微波消解-电感耦合等离子体发射光谱法测定 食品中锡含量的方法研究

蔡展帆,张佩霞,章锦涵,胡文敏,高齐,周忆莲,林辉焕,熊 欣,梁旭霞* (广东省食品检验所,广州 510435)

摘 要:目的 建立微波消解-电感耦合等离子体发射光谱法(inductively coupled plasma optical emission spectroscopy, ICP-OES)测定食品中锡含量的方法。方法 采用 5 mL 硝酸+1 mL 盐酸的酸体系对样品进行微波 消解前处理,并在 90 ℃下赶酸,再用电感耦合等离子发射光谱法以 189.925 nm 为分析谱线,测定食品中锡含量。结果 该方法线性范围为 0.01~5.00 mg/L,相关系数大于 0.999。方法检出限为 0.7 mg/kg,方法定量限为 2.4 mg/kg,多种基质样品的结果相对标准偏差 < 5%,加标回收率在 100.2%~109.4%。结论 该方法操作简便 快捷,结果准确,精密度高,灵敏度高,干扰少,适用于食品中锡的分析。

关键词: 锡; 盐酸; 微波消解; 电感耦合等离子发射光谱法

Research on determination of tin in food by inductively coupled plasma optical emission spectroscopy with microwave digestion

CAI Zhan-Fan, ZHANG Pei-Xia, ZHANG Jin-Han, HU Wen-Min, GAO Qi, ZHOU Yi-Lian, LIN Hui-Huan, XIONG Xin, LIANG Xu-Xia^{*}

(Guangdong Institute of Food Inspection, Guangzhou 510435, China)

ABSTRACT: Objective To establish a method for the determination of tin in food by microwave digestion-inductively coupled plasma optical emission spectrometry (ICP-OES). **Methods** The samples were pretreated with 5 mL nitric acid and 1 mL hydrochloric acid before microwave digestion. The samples were driven out of acid at 90 °C, and then the content of tin in food was determined by ICP-OES with 189.925 nm as the analytical line. **Results** The linear range of this method was 0.01–5.00 mg/L with correlation coefficient greater than 0.999. The method detection limit was 0.7 mg/kg, the quantification limit was 2.4 mg/kg. The relative standard deviation of the results of multiple matrix samples was less than 5%, and the spike recovery was 100.2%-109.4%. **Conclusion** The method is simple to operate, with accurate results, high precision, high sensitivity and less interference, and is suitable for the analysis of tin in food.

KEY WORDS: tin; hydrochloric acid; microwave digestion; inductively coupled plasma optical emission spectroscopy

基金项目: 食品安全国家标准制定、修订项目(spaq-2019-027)、国家重点研发计划项目(2019YFC1606305)

Fund: Supported by National Food Safety Standards Development and Revision Project (spaq-2019-027), and National Key R&D Program of China (2019YFC1606305)

^{*}通讯作者:梁旭霞,博士,主任技师,主要研究方向为食品理化检测与食品。E-mail: liangxuxia@126.com

^{*}Corresponding author: LIANG Xu-Xia, Ph.D, Chief Technician, Guangdong Institute of Food Inspection, No. 1103, Zengcha Road, Baiyun District, Guangzhou 510435, China. E-mail: liangxuxia@126.com

1 引 言

锡是一种熔点低的两性金属,在常温下表面有一 层氧化膜,在空气和水中稳定,具有一定的抗腐蚀性, 是金属防护涂层的理想元素^[1,2]。一方面,锡被制成马口 铁(镀锡薄铁)用于罐头食品的包装, 然而当食品呈现酸 碱性时,锡涂层能被缓慢腐蚀从而污染食物;另一方面, 锡的化合物被广泛应用于船体及钻井平台防腐防污涂 料, 随之溶入海水中污染海产品^[3]。人体在食用这些食 物后会因摄入锡而影响健康,干扰其他重要金属矿物质 的状态,急性摄入时会引起胃肠道刺激、恶心、呕吐、 腹部绞痛和腹泻^[4]。世界卫生组织提出人体锡的每周暂 定允许摄入量(provisional tolerable weekly intake, PTWI) 为 14 mg/(kg BW)^[5]。我国 GB 2762-2017《食品安全国 家标准 食品中污染物限量》[6]对于锡的限量规定是,采 用镀锡薄板容器包装的食品中, 饮料类的限量为 150 mg/kg, 婴幼儿配方食品、婴幼儿辅助食品的限量为 50 mg/kg, 其他食品的限量为 250 mg/kg。

