液相色谱-电感耦合等离子质谱联用法测定 大豆中的 5 种硒形态

魏琴芳1、贾彦博1、胡文彬1、洪春来2*、韦燕燕3

(1. 杭州市食品药品检验研究院, 杭州 310022; 2. 浙江省农业科学院环境资源与土壤肥料研究所, 杭州 310021; 3. 广西大学农学院, 南宁 530004)

摘 要: 目的 建立液相色谱-电感耦合等离子质谱法(liquid chromatography-inductively coupled plasma mass spectrometry, LC-ICP-MS)测定谷物类大豆样品中 5 种硒形态[硒代胱氨酸(SeCys₂)、甲基硒代 L-半胱氨酸 (MeSeCys)、亚硒酸根(SeIV)、硒代蛋氨酸(SeMet)和硒酸根(SeVI)]的分析方法。**方法** 样品采用超声水解,加入链酶蛋白酶 E 提取,经 C_{18} 反向色谱柱(4.6 mm×150 mm,5 μ m,100 Å)分离,以 30 mmol/L 磷酸氢二铵、0.5 mmol/L 四丁基溴化铵、2%甲醇为流动相,流动相的 pH 用甲酸调节至 5.8~6.0,通过 ICP-MS 测定 5 种硒形态。结果 经方法优化后,LC-ICP-MS 方法可以在 8 min 内将 5 种硒形态完全分离,且各个硒形态标准曲线的线性关系良好 $(r^2 \ge 0.995)$,方法检出限为 0.5~1.0 μ g/L,定量限为 1.5~3.0 μ g/L,加标回收率为 97.34%~100.33%,相对标准偏差为 0.46%~1.2%。结论 本方法具有前处理简单、快捷,灵敏度高,分析速度快等优点,适用于大豆食品中硒的形态分析。

关键词: 液相色谱法; 电感耦合等离子质谱法; 大豆; 硒形态

Determination of 5 kinds of selenium species in soybean by liquid chromatography-inductively coupled plasma mass spectrometry

WEI Qin-Fang¹, JIA Yan-Bo¹, HU Wen-Bin¹, HONG Chun-Lai^{2*}, WEI Yan-Yan³

(1. Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China; 2. Institute of Environment, Resource Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3. College of Agriculture, Guangxi University, Nanning 530004, China)

ABSTRACT: Objective To establish a method for determination of 5 different forms of selenium [selenium cystine (SeCys2), methyl selenium generation *L*-cysteine (MeSeCys), and selenium acid radical (Se IV), selenomethionine (SeMet) and selenium acid group (SeVI)] in grain soybean samples by liquid chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS). **Methods** The samples were hydrolyzed by ultrasound and extracted by adding pronase E, and separated by C₁₈ chromatographic column (4.6 mm×150 mm, 5 μm, 100 Å) using 30 mmol/L diammonium phosphate, 0.5 mmol/L tetrbutyl ammonium bromide, and 2% methanol as mobile phase. The pH of the mobile phase was adjusted to 5.8~6.0 by formic acid, then 5 selenium forms were determined by ICP-MS. **Results** After the optimization of the method, 5 selenium forms could be separated completely in 8 minutes by LC-ICP-MS, and the linear relationship of the standard curves of selenium forms was

^{*}通讯作者: 洪春来, 博士, 副研究员, 主要研究方向为固体废弃物资源化利用与环境修复。E-mail: 82004897@qq.com

^{*}Corresponding author: HONG Chun-Lai, Ph.D, Associate Professor, Institute of Environment, Resource Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. E-mail: 82998580@qq.com

good ($r^2 \ge 0.995$). The limits of detection the method were 0.5–1.0 µg/L, the limits of quantitation were 1.5–3.0 µg/L, the recovery rates were 97.34%–100.33%, and the relative standard deviations were 0.46%–1.2%. **Conclusion** This method has the advantages of simple, fast pretreatment, high sensitivity and fast analytical speed, and is suitable for speciation analysis of selenium species in soybean food.

