞[J]. 食品安全质量检测学报,2016,7(11):4609-4613. JIA YB, LU JS, ZHU B, *et al.* Determination of bivalent mercury,

methyl-mercury, ethyl-mercury and phenyl-mercury in *Acaudina leucoprocta* by high performance liquid chromatography-inductively coupled plasma-mass spectrometry [J]. J Food Saf Qual, 2016, 7(11): 4609–4613.

[13] 冯晓青, 徐瑞, 王露, 等. 超声辅助提取 – 高效液相色谱 – 电感耦合等 离子体质谱快速测定海鲜样品中的汞形态[J]. 中国卫生检验杂志, 2018, 28(20): 2438–2441.

FENG XQ, XU R, WNG L, *et al.* Rapid determination of mercury in seafood samples by ultrasound–assisted extraction, high performance liquid chromatography–Inductively coupled plasma mass spectrometry [J]. Chin J Health Inspect, 2018, 28(20): 2438–2441.

[14] 戴彦翰, 胡子峰, 鲍笑岭, 等. 高效液相色谱-原子荧光测定婴幼儿辅 食中汞的形态[J]. 食品工业, 2016, 37(6): 292-294. DAI YY, HU ZF, BAO XL, *et al.* Speciation analysis of mercury in supplementary foods for older infants and young children by high performance liquid chromatography coupled with atomic fluorescence spectrometry [J]. Food Ind, 2016, 37(6): 292–294.

[15] 毛永杨,杨桐,苏涛,等.高效液相色谱-原子荧光光谱联用法测定牛 肝菌中无机汞、甲基汞、乙基汞的不确定度评估[J].食品科学,2017, 38(24):272-277.

MAO YY, YANG T, SU T, *et al.* Uncertainty evaluation of for determining inorganic mercury, methyl mercury and ethyl mercury in *boletus* by high performance liquid chromatography combined with atomic fluorescence spectrometry [J]. Food Sci, 2017, 38(24): 272–277.

- [16] BROMBACH CC, GAJDOSECHOVA Z, CHEN B, et al. Direct online HPLC–CV–AFS method for traces of methylmercury without derivatisation: A matrix–independent method for urine, sediment and biological tissue samples [J]. Anal Bioanal Chem, 2015, 407: 973–981.
- [17] 曾云军,周斌,陈俊,等. 测汞仪测定稻谷及其制品中总汞含量研究
 [J]. 粮油食品科技, 2018, 24(6): 63–66.
 ZENG YJ, ZHOU B, CHEN J, *et al.* Determination of total mercury in paddy and products by mercury analyzer [J]. Sci Technol Cereals Oils Food, 2018, 24(6): 63–66.
- [18] 何洁玲, 连海天, 邓建, 等. 全自动烷基汞分析仪测定鱼肉中甲基汞含量[J]. 食品工业, 2018, 39(8): 316–318.
 HE JL, LIAN HT, DENG J, *et al.* Determination of methylmercury in fish meat by automated methylmercury analytical system [J]. Food Ind, 2018, 39(8): 316–318.
- [19] 蔡文华, 胡曙光, 苏祖俭, 等. 直接测汞仪法测定婴幼儿配方奶粉及辅 食品中的汞含量[J]. 华南预防医学, 2015, 41(5): 473-476. CAI WH, HU SG, SU ZJ, *et al.* Determination of mercury content in infant formula milk powder and auxiliary food by direct mercury-measuring instrument [J]. South China Prev Med, 2015, 41(5): 473-476.
- [20] 高向阳, 王方方. 化学发光紧密内插法快速测定饲料中的微量铬[J].
 饲料工业, 2017, 38(20): 50–54.
 GAO XY, WANG FF. Rapid determination of trace chromium in feed by chemiluminescence close interpolation method [J]. Feed Ind, 2017, 38(20): 50–54.
- [21] 薛慧. 董宾. 宫博. 氢化物发生-原子荧光光度法测定食品和食品添加 剂中的砷、汞和铅[J]. 化学分析计量, 2013, 7(4): 46-47. XUE H, DONG B, GONG B, *et al.* Determination of arsenic, mercury and lead in food and food additive by hydrogenation atomic fluorescent spectrometry [J]. Chem Anal Meterage, 2013, 7(4): 46-47.
- [22] 高向阳. 现代食品分析(第二版)[M]. 北京: 科学出版社, 2018.
 GAO XY. Modern food analysis (second edition) [M]. Beijing: Science Press, 2018.
- [23] GB 2762—2017 食品中污染物限量[S]. GB 2762—2017 Contaminant limits in food [S].

(责任编辑: 王 欣)

作者简介

高向阳,教授,主要研究方向为食品质 量与安全快速检测新方法、新技术的研究。 E-mail: ndgaoxy@163.com