目前, 食品中锡的测定方法主要有苯芴酮比色法^[7]、 氢化物原子荧光光谱法 (hydride generation atomic fluorescence spectrometry, HG-AFS)^[7,8]、火焰原子吸收光 谱法(flame atomic absorption spectroscopy, FAAS)^[9-11]、 石墨炉原子吸收光谱法 (graphite furnace atomic absorption spectrometry, GFAAS)^[9]、电感耦合等离子体 质谱法(inductively coupled plasma mass spectrometry, ICP-MS)^[12-18]、电感耦合等离子发射光谱法(inductively coupled plasma optical emission spectroscopy, ICP-OES)^[19,20]。其 中苯芴酮比色法和 FAAS 的检出限较高, 不适合测定低 锡含量(<10 mg/kg)样品; HG-AFS、GFAAS、ICP-MS 的 检出限较低,但对于高锡含量(≥10 mg/kg)的样品则需 要先进行稀释;只有 ICP-OES 具有较宽的测量范围,能 同时测定不同锡含量范围的样品。此外, ICP-OES 具有 分析速度快、干扰较少、线性范围宽等优点,且可以应 用微波消解对样品进行前处理,相对简单方便,具有明 显的应用价值。

本研究采用微波消解法作为前处理技术,结合 ICP-OES 建立测定食品中锡的方法,并对方法参数进行 优化,为相关食品安全国家标准的修订提供参考。

2 材料与方法

2.1 试剂和材料

硝酸(≥65%,德国 CNW 公司);盐酸(36.0%~38.0%)、硫酸(优级纯,广州化学试剂厂);过氧化氢(30%水溶液, CMOS 级,国药集团化学试剂有限公司);氢氟酸(≥40%,分析纯,天津市富宇精细化工有限公司);锡标准溶液(1000 μg/mL,介质为3.0 mol/L盐酸,GSB 04-1753-2004,

国家有色金属及电子材料分析测试中心)

柑橘叶成分分析标准物质(GBW10020,地球物理地 球化学勘查研究所); 典型饮食标准物质(SRM 1548a, 美 国国家标准与技术研究院); 番茄酱(ERM-BC084a,英国政 府化学家实验室); 果汁(T07321QC)、蔬菜泥(T07323QC)、 西红柿酱(T07330QC)、柚子(T07332QC)(FAPAS); 面粉(来 源于日常监测样品,购买自市场)。

实验用水(电导率为 0.55 μS/cm, 25 ℃)均由 Milli-Q 超 纯水系统制得。

2.2 仪器与设备

Agilent 5110 ICP-OES 电感耦合等离子体发射光谱仪 (美国 Agilent 公司); ETHOS UP 微波消解仪(意大利 Milestone 公司); VB24 Plus 赶酸器(北京莱伯泰科仪器股份 有限公司); ATY224 万分之一电子天平(日本岛津公司); Milli-Q Advantage A10 超纯水系统(美国 Merck 公司)。

2.3 实验方法

2.3.1 样品前处理方法

实验称取样品 0.5~1.0 g于微波消解内罐中,加入 5 mL 硝酸,加盖后室温下放置过夜,加入合适的酸并尽 快旋紧罐盖,按照微波消解仪标准操作步骤进行消解 (微波消解程序见表 1)。冷却后取出,缓慢打开罐盖排气, 赶酸至棕色气体排尽,用水定容至 50 mL,混匀备用。 同时做空白试验。