KEY WORDS: liquid chromatography; inductively coupled plasma mass spectrometry; soybean; selenium species

1 引言

目前,富硒食品逐渐进入大众的视野,硒的形态分析已成为一个热门的研究方向。研究证明,食品中硒的可利用价值由硒的化学形态决定,硒的不同化学形态对人体的吸收、生物效应、毒性及防癌作用不同^[1-3]。硒在有机硒的形态下添加到食品中可以起到预防心血管疾病的作用,有机硒存在人体内也可以起到防止人体器官老化、预防心脏病、预防风湿性关节炎的作用^[4-7]。人类摄取硒元素的主要来源是硒蛋氨酸(SeMet)^[8-10]。硒在硒蛋白的形态下通过氧化还原作用调控人体激素动态平衡,维持人体正常生理活动。通过食用富硒食品来补硒可能会成为今后的热点问题,在今后的研究中可以将不同形式的硒融入到日常饮食中。故此研究对于食品中硒形态分析具有指导意义。

现阶段,用于硒元素的形态分析检测方法有多种,例如,电分析法、光谱法、质谱法等^[1,2]。其中联用技术在形态分析中发挥了尤为重要的作用,与单一的技术相比较,联用技术在分析灵敏度、准确度、分析速度等多方面都更为优秀,且具有多元素检测、元素特效性、动态范围宽广等优点^[11-15]。但目前对于大豆中 5 种硒形态的分析报道相对较少。

本研究建立了液相色谱与电感耦合等离子质谱技术 (liquid chromatography with inductively coupled plasma mass spectrometry, LC-ICP-MS)分析大豆中的 5 种硒形态, 运用不同的色谱分离柱来完成不同种类样品形态的分离, 再以 ICP-MS 来担当信号输出, 具有检测限低、线性范围宽、高灵敏度、高选择性、高分析速度等优点, 为相关研究提供参考。

2 材料与方法

2.1 仪器与试剂

Agilent7700cx 型 ICP 质谱仪、1260 液相色谱仪(美国 Agilent 公司产品); C_{18} 反向色谱柱(4.6 mm×150 mm, 5 μm, 100 Å)、 C_{18} 预柱(4.6 mm×10mm, 5μm, 100 Å, 海光仪器); AP-9925 无油真空泵(天津奥特赛恩斯); KQ-250E 超声波清洗器(昆山超声仪器有限公司); Neofuge 15R 台式高速离心机(上海力申科学仪器有限公司)。

磷酸氢二胺(优级纯, 天津市科密欧化学试剂有限公司)、四丁基溴化铵(分析纯, 上海 MACKLIN 公司); 甲醇(色谱纯, 美国 J.T.BaKer 公司); 链霉蛋白酶(上海源叶生物

科技有限公司); 淀粉酶(上海安谱科学仪器有限公司); 氨水(分析纯,杭州龙山精细化工有限公司); 甲酸(分析纯,上海凌峰化学试剂有限公司); 硒代蛋氨酸标准物质(纯度98%,1g)、L-硒代胱氨酸标准物质(纯度98%,250 mg)、Se-甲基硒代-L-半胱氨酸(纯度98%,1g,北京百灵威科技有限公司); 硒酸根标准物质(1005 μg/g±7 μg/g,美国iNORGANIC VENTURES公司); 亚硒酸根溶液标准物质(纯度98%,5g,美国Maya-R公司); 实验用水均为实验室超纯水。

大豆样品为市售。

2.2 标准溶液的配制

称取 163.3 mg 亚硒酸根标准物质于 100 mL 容量瓶中, 用超纯水定容至刻度,得浓度为 1000 mg/L(以硒计)的标准 储备溶液。

称取 230.6 mg Se-甲基硒代-L-半胱氨酸标准物质于 100 mL 容量瓶中,用超纯水定容至刻度,得浓度为 1000 mg/L(以硒计)的标准储备溶液。

称取 248.4 mg 硒代蛋氨酸标准物质于 100 mL 容量瓶中,用超纯水定容至刻度,得浓度为 1000 mg/L(以硒计)的标准储备溶液。

称取 124.2 mg 硒代胱氨酸标准物质于 500 mL 容量瓶中,用超纯水定容至刻度,得浓度为 200 mg/L(以硒计)的标准储备溶液。

分别准确吸取 1 mL 硒代蛋氨酸标准储备溶液、亚硒酸根标准储备溶液、Se-甲基硒代-L-半胱氨酸标准储备溶液、硒酸根标准物质(1000 mg/L), 吸取 5 mL 硒代胱氨酸标准储备溶液于 100 mL 容量瓶中, 用超纯水定容至刻度, 得浓度为 10 mg/L(以硒计)的标准中间溶液。标准物质、标准储备溶液、标准中间溶液均储存于 0~4 ℃冰箱中。

