超高效液相色谱-四级杆-飞行时间质谱法与 代谢组学技术分析牛乳与羊乳差异性

房 艳^{1,2*},于思雨¹,高俊海^{1,2},宋敬宁¹

(1. 谱尼测试集团股份有限公司, 北京 100095; 2. 谱尼测试集团北京科学技术研究院有限公司, 北京 100095)

摘 要:目的 采用超高效液相色谱-四级杆-飞行时间质谱仪(ultra-performance liquid chromatographyquadrupole time-of-flight mass spectrometry, UPLC-Q-TOF)高分辨质谱和代谢组学技术分析牛乳与羊乳差异。 方法 以小分子化学物质(分子量 MW < 1000 u)为研究对象,采用主成分分析、正交偏最小二乘法-判别式分 析等多元统计分析手段,借助 Progenesis QI 软件和数据库分析差异。结果 初步鉴定出 128 种物质,其中在 牛乳中含量高的物质有 38 种,在羊乳中含量高的物质 90 种。牛乳和羊乳在小分子代谢物上有明显差异 (*P*<0.05),主要为脂质、有机酸、糖类等,并剖析了伏马毒素 B₁、牛磺鹅去氧胆酸和乳清酸等典型的潜在生物 标志物。结论 本方法简单、便捷、且灵敏度高,为牛羊乳的真假鉴别以及牛羊乳差异性的进一步分析提供 了理论支持。

关键词:牛乳;羊乳;超高效液相色谱-四级杆-飞行时间质谱法;小分子代谢产物;生物标志物

Analysis of differences in cow milk and goat milk by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry and metabolomics approach

FANG Yan^{1,2*}, YU Si-Yu¹, GAO Jun-Hai^{1,2}, SONG Jing-Ning¹

(1. Pony Testing International Group Co., Ltd, Beijing 100095, China; 2. Pony Testing International Group Beijing Science and Technology Research Institute, Beijing 100095, China)

ABSTRACT: Objective To analyze the difference between cow milk and goat milk by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF) and metabolomics approach. **Methods** Taking small molecule chemical substances (molecular weight MW <1000 u) as the research object, we used principal statistical analysis, orthogonal partial least squares-discriminant analysis and other multivariate statistical analysis methods to analyze the differences with Progenesis QI software and database. **Results** A total of 128 substances were identified, of which 38 were high in cow milk and 90 were high in goat milk. There were significant differences in small molecule metabolites between cow's milk and goat's milk (P < 0.05), mainly lipids, organic acids, sugars, etc. Typical potential biomarkers such as fumonisin B₁, taurochenodeoxycholic acid and orotic acid were analyzed. **Conclusion** This method is simple, convenient and highly sensitive, which provides theoretical support for

基金项目:特膳食品安全与营养成份检测关键技术北京市工程实验室创新能力建设项目(京发改(审)[2017] 184 号)

Fund: Supported by Beijing Engineering Laboratory Innovation Ability Construction Project of Key Technology of Special Food Safety and Nutrition Composition Detection (Beijing Development and Reform [2017]184)

^{*}通讯作者:房艳,博士,高级工程师,主要研究方向为食品、环境、药品、新能源等相关产品及材料的分析化学研究。E-mail: yfh@ponytest.com

^{*}Corresponding author: FANG Yan, Ph.D, Senior Engineer, Pony Testing International Group, Beijing 100095, China. E-mail: yfh@ponytest.com

the identification of true and false bovine milk and the further analysis of the difference between bovine and goat milk. **KEY WORDS:** cow milk; goat milk; ultra-performance liquid chromatography-quadrupole time-of-flight mass

spectrometry; small molecule metabolomics; biomarker

1 引 言

牛乳富含蛋白质、脂肪、维生素和矿物质,深受广大 消费者喜爱。羊乳具有与牛乳相似的主要成分,但因其蛋 白质凝块软且小而更易于被消化吸收,同时不易导致乳糖 不耐症的发生,所以成为当前已知的与人乳最为接近的天 然乳品。