表 1 微波消解程序 Table 1 The program of microwave digestion

步骤	控制温度/℃	升温时间/min	恒温时间/min
1	130	7	2
2	165	6	0
3	180	15	15

2.3.2 仪器测定方法

样品经微波消解后,由电感耦合等离子体发射光谱 仪采用标准曲线法测定,电感耦合等离子体发射光谱仪工 作参数见表 2。

表 2 电感耦合等离子体发射光谱仪工作参数 Table 2 Operating parameters of ICP-OES

参数	设定值
RF 功率	1200 W
等离子体气流量	12 L/min
雾化气流量	0.7 L/min
辅助气流量	1 L/min
补偿气流量	0 L/min
雾化器	同心雾化器
观察方式	轴向
分析谱线	Sn 189.925 nm 等

第16期

3 结果与分析

3.1 微波消解酸体系研究

根据国内外食品中锡的测定标准和文献报道(见表 3), 微波消解法采用的消解酸体系主要有:(1)仅用硝酸; (2)硝酸+盐酸;(3)硝酸+过氧化氢。

硝酸的主要作用是在密闭微波加热条件下把有机 锡转化为无机锡;然而硝酸无法进一步与无机锡反应生 成均一溶液,因为硝酸与部分无机锡反应生成 β-锡酸 (*x*SnO₂·*y*H₂O)或氧化锡(SnO₂)沉淀。例如,浓硝酸能把锡 单质(来源于罐头中的合金)氧化为不溶于水、酸或碱的 β-锡酸^[21]:

 $Sn+4HNO_3 = H_2SnO_3(\beta) \downarrow +4NO_2\uparrow +H_2O$

又如,氧化亚锡(SnO,来源于罐头合金中的氧化膜) 与浓硝酸作用被氧化成 SnO₂^[22]。此外,锡盐如硝酸锡 [Sn(NO₃)₄]、硝酸亚锡[Sn(NO₃)₂]、四氯化锡(SnCl₄)、氯 化亚锡(SnCl₂)、硫酸亚锡[Sn(SO₄)₂]等容易水解或加热氧 化分解形成 α-锡酸(SnO₂·xH₂O)、β-锡酸或氧化锡沉淀, α-锡酸(SnO₂·xH₂O)陈化后会转化为 β-锡酸^[22],这些沉 淀无法被硝酸重新溶解。因此,仅用硝酸进行微波消解 不能保证锡含量测定的准确性。

而浓盐酸能够在加热条件下溶解氧化锡^[22]或 β-锡 酸^[23],热硫酸能够溶解氧化锡^[22]。也有报道指出,盐 酸^[24]、氢氟酸^[25]有助于保持消解溶液中锡的稳定性。

为了选择合适的消解酸体系,确保锡含量测定的 准确性,本研究以蔬菜泥(T07323QC)为对象,采用了不 同的消解酸体系进行实验。其中 1 组实验仅用硝酸 (HNO₃)进行微波消解后,然后加热赶酸,定容后测定;4 组实验以硝酸为主,分别加入过氧化氢(H₂O₂)、硫酸 (H₂SO₄)、盐酸(HCl)、氢氟酸(HF)等进行微波消解,然后 加热赶酸,定容后测定;还有 2 组实验先用硝酸进行微 波消解,然后加热赶酸至剩下 1 mL,再分别加入硫酸、 盐酸溶液,最后加热赶酸至剩下 1 mL,定容后测定。实 验结果见表 4。