使用前吸取相应体积的标准中间溶液于 10 mL 容量瓶中,用超纯水稀释至刻度,混匀,得到浓度分别为 10、30、50、100、200 µg/L 的标准使用溶液。

2.3 样品处理

取一定量的大豆试样进行粉碎、混匀,过 0.850 mm 孔径筛,称取样品 0.2 g(精确至 0.001 g)于 10 mL 离心管中,称取 20 mg 链霉蛋白酶 E 溶于 6 mL 超纯水,经涡旋混匀,置于水温恒温 37 ℃ 超声清洗器中,设置 60 min 超声提取。待提取结束后,吸取上清液,于 8000 r/min 离心 20 min,过 0.22 μm 的有机滤膜,然后上机进行检测。同时做样品空白。

2.4 仪器条件

液相色谱条件: C_{18} 反向色谱柱(4.6 mm×150 mm, 5 μm, 100 Å); 流动相为 30 mmol/L 磷酸氢二铵+0.5 mmol/L 四丁基溴化铵+2%甲醇, 用10%甲酸调节pH至6.0, 流速为 1.0 mL/min, 进样量为 100 μL, 梯度洗脱。

ICP-MS 检测条件: RF 发射功率 1500 W, RF 匹配 1.60 V, 采样深度 8.0 mm, 载气(氩气)流速 1.2 L/min, 雾化 室温度 2 $^{\circ}$ C, 蠕动泵 0.30 r/sec。

3 结果与分析

3.1 仪器条件的优化

3.1.1 色谱柱的选择

本研究比较了文献中报道的方法^[4],采用 Hamilton PRP-X100(4.1 mm×250 mm, 10 μ m)阴离子色谱柱分析,总结了等度洗脱和梯度洗脱的分离效果,实验表明:采用等度洗脱需要 23 min 才能将 5 种硒形态完全分离,采用梯度洗脱也需要 18 min 才能完全分离,结果见图 1 和图 2。为了提高分离效果,本研究在流动相中额外加入 0.5 mmol/L四丁基溴化铵,采用 C_{18} 反向色谱柱(4.6 mm×150 mm, 5 μ m, 100 Å),在等度洗脱条件下 8 min 之内 5 种硒形态就可以完全分离,大大缩短了分析时间,结果见图 3。

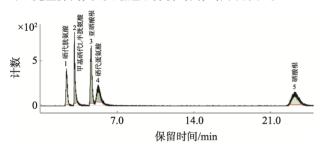


图 1 Hamilton PRP-X100 色譜柱条件下 5 种硒形态的色谱图 (100 μg /L)(等度洗脱)

Fig.1 Chromatogram of the 5 selenium species (100 µg/L) with Hamilton PRP-X100 column (equal elution procedure)

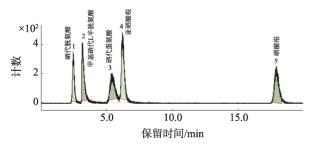


图 2 Hamilton PRP-X100 色谱柱条件下 5 种硒形态色谱图 (100 μg /L)(梯度洗脱)

Fig. 2 Chromatogram of the 5 selenium species (100 μg/L) with Hamilton PRP-X100 column (gradient elution procedure)

3.1.2 流动相 pH 的选择

流动相的 pH 不同会影响目标物的保留时间。本研究表明:在 pH 5.0、6.0 和 7.0 时,5 种硒形态的分离效果不同。

当 pH=5.0 时,所有峰均分离,但是峰形不佳,噪声大;当 pH=6.0 时,各个峰达到基线分离,且锋形平滑;当 pH=7.0 时,甲基硒代 L 半胱氨酸与亚硒酸根部分重合,结果见图 4。当对 pH 进行调整后,硒酸根保留时间影响最大;pH 越高硒酸根保留时间越短,更容易与硒代蛋氨酸峰形重叠。所以,综合以上本研究流动相酸度选择 pH=6.0。

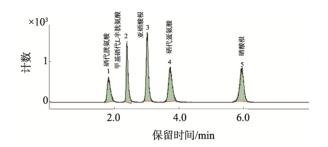


图 3 C₁₈色谱柱条件下 5 种硒形态色谱图(100 μg/L) Fig.3 Chromatogram of a standard solution of the 5 selenium species (100 μg/L) with the C₁₈ column

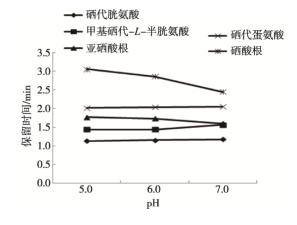


图 4 pH 对硒形态保留时间的影响(n=3)