牛乳和羊乳中均含有大量的小分子代谢产物,且代 谢产物的种类和含量与物种、来源、健康状态等差异密切 相关。因此,从小分子代谢产物角度开展牛乳和羊乳差异 性研究是合理的,但鲜有此类研究的报道。代谢组学是继 基因组学和蛋白质组学之后的又一新兴技术,是当前应用 于生物系统代谢产物研究最有价值的方法之一, 重点关注 相对分子质量小于1000的代谢产物,借助高通量、高分辨 率的分析检测技术,在整体上分析探讨生命活动在代谢层 面的特征和规律^[1-4],结合生物信息学分析呈现关键的生 物标志物。目前, 羊乳中掺入牛乳检测主要依据牛乳和羊 乳营养成分的差异展开,包括脂肪、蛋白质、脂肪酸、维 生素及 DNA 分子差异等。张宏达等^[5]利用超高效液相色谱 -四级杆-飞行时间质谱技术对母乳、牛乳及羊乳的全脂质 组分进行分析,研究表明,母乳与牛乳有36种存在显著差 异的脂质, 与羊乳有 14 种; Emilia 等^[6]通过分离和分析牛 乳及羊乳中多种特定的蛋白质及其之间比例关系检测羊奶 中掺入的牛奶含量;李宝宝等^[7]根据牛奶中β-胡萝卜素含 量远高于羊奶,建立了以β-胡萝卜素含量作为特征指标, 定量检测牛羊混合奶的方法。虽然目前对牛乳和羊乳的成 分测定的研究已有所进展,但大多数研究都是针对单一种 类或单一物质,对牛乳和羊乳的多种小分子代谢物研究较 少。因此,本研究基于代谢组学技术,采用高分辨的超高 效液相色谱-四级杆-飞行时间质谱(ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, UPLC-Q-TOF)采集牛乳和羊乳中小分子代谢产物的色谱、 质谱信息,结合多元统计分析方式,可实现牛羊乳差异及 关键潜在生物标志物的识别,为牛乳和羊乳的真假鉴别及 相关研究提供理论支持。

2 材料与方法

2.1 设备与试剂

Waters Xevo G2-XS QTof/UPLC 系统(美国 Waters 公司); MassLynx 软件(v4.1, 美国 Waters 公司); Progenesis QI 软件系统(美国 Waters 公司); EZinfo 软件(美国 Waters 公司);

Millipore-Q 超纯水净化仪(美国 Millipore-Q 公司); Vortex-Genie 2 涡旋震荡器(美国 Scientific Industries 公司); H1850 台式高速离心机(湖南湘义离心机仪器有限公司)。

乙腈(质谱级, CAS 75-05-8, 美国 Honeywell Inernational 公司); 乙腈(色谱级, CAS 75-05-8, 美国 Fisher Scientific 公司); 甲酸(分析纯, CAS 64-18-6, 西陇科学股 份有限公司); 亮氨酸脑啡肽(分析纯, CAS 58822-25-6, 美 国 Waters 公司); 除 UPLC-Q-TOF 系统用水之外的水皆为 超纯水, 经 Millipore-Q 超纯水净化仪制备; 滤膜(尼龙, 0.22 μm, 天津博纳艾杰尔科技有限公司)。

牛乳 I~VII(C1~C7, 市售); 牛乳粉(C8, 市售); 羊乳 粉 I(G1, 源自内蒙某企业); 羊乳粉 II(G2, 市售); 羊乳粉 III(G3, 市售); 羊乳 IV(G4, 源自内蒙某牧场); 羊乳 V(G5, 源自内蒙某牧场)。

2.2 实验方法

2.2.1 预处理

乳粉: 称取约 1 g(精确至 0.01 g)试样于离心管中,加入 4 mL 水溶解,涡旋混匀;加入 12 mL 乙腈,4000 r/min 离心 15 min,取上清液过膜,供测试。