			0			
序号	样品基质	前处理方法	消解酸体系	分析方法	报道年份	报道类型
1	罐头食品	湿式消解法	硝酸+高氯酸+硫酸	苯芴酮比色法、HG-AFS	2014 ^[7]	国内标准
2	食品	微波消解法、压力罐消解法	硝酸	ICP-MS	2016 ^[12]	国内标准
3	食品	微波消解法、压力罐消解法	硝酸+盐酸	FAAS, GFAAS	2009 ^[9]	国外标准
4	食品	微波消解法、压力罐消解法	硝酸+盐酸	ICP-MS	2009 ^[13]	国外标准
5	罐头食品	湿式消解法	硝酸	FAAS	1988 ^[10]	国外标准
6	生物材料	微波消解法	硝酸	ICP-MS	1998 ^[14]	科技文献
7	罐头食品	湿式消解法	硝酸+盐酸	FAAS	2005[11]	科技文献
8	海产品	微波消解法	硝酸+过氧化氢	ICP-MS	2007 ^[15]	科技文献
9	罐头食品	微波消解法	硝酸+过氧化氢	HG-AFS	2007 ^[8]	科技文献
10	贝类	微波消解法	硝酸+过氧化氢	ICP-MS	2010 ^[16]	科技文献
11	果蔬罐头	微波消解法	硝酸	ICP-MS	2011[17]	科技文献
12	罐头食品	微波消解法	硝酸+过氧化氢	ICP-MS	2012[18]	科技文献
13	凉粉罐头	微波消解法	硝酸+过氧化氢	ICP-OES	2012[19]	科技文献
14	食品	微波消解法	硝酸+盐酸	ICP-OES	2019 ^[20]	科技文献

表 3 文献报道的消解酸体系 Table 3 Digestive acids reported in literatures

表 4 不同消解酸体系下锡含量的结果比较(*n*=3) Table 4 Comparison of the results of tin content in different digestive acids (*n*=3)

序号	微波消解酸体系	赶酸时加入酸	结果/(mg/kg)	精密度/%					
1	5 mL HNO ₃ +1 mL HNO ₃	无	322~361	6.3					
2	5 mL HNO ₃ +1 mL H ₂ O ₂	无	369~385	2.1					
3	5 mL HNO ₃ +0.5 mL H_2SO_4	无	356~432	9.9					
4	5 mL HNO ₃	$0.5 \text{ mL H}_2\text{SO}_4$	356~369	1.9					
5	5 mL HNO ₃ +1 mL HCl	无	426~436	1.5					
6	5 mL HNO ₃	2 mL 20% HCl 溶液	416~424	1.1					
7	5 mL HNO ₃ +1 mL HF	无	473~530	6.4					
标示值	—	—	386~499	—					

结果显示,只有采用硝酸+盐酸体系测得的锡含量 在标示值范围内;采用硝酸、硝酸+过氧化氢、硝酸+硫 酸体系消解测得的锡含量都比标示值偏低,采用硝酸+ 氢氟酸体系消解测得的锡含量比标示值偏高。显然,采 用硝酸+盐酸体系进行微波消解对于锡含量的测定是合 适的而且是必须的。

以下是对不同酸体系测定结果的原因推测:(1)过氧 化氢是强氧化剂,作用是提高消解酸体系的氧化性,使 有机物分解更彻底,但其酸性较弱,无法溶解 β-锡酸和 氧化锡沉淀;(2)硫酸体系可能不能溶解 β-锡酸,也可能 是硫酸体系对于 ICP-OES 存在干扰;(3)盐酸具有还原性, 能够抑制锡的氧化,阻止 β-锡酸或氧化锡的生成,有利 于锡溶液的稳定;(4)氢氟酸与盐酸性质相似,但氢氟酸 体系的测定结果偏高,原因可能是偶然误差(只有一个 值超过标示值范围),也可能是氢氟酸体系对 ICP-OES 存在干扰。

3.2 盐酸加入量研究

基于盐酸对锡含量测定的重要性,有必要开展盐酸加入量的研究。以蔬菜泥(T07323QC)为研究对象,在

消解过程中分别加入 0.5、1.0、2.0 mL 盐酸,最终测得 锡含量均在标示值范围内(见表 5)。由单因素方差分析可 知,3 组结果值在水平 0.05 下没有显著差异 (F=1.96<F_{0.05}(2,6)=5.14, P=0.221),说明盐酸加入量在 0.5~2.0 mL 范围内对锡含量的测定没有显著影响。本研 究建立的方法采用 1 mL 的盐酸加入量。