Fig.4 Effect of pH on retention time of selenium species (n=3)

3.1.3 流动相浓度的选择

本实验探索了磷酸氢二铵溶液(pH=6.0)浓度分别为 15、24、30、50 mmol/L 时,对硒形态分离效果及保留时间的影响,结果见图 5。结果表明当磷酸氢二铵溶液(pH 6.0)浓度为 15 mmol/L 时,亚硒酸根、硒代蛋氨酸即将重合;当磷酸氢二铵溶液(pH 6.0)浓度为 50 mmol/L 时,硒代蛋氨酸和硒酸根部分重合。流动相浓度会影响硒酸根的保留时间,流动相浓度≤30 mmol/L 时,硒酸根保留时间与流动相浓度呈正比;流动相浓度 > 30 mmol/L,硒酸根保留时间与流动相浓度呈反比。综上所述,本实验流动相浓度采用 30 mmol/L 较为合适。

3.1.4 流动相流速的选择

本实验探究了当磷酸氢二铵 pH=6.0,浓度为30 mmol/L时,流速分别为0.6、0.8、1.0、1.2、1.4、1.6 mL/min时,5种硒形态的分离效果,结果见图6。研究结果表明:流速越快,各个形态的保留时间缩短;当流速为0.6 mL/min

时,锋形有毛刺,不平滑,且有拖尾;流速为 $0.8\,$ mL/min 时,锋形稍有改善;当流速为 $1.0\,$ mL/min 时,锋形圆滑,无毛刺,基线分离。当流速为 $1.2\,$ 、 $1.4\,$ 、 $1.6\,$ mL/min 时,5 种形态皆可分离,但是综合考虑柱压、柱效等因素, C_{18} 柱建议最高流速 $1.2\,$ mL/min,综合各形态保留时间长短,故此实验采用 $1.0\,$ mL/min 流速。

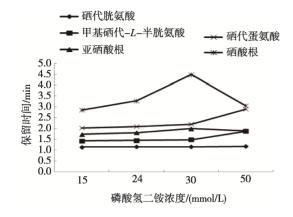


图 5 磷酸氢二铵浓度对硒形态保留时间的影响(n=3)
Fig.5 Effect of diammonium hydrogen phosphate concentration on retention time of selenium species (n=3)

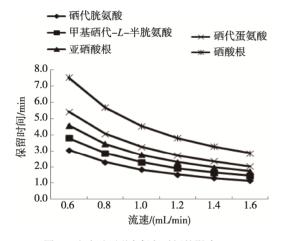


图 6 流速对硒形态保留时间的影响(n=3)

Fig.6 Effect of flow rate on retention time of selenium species (n=3)

3.2 前处理条件的优化

3.2.1 加酶量的优化

加入酶的多少直接影响了样品提取效率。本实验研究了加酶量分别为 10、20、30、50 mg 时,样品的提取效率,结果见图 7。研究结果表明:当加入链霉蛋白酶 10 mg 时,样品的提取效率仅为 50%~60%;当加入 20 mg 时,提取效率能达到 95%~102%;加入量增加到 30及 50 mg 时,提取效率没有发生明显变化,回收率在 97%~110%之间。所以,本实验选择加入 20 mg 链霉蛋白酶。

3.2.2 提取时间优化

本研究优化了不同水浴超声时间对提取效率的影响。 分别摸索了超声提取时间 15、30、60、90 min 时,对硒形 态提取效率的影响,结果见图 8。实验结果表明: 当超声时间为 15 min 时,提取效率只有 50%~60%; 当超声时间逐渐延长,提取效率提高; 当超声时间为 60 min 和 90 min 时,提取效率变化不大,故本研究提取时间选择为 60 min。

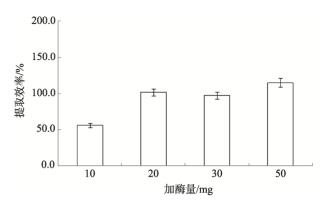


图 7 加酶量对硒形态提取效率的影响(n=3)

Fig. 7 Effect of enzyme dosage on extraction efficiency of selenium species (n=3)

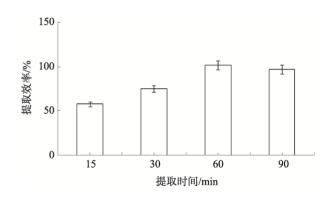


图 8 提取时间对硒形态提取效率的影响(n=3)

Fig. 8 Effect of extraction time on extraction efficiency of selenium species (n=3)