乳液:量取4 mL 试样于离心管中,加入12 mL 乙腈, 4000 r/min 离心15 min,取上清液过膜,供测试。

2.2.2 仪器条件

(1) UPLC 条件

色谱柱: ACQUITY UPLC® BEH C₁₈(100 mm× 2.1 mm, 1.7 μm); 流速 0.35 mL/min; 柱温: 40 °C; 进样量 2 μL; 流动相: 0.1%(体积分数)甲酸乙腈(A), 0.1%(体积分 数)甲酸溶液(B), 梯度洗脱: 0~0.5 min, 2%(A); 0.5~6 min, 2%~20%(A); 6~7 min, 20%~30%(A); 7~9 min, 30%-70%(A); 9~10 min 70%~98%(A); 10~12 min, 98%(A); 12~14 min, 98%-2%(A); 14~16 min 2%(A)。

(2) Q-TOF 条件

电喷雾离子源(ESI), 正离子和负离子模式, MSE 模式 采集;离子源温度:110 ℃;脱溶剂气温度:300 ℃;脱溶剂 气流速:600 L/h;锥孔气流速:20 L/h;毛细管电压:3.0 kV/ 2.5 kV;锥孔电压:40 V;扫描模式:灵敏度模式;扫描范 围:m/z 100~1200;扫描时间:0.2 s;碰撞能量:低碰撞能 量为 off,高碰撞能量为 10~50 eV;实时校正液:亮氨酸 脑啡肽(正离子条件 m/z 556.2771,负离子条件 m/z 554.2615)。

(3) 数据处理

Masslynx 采集 MS^E 数据, Progenesis QI 对数据进行归 一化、峰对齐、峰识别、去卷积化等预处理, EZinfo 进行 主成分分析(principal component analysis, PCA)与正交偏最 小二乘法-判别式分析(orthogonal projection to latent structures discriminate, OPLS-DA)。以 VIP(化合物对分组的 贡献程度值, variable of importance in the project, VIP) \geq 1、 差异倍数>2和 *P*-value < 0.05(具有显著差异)为条件进行 两组样品间的生物标志物筛选,并根据准分子离子、碎片 离子等信息,借助 HMDB(http://www.hmdb.ca/)、 KEGG(http://www.genome.jp/kegg/)、牛代谢组学数据库 DMDB(http://www.cowmetdb.ca/)和 Chemspider 等公共数 据库检索并初步鉴定最可能物质。

3 结果与分析

3.1 TIC 分析

MS^E模式可获得包括准分子离子、碎片离子、同位素 丰度、高碰撞能和低碰撞能双通道信息等高精度质谱信息 和色谱信息。在本研究中,为了从谱图直观分析两组样品 间差异,将 13 个样品在正离子模式下获得的总离子流谱 图(Total ion chromatogram, TIC)叠加比对,见图 1。可见, 6~12 min 内两组样品的谱图均呈现复杂的出峰情况,且在 部分谱峰存在差异。但 TIC 图未经处理时峰内质谱信息复 杂且干扰现象严重,难以直观识别差异性。因此,需要借 助专业的 Progenesis QI 及多元统计方式来进一步分析。

3.2 多元统计分析

与 UNIFI 相比, Progenesis QI 可执行去卷积化、峰对 齐等操作,能够有效排除仪器干扰、减少假阳性现象并提 高数据准确性,因此常被应用于代谢组学研究^[5-7]。将经 QI 处理后的数据进行 PCA 和 OPLS-DA 分析, 结果见图 2 和图 3。

如图 2 所示, 经 QI 处理后, 单一样品的平行性良好, 说明数据稳定且有效。同时, G 组全部分布在图中右侧区域, C 组分布在左侧区域且组内聚类现象明显。即表明牛乳和 羊乳在组成成分方面存在显著差异。

鉴于牛乳和羊乳在 PCA 分析中表现出的显著差异, 采用 OPLS-DA 方式进一步明确潜在生物标志物。如图 3 所示,图中每一个点位均代表一种小分子代谢物质,且点 位纵坐标的绝对值越接近1则代表该物质的置信程度越高, 横坐标绝对值越大则表明该物质对两组差异性的贡献越 大。可见,G组样本引入的显著差异性物质明显多于C组, 与羊乳更接近复杂人乳的研究结果相一致^[8]。