3.3 不同赶酸方式对结果的影响

在对消解液进行赶酸处理的实验中发现,不同的赶酸 温度对锡含量的测定结果有影响,呈现锡含量测定值随赶 酸温度升高而降低的趋势,160 ℃赶酸的锡含量测定值只有 100 ℃赶酸的测定值的 80%~89%(见图 1)。主要原因是:盐 酸的沸点较低(38%盐酸的沸点为 48 ℃,20%盐酸的沸点最 高,为108 ℃,0%~20%盐酸的沸点在 100~108 ℃内),易 挥发,因此加热消解液会导致盐酸损失,影响样液中锡的稳 定性;另一方面,消解液中的锡主要以二价锡或四价锡的无 机物形态存在,存在部分四氯化锡,而四氯化锡也是低沸点 物质(沸点为 114 ℃^[2,4,25]),加热消解液会导致四氯化锡损失, 锡含量结果偏低。因此,赶酸温度不宜超过 108 ℃,且赶酸 时间应尽可能短。

表 5 盐酸加入量的比较(*n*=3) Table 5 Comparison of hydrochloric acid addition (*n*=3)

	1	•			()		
序号	微波消解酸体系 –	结	ī果/(mg/k	g)	亚协传/(ma/lia)	精密度/%	
		1	2	3	十均值/(ling/kg)		
1	5 mL HNO ₃ +0.5 mL HCl	451	468	446	455	2.5	
2	5 mL HNO ₃ +1 mL HCl	450	460	458	456	1.2	
3	5 mL HNO ₃ +2 mL HCl	477	464	462	468	1.7	
标示值	_		386~499		—	_	

为进一步研究赶酸方式对结果的影响,本研究以 西红柿酱(T07330QC)为对象,分别采用不赶酸、超声赶 酸、不同温度加热赶酸的方式进行比较实验,结果见表 6。由单因素方差分析可知,8组结果值在水平 0.05存在 显著差异(F=2.85>F_{0.05}(7,16)=2.66, P=0.039)。其中,不 赶酸、140 ℃赶酸、160 ℃赶酸这 3 组都存在部分结果 值低于参考物质标示值范围的情况,不适合采用;排除 这 3 组数据后,由单因素方差分析可知,剩余 5 组结果 值在水平 0.05下没有显著差异(F=1.81<F_{0.05}(4,10)=3.48, P=0.203)。在这 5 组结果值中,超声赶酸和 120 ℃赶酸的 结果值精密度和对较差(>6%),而 80~100 ℃赶酸的 结果值精密度较好(<3%),故采用 80~100℃赶酸的 结果值精密度较好(<3%),故采用 80~100℃赶酸的

3.4 标准曲线与方法检出限

配制浓度为 0、0.01、0.02、0.05、0.10、0.20、0.50、 1.00、2.00、5.00 mg/L 的标准溶液系列,以仪器软件推

荐的前 10 条光谱谱线进行分析,并测定 20 份样品空白, 计算检出限浓度,结果见表 7。数据显示,189.925 nm 谱 线的线性范围最宽,灵敏度较高,检出限最低,没有明 显的干扰谱线,是 ICP-OES 测定锡含量最合适的分析谱 线,此条件下相关系数为 0.99999,方法线性好。本文所 列出的其他测定结果均采用 189.925 nm 谱线的数据。根 据 189.925 nm 谱线的检出限浓度(0.007 mg/L),当称样量 为 0.5 g,定容体积为 50 mL 时,方法的检出限为 0.7 mg/kg, 定量限为 2.4 mg/kg。

3.5 方法准确度与精密度

对柑橘叶等多种不同基质的参考物质以及一份面粉样品进行测定,每个样品均平行测定 6 次,计算平均 值和相对标准偏差,结果见表 8。所有参考物质的测定 结果均在参考值范围内,所有样品结果的相对标准偏差 均 < 5%且满足 GB/T 27404-2008《实验室质量控制规范 食品理化检测》^[26]对于精密度的要求。