3.3 方法学验证

3.3.1 标准曲线和检出限

按照本文优化的实验方法进行检测, 5 种硒形态均有良好的线性。5 种硒形态的线性范围在 $10\sim200~\mu g/L$ 之间,相关系数 r^2 均达到 0.995~U上。通过信噪比法确定检出限为 $0.5\sim1.0~\mu g/L$,定量限为 $1.5\sim3.0~\mu g/L$ 。线性方程、线性范围、检出限结果见表 1。

3.3.2 加标回收实验

选取大豆作为实验样品,测定样品中各种硒形态本底值,进行加标回收实验。经测定,样品中 5 种硒形态中仅含有 SeMet,其含量为 0.169 mg/kg,其他形态均未检出。本实验的加标浓度分别为 0.09、0.18、0.90 mg/kg。实验结果表明: 5 种硒形态的加标回收率为 97.34%~100.33%之间,相对标准偏差为 0.46%~1.2%,结果见表 2。

表 1 5 种硒形态的线性范围、线性方程、相关系数、检出限和定量限

Table 1 Linear ranges, linear equations, correlation coefficients, limits of detection and limit of quantitation for 5 kinds of selenium species

硒形态	线性范围/(μg/L)	线性方程	r^2	检出限/(μg/L)	定量限/(μg/L)
$SeCys_2$	10~200.0	<i>Y</i> =44.1798 <i>X</i> +0.9006	1.000	1.0	3.0
MeSeCys	10~200.0	<i>Y</i> =64.1631 <i>X</i> +0.3999	1.000	0.5	1.5
SeIV	10~200.0	<i>Y</i> =79.2340 <i>X</i> +0.4707	1.000	0.5	1.5
SeMet	10~200.0	<i>Y</i> =67.4847 <i>X</i> +0.5010	1.000	0.5	1.5
SeVI	10~200.0	<i>Y</i> =70.6949 <i>X</i> +0.8023	1.000	0.5	1.5

表 2 大豆样品中 5 种硒形态的加标回收率(n=6)
Table 2 Recoveries of 5 kinds selenium species in soybean samples (n=6)

硒形态	本底值/(mg/kg)	加标量/(mg/kg)	回收率/%	相对标准偏差/%
		0.09	98.22	
SeCys ₂	ND	0.18	100.33	1.1
		0.90	99.74	
		0.09	98.89	
MeSeCys	ND	0.18	98.67	0.85
		0.90	97.34	
		0.09	98.67	
SeIV	ND	0.18	99.78	0.73
		0.90	97.48	
		0.09	97.95	
SeMet	0.1691	0.18	99.17	1.2
		0.90	99.23	
		0.09	98.33	
SeVI	ND	0.18	99.00	0.46
		0.90	99.20	

注: ND 为未检出。

4 结 论

本研究建立了超声酶解提取,液相色谱-电感耦合等离子体质谱联用法检测大豆食品中的 SeCys₂、MeSeCys、SeIV、SeMet 和 SeVI 5 种硒形态分析方法。该方法前处理步骤简单、方便快捷。流动相成分仅一种,污染小,8 min内就可以将 5 种硒形态分离完全,分离效果好且分析速度快。该方法可以对谷物等食品的硒形态进行快速准确地分析,为鉴定富硒食品的硒形态提供了可行性方法,对监测食品安全具有指导意义。

参考文献

- [1] 魏宁果,何冲,范芳芳,等. 食品中硒形态的研究进展[J]. 农产品加工, 2018, (11): 71-73, 76.
 - Wei NG, He C, Fan FF, *et al.* Research progress of selenium speciation in foods [J]. Acad Period Farm Prod Process, 2018, (11): 71–73, 76.
- [2] 梁克红, 卢林纲, 朱宏, 等. 食物中硒的研究进展[J]. 中国粮油学报,

2018, 33(3): 134-138.

Liang KH, Lu LG, Zhu H, *et al.* Research progress of selenium in food [J]. J Chin Cere Oils Associat, 2018, 33(3): 134–138.