图 1 C1-C8 和 G1-G5 的 TIC 叠加图 Fig.1 TIC superposition of C1-C8 and G1-G5

图 2 PCA 得分图 Fig.2 PCA score

Fig.3 OPLS-DA score

3.3 潜在生物标志物的鉴别

结合 MSE 采集的信息和 Progenesis QI 的物质结构分 析功能对组间差异小分子代谢物质进行鉴别。在初始设定 条件下, 共检测到 11284 项物质。以同时满足 *P*-value < 0.05、VIP≥1 和差异倍数 > 2 3 个条件为原则筛选出 920 项 显著差异物质。其中, 230 项物质可与数据库初步匹配(质 量偏差 < 10 ppm), 在排除其中的大分子物质和仅在个别 样品中检出的物质后, 最终确定了 128 项小分子代谢物 质。借助 QI 软件的 Score 和 Fragmentation score 得分筛选 系统进行初步鉴定, 按照该物质在牛乳或羊乳中比例更高 划分为 2 组, 见表 1 和表 2。

如表1和表2所示, 羊乳中比例较高的物质为90种, 牛乳则为38种, 涵盖磷脂酰胆碱(phosphatidylcholine, PC) 及溶血性磷脂酰胆碱(lysophosphatidylcholine, LysoPC)(16 种)、磷脂酰乙醇胺(phosphatidyl ethanolamine, PE)及溶血 性磷脂酰乙醇胺(lysophosphatidylethanolamine, LysoPE)(13 种)、有机酸(16种)等几大类物质。其中,磷脂类物质是牛 乳和羊乳中普遍含有的,是神经细胞膜的重要组成部分, 可以提高记忆力、增强大脑和减缓肝硬化等。但羊乳中参 与脂质代谢的磷脂酰胆碱 PC(o-22:0/22:3(10Z,13Z,16Z))、 溶血性磷脂酰乙醇胺LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)) 和磷脂酰甘油 PG(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 等代谢产物的含量明显更高, 且脂类的种类和数量也更 多。有机酸也是反刍动物在摄入并代谢碳水化合物时可能 产生的,对于提高产奶量、提高肉中氮滞留和生长性能等 具有一定的生物活性。上述物质可能由于物种、饲养环境 等因素,在含量和种类上存在一定的差异。

值得注意的是, 伏马毒素 B₁(fumonisin B₁)是本研究 中发现的羊乳中微量检出而牛乳中几乎不含的两种物质之 一, 我国目前暂无乳品中伏马毒素的限量标准。相关研究 表明, 即使连续 14 d 给泌乳中的母牛喂食 75000 μg/kg 的 伏马毒素 B₁、伏马毒素 B₂和伏马毒素 B₃, 也未在牛奶样 品中检出高于 5 ng/mL 的伏马毒素残留^[9,10], 且欧洲食品 安全局的研究也表明只有少量的伏马毒素 B₁ 可以转化到 牛奶中。但是, 相关研究在非洲坦桑尼亚的人乳中检出 6.57~417.7 ng/mL^[11,12]的伏马毒素 B₁ 且阳性率为 44%, 由 于羊乳与人乳极其接近, 羊乳也可能存在检出伏马毒素 B₁ 的情况。究其原因, 可能是哺乳期母羊的饲料被伏马毒素 等真菌污染, 且对伏马毒素 B₁ 的抗性或代谢效率较低, 最 终转移到羊乳当中。

牛磺鹅去氧胆酸(taurochenodeoxycholic acid, TCDCA) 在羊乳中的含量高出牛乳近 400 倍,是一种由鹅去氧胆酸 (chenodeoxycholic acid, CDCA)和牛磺酸(taurine, TCA)结 合而成的结合型胆汁酸。胆汁酸的合成是胆固醇降解的主 要途径,并且在调节糖代谢和脂质代谢起着重要作用,这 可能是饮用羊奶能降低胆固醇的原因之一。胆汁酸类物质 属于内源性代谢产物,除了血中含有胆汁酸,其他组织 和代谢物中也可能含有一定量的胆汁酸^[13,14]。有研究曾 在牛乳中发现牛磺酸,且牛磺酸可以通过血液分泌到乳 汁中^[15,16],这为 TCDCA 在乳中出现进一步增加了可能 性。目前对于胆汁酸在乳中的代谢研究还处于初级阶段, 其作用机制研究尚不够深入,因此,有待于进一步研究。