表 6 不同赶酸方式的结果对比(n=3) Table 6 Comparison of the results of different ways to evaporate acid (n=3)

皮旦	赶酸方式 —	结	语果值/(mg/k	(g)	亚.坎仿/(ma/ka)	精密度/%	
口 名		1	2	3	十均固/(ling/kg)		
1	不赶酸	122	97	106	108	11.7	
2	超声赶酸	118	132	133	128	6.6	
3	80 °C赶酸	134	133	136	134	1.1	
4	90 ℃赶酸	137	141	144	141	2.5	
5	100 ℃赶酸	137	136	133	135	1.5	
6	120 °C赶酸	127	135	146	136	7.0	
7	140 °C赶酸	137	132	103	124	14.8	
8	160 ℃赶酸	69	123	118	103	28.9	
标示值	—		117~159		_	—	

表 7 不同谱线的标准曲线和检出限 Table 7 Standard curves and detection limits for different wavelengths

					0		
分析谱线/nm	线性范围/(mg/L)	斜率	截距	线性系数	空白信号标准 偏差(n=20)	检出限浓度 /(mg/L)	主要干扰谱线* /nm
189.925	0.0100~5.00	960.328	4.3369	0.99999	1.95	0.007	无
283.998	0.0100~5.00	2061.336	24.2075	0.99999	5.41	0.008	284.001 (Cr)
181.059	0.0200~5.00	592.518	62.5200	0.99999	2.49	0.013	无
242.950	0.0500~5.00	418.028	7.4613	0.99993	3.13	0.03	242.952 (Rh)
226.893	$0.0500 \sim 5.00$	632.666	11.9557	0.99998	5.38	0.03	226.890 (Ir)
242.170	0.0200~5.00	438.978	10.8743	0.99999	4.53	0.04	242.165 (Tm)
224.606	0.0200~5.00	175.651	4.7086	0.99993	2.67	0.05	无
235.485	0.0500~5.00	325.252	23.4566	0.99997	5.39	0.05	235.489 (Fe)
183.113	0.100~5.00	43.528	6.7676	0.99961	1.74	0.12	183.113 (As)
215.152	0.500~5.00	49.135	3.7328	0.99950	2.21	0.14	无

注:*干扰谱线由仪器软件提供。

表 8 不同样品的测定结果(n=6)

Table 8 The results of different samples (n=6)									
廿日		测定值/(mg/kg)						平均值	
作于田田	孙/Mill/(mg/kg)	1	2	3	4	5	6	/(mg/kg)	相伍戊/70
柑橘叶 GBW10020	3.8±0.5	4.02	4.01	4.15	4.29	4.07	3.94	4.08	3.0
典型饮食 SRM 1548a	17.2±2.57	14.9	15.3	14.9	15.1	15.9	14.9	15.2	2.6
番茄酱 ERM-BC084a	225±11	216	222	225	221	223	220	221	1.4
果汁 T07321QC	62.7~87.8*	77.3	77.0	77.6	77.5	78.1	78.3	77.6	0.6
柚子 T07332QC	76.5~106.2	97.1	97.1	97.7	97.4	97.4	97.4	97.4	0.2
西红柿酱 T07330QC	117~159	151	151	151	148	150	145	149	1.6
蔬菜泥 T07323QC	386~499	492	448	468	490	488	475	477	3.6
面粉	—	6.25	6.11	6.30	6.61	6.62	6.92	6.47	4.6

注:*果汁 T07321OC 的标示值、测定值和平均值的单位均为 mg/L; 面粉为来源于日常监测样品, 无标示值。

Table 9 The results of the spike recoveries (n=3) 样品 样品本底含量/(mg/kg) 样品加标量/(mg/kg) 样品测定含量/(mg/kg) 回收率/% 2.5 9.04 102.8 面粉 6.47 5.0 100.2 11.48 10.0 16.80 103.3 109.4 50 152.1 柚子 T07332QC 97.4 100 201.4 104.0 200 302.4 102.5