- [3] 郭丽丽, 李俊, 贺博, 等. 食品中硒元素形态分析的研究进展[J]. 食品 安全质量检测学报, 2019, 10(13): 4376-4381.
 - Guo LL, Li J, He B, et al. Research advance on the speciation of selenium in foods [J]. J Food Saf Qual, 2019, 10(13): 4376–4381.
- [4] 王丙涛, 谢丽琪, 林燕奎, 等. 高效液相色谱-电感耦合 等离子体质谱 联用检测食品中的五种硒形态[J]. 色谱, 2011, 29(3): 223-227.
 - Wang BT, Xie LQ, Lin YK, *et al.* Determination of selenium species in food by high performance liquid chromatography with inductively coupled plasma mass spectrometry [J]. Chin J Chromatogr, 2011, 29(3): 223–227.
- [5] 王欣,幸苑娜,陈泽勇,等. 高效液相色谱-电感耦合 等离子体质谱法检测富硒食品中 6 种硒形态[J]. 分析化学, 2013, 41(11): 1669–1674. Wang X, Xing YN, Chen ZY, et al. Determination of 6 selenium species in selenium-enriched food by hyphenated technique of high performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Chin J Anal Chem, 2013, 41(11): 1669–1674.

- [6] 秦冲, 施畅, 万秋月, 等. HPLC-ICP-MS 法测定富硒小麦中硒的形态 [J]. 食品研究与开发, 2019, 40(2): 140-144.
 - Qin C, Shi C, Wan QY, et al. Speciation analysis of selenium in selenium-enriched wheat by HPLC-ICP-MS [J]. Food Res Dev, 2019, 40(2): 140–144.
- [7] Jorge MP, Joel SP, Adriana ML, et al. Selenium species determination in foods harvested in Seleniferous soils by HPLC-ICP-MS after enzymatic hydrolysis assisted by pressurization and microwave energy [J]. Food Res Int, 2018, 111: 621-630.
- [8] 冷桃花,郑翌,陆志芸. 电感耦合 等离子体质谱联用技术在食品中 5 种元素形态分析中的应用[J]. 食品安全质量检测学报,2019,10(18):6176-6183.
 - Leng TH, Zheng Y, Lu ZY. Application of inductively coupled plasma mass spectrometry in speciation analysis of 5 kinds of elements in food [J]. J Food Saf Qual, 2019, 10(18): 6176–6183.
- [9] 杨修斌, 王丙涛, 俞坤, 等. HPLC-ICP-MS 联用检测转基因大豆中的 硒形态[J]. 现代食品科技, 2015, 31(2): 280--284.
 - Yang XB, Wang BT, Yu K, et al. Determination of selenium species in genetically modified soybean by HPLC-ICP-MS [J]. Mod Food Sci Technol, 2015, 31(2): 280–284.
- [10] 陈绍占, 唐德剑, 李晓玉, 等. 超声酶提取-高效液相色谱-电感耦合等离子体质谱法测定谷类食品中硒形态[J]. 中国公共卫生, 2020, 36(1): 130–136.
 - Chen SZ, Tang DJ, Li XY, et al. Determination of selenium form in cereal food by ultrasonic enzyme extraction high performance liquid chromatography inductively coupled plasma mass spectrometry [J]. Chin J Public Health, 2020, 36(1): 130–136.
- [11] 王婷婷. 硒的提取及形态分析方法研究进展[J]. 农家参谋, 2019, (2): 266.
 - Wang TT. Research progress on extraction and speciation of selenium [J]. Farmers Consult. 2019. (2): 266
- [12] Thosaikham W, Jitmanee K, Sittipout R, et al. Evaluation of selenium

- species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee) using mixed ion-pair reversed phase HPLC–ICP-MS [J]. Food Chem, 2014, 145: 736–4742.
- [13] He M, Su SW, Chen BB, et al. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection [J]. Talanta, 2020, 207: 1–7.
- [14] Zhang K, Guo XQ, Zhao QY, et al. Development and application of a HPLC-ICP-MS method to determine selenium speciation in muscle of pigs treated with different selenium supplements [J]. Food Chem, 2020, 302: 1–8.
- [15] 倪张林, 汤富彬, 张玮, 屈明华. HPLC-DRC-ICP-MS 测定富硒蔬菜中的硒形态[J]. 分析试验室, 2013, 32(2): 39-43.
 - Ni ZL, Tang FL. Zhang W, *et al.* Determination of selenium species in se-enriched vegetables by HPLC-DRC-ICP-MS [J]. Chin J Anal Lab, 2013, 32(2): 39–43.

(责任编辑: 韩晓红)

作者简介

魏琴芳,助理工程师,主要研究方向为食品安全检测。

E-mail: 422644857@qq.com

洪春来,博士,副研究员,主要研究方 向为固体废弃物资源化利用与环境修复。

E-mail: 82004897@qq.com