表 9 回收率实验结果(n=3)

3.6 回收率实验

以面粉为低锡含量样品、柚子为高锡含量样品进行 加标回收实验,采用锡标准溶液分别进行3个不同浓度 水平的加标,结果如表9所示。实验结果显示,加标回 收率在 100.2%~109.4%内, 满足 GB/T 27404-2008^[26]对 于回收率的要求。

4 结 论

本研究采用 5 mL 硝酸+1 mL 盐酸的酸体系进行微 波消解前处理并在 90 ℃下赶酸, 再用电感耦合等离子 发射光谱法以 189.925 nm 为分析谱线测定食品中锡含 量,该方法线性范围为 0.0100~5.00 mg/L,方法线性方 法检出限为 0.7 mg/kg, 方法定量限为 2.4 mg/kg, 多种 基质样品的结果相对标准偏差 < 5%, 加标回收率在 100.2%~109.4%内。该方法操作简便快捷,结果准确,精 密度高,灵敏度高,干扰少,适用于食品中锡的分析, 建议纳入国家标准测定方法中作为日常检验食品中锡 的分析方法。

参考文献

- [1] CAC/RCP 60-2005 Code of practice for the prevention and reduction of inorganic tin contamination in canned foods [S].
- [2] 大连理工大学. 无机化学: 第五版[M]. 北京: 高等教育出版社, 2006. Dalian University of Technology. Inorganic chemistry: Fifth edition [M]. Beijing: Higher Education Press, 2006.
- [3] 国家食品安全风险评估中心. 食品中元素类检验方法系列标准实施指 南[M]. 北京: 中国标准出版社, 2017. CFSA. Implementation guide to the series of standards for determination of elements in foods [M]. Beijing: Standards Press of China, 2017.
- [4] WHO. Tin and inorganic tin compounds [R/OL]. https://apps.who.int/iris/ handle/10665/43223.
- [5] WHO. Evaluation of Certain Food Contaminants [R/OL]. https://apps.who. int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=515.
- [6] GB 2762-2017 食品安全国家标准 食品中污染物限量[S]. GB 2762-2017 National food safety standard-Maximum levels of contaminants in foods [S].
- [7] GB 5009.16-2014 食品安全国家标准 食品中锡的测定[S]. GB 5009.16-2014 National food safety standard-Determination of tin in foods [S].
- [8] 朱力,杨大鹏,刘裕婷.微波消解氢化物发生-原子荧光光谱法测定罐

头食品中汞和锡[J]. 理化检验:化学分册, 2007, (3): 22-23, 27.

Zhu L, Yang DP, Liu YT. Hydride generation-atomic fluorescence spectrometric determination of mercury and tin in canned food-with microwave assisted sample digestion [J]. Phys Test Chem Anal Part B, 2007, (3): 22–23, 27.

- [9] BS EN 15764:2009 Determination of trace elements-Determination of tin by flame and graphite furnace atomic absorption spectrometry (FAAS and GFAAS) after pressure digestion [S].
- [10] AOAC Official Method 985.16 Tin in canned foods-atomic absorption spectrophotometric method [S].
- [11] 夏道宗, 于新芬. 罐头食品中微量重金属的快速测定[J]. 现代食品科技, 2005, (2): 167–169, 164.
 Xia DZ, Yu XF. Quick Determination for trace element from tinned food
 [J]. Guangzhou Food Sci Technol, 2005, (2): 167–169, 164.
- [12] GB 5009.268-2016 食品安全国家标准 食品中多元素的测定[S].
 GB 5009.268-2016 National food safety standard-Determination of multi-elements in foods [S].
- [13] BS EN 15765:2009 Determination of trace elements-Determination of tin by inductively coupled plasma mass spectrometry (ICPMS) after pressure digestion [S].
- [14] Saeki K, Nakatani N, Le TH, et al. Determination of the total tin in biological materials by ICP-MS [J]. Bunseki Kagaku, 1998, 47(2): 135–139.
- [15] 丘红梅,邓利,张慧敏,等. 微波消解/ICP-MS 法测定海产品中总锡[J]. 实用预防医学, 2007, 14(3): 614-616.

Qiu HM, Deng L, Zhang HM, *et al.* Determination of tin level in seafood by microware dissolution and ICP-MS [J]. Pract Prev Med, 2007, 14(3): 614–616.

- [16] Yu Z, Sun J, Jing M, et al. Determination of total tin and organotin compounds in shellfish by ICP-MS [J]. Food Chem, 2010, 119(1): 364–367.
- [17] 叶剑芝,苏子鹏,杨春亮,等. 微波消解-ICP-MS 法测定果蔬罐头中的 锡、铅、砷[C]//农产品质量安全与现代农业发展专家论坛论文集. 2011. Ye JZ, Su ZP, Yang CL, et al. Determination of tin, lead and arsenic in canned fruits and vegetables by microwave digestion-ICP-MS [C]// Proceedings of the Expert Forum on Agricultural Product Quality Safety and Modern Agriculture Development. 2011.
- [18] Trandafir I, Nour V, Ionica M E, et al. Determination of tin in canned foods by inductively coupled plasma-mass spectrometry [J]. Polish J Environ Stud, 2012, 21(3): 749–754.
- [19] 邓全道,黎志诚. 微波消解-电感耦合等离子体发射光谱法同时测定凉粉罐头中 8 种元素含量[J]. 食品安全质量检测学报, 2012, 3(2): 120-123.

Deng QD, Li ZC. Microwave digestion-inductively coupled plasma-atomic emissions spectrometric determination of eight elements in canned food [J]. J Food Saf Qual, 2012, 3(2): 120–123.

- [20] Fišera M, Kráčmar S, Velichová H, et al. Tin compounds in food-their distribution and determination [J]. J Food Sci, 2019, 13(1): 369–377.
- [21] 宋天佑,程鹏,徐家宁,等.无机化学:第三版下册[M].北京:高等教 育出版社,2009.

Song TY, Cheng P, Xu JN, et al. Inorganic chemistry: Third edition Volume II [M]. Beijing: Higher Education Press, 2009.

[22] 郝润蓉, 方锡义, 钮少冲. 无机化学丛书: 第三卷 碳硅锗分族[M]. 北京: 科学出版社, 1998.

Hao RR, Fang XY, Niu SC. Inorganic chemistry series: Volume III Carbon-silicon-germanium family [M]. Beijing: Science Press, 1998.

 [23] 袁诗璞. 酸性镀锡液中的阳极与 β-锡酸[J]. 电镀与涂饰, 2013, (9): 34-38.

Yuan SP. Anode and β -stannic acid in acid tin plating solution [J]. Electroplat Finish, 2003, (9): 34–38.

- [24] LGC. Certificate of Analysis ERM-BC084a [EB/OL]. [2020-05-20]. https://hybris-static-assets-production.s3-eu-west-1.amazonaws.com/sys-m aster/pdfs/he2/he2/10132234436638/COA_ERM-BC084_ST-WB-CERT-2 826524-1-1-1.PDF.
- [25] Paul R. Gaines. ICP-OES and ICP-MS analytical tips for tin [EB/OL]. [2020-05-20].

https://www.inorganicventures.com/advice/icp-oes-and-icp-ms-analytical-t ips-for-tin.

[26] GB/T 27404-2008 实验室质量控制规范 食品理化检测[S].

GB/T 27404-2008 Criterion on quality control of laboratories-Chemical testing of food [S].

(责任编辑: 李磅礴)

作者简介

蔡展帆,硕士,工程师,主要研究方向 为食品安全与检测技术。 E-mail: 403528343@qq.com