乳清酸(orotic acid)在牛乳中的含量较高,约为羊乳的 6倍,属于核酸代谢物,由 Biscaro和 Belloni首次在牛奶中 发现,可存在于各种哺乳动物的乳汁中。此外研究还发现 乳清酸是惟一的与物种区分有关的奶代谢产物。相关研究 表明,人、兔、猫、猪的乳汁中的乳清酸含量小于 1 μg/mL, 泌乳中期的奶牛、绵羊、山羊奶中的乳清含量分别为 (82.43±9.64)、(30.59±1.71)、(27.87±1.36) μg/mL,即报道中 的牛乳中的乳清酸含量为羊乳的 2.7~3.1 倍,与本研究的 分析结果相对一致^[17,18]。

如表 2 所示, 羊乳中乳糖-N-三糖(lacto-N-triaose)、 GDP-4- 脱 水 -6-L- 脱 氧 半 乳 糖 (GDP-4-dehydro-6-Ldeoxygalactose)等代谢产物的含量明显低于牛乳, 是因为 羊乳中丰富的 ATP 可以促进乳糖分解、转化和利用,这也 是人们在饮用羊乳后不会产生腹胀、腹泻等乳糖不耐受的 现象的原因之一^[19]。

综上所述,通过分析正离子模式下的 MS^E数据,牛乳 和羊乳在小分子代谢物质方面存在显著差异,但受限于物 质信息不完整,未实现所有物质的准确鉴别和验证,但为 后续的牛羊乳差异性分析研究提供了明确的思路。此外, 本研究也采用相同模式同步对负离子模式采集数据进行分 析,虽然羊乳与牛乳在 PCA 中表现出明显分别,但差异性 代谢产物的相关性较低,因此结果未展开详细讨论。

序号	名称	保留时间/min	准分子离子 <i>m/z</i>	差异倍数	化学式
1	(5Z)-5-{[(1Z,2R)-1-[(carboxymethyl)imino]-1-hydroxy-3-{[(8alpha,9be ta,14beta,17beta)-3,4,17-trihydroxyestra-1(10),2,4-trien-2-yl]sulfanyl}-2 -propanyl]imino}-5-hydroxy-L-norvaline	8.89	594.2422	infinity	$C_{28}H_{39}N_3O_9S$
2	fumonisin B1	8.32	686.3737	infinity	C ₃₄ H ₅₉ NO ₁₅
3	citrusin B	8.44	569.2122	1.19e4	$C_{27}H_{36}O_{13}$
4	taurochenodeoxycholic acid	8.89	500.304	386	$C_{26}H_{45}NO_6S$
5	PC(o-22:0/22:3(10Z,13Z,16Z))	8.36	904.7085	164	$\mathrm{C}_{52}\mathrm{H}_{100}\mathrm{NO}_{7}\mathrm{P}$
6	(2S,3S,4R,6S)-6-{[(2R,3S,4R,5R,6S)-6-{[(4R,5S,6S,7R,9R,10R,11E,13 E,16R)-4-acetoxy-10-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-ox oethyl)oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hy droxy-2-methyltetrahydro-2H-pyran-3-yl]oxy}-4-hydroxy-2,4-dimethylt etrahydro-2H-pyran-3-yl butanoate	8.22	836.4477	70.2	C ₄₁ H ₆₇ NO ₁₅
7	hypoxanthine	1.64	137.0465	66.6	$C_5H_4N_4O$
8	epicatechin3-O-gallate-(4beta->6)-epigallocatechin 3-O-gallate	8.50	899.1697	38.2	$C_{44}H_{34}O_{21} \\$
9	2",3",6"-tris-O-(3,4,5-trihydroxybenzoyl)-3'-glucosyl-2',4',6'-trihydroxya cetophenone	0.82	787.1352	30.4	$C_{35}H_{30}O_{21} \\$
10	LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z))	10.10	528.3079	28.1	$\mathrm{C}_{27}\mathrm{H}_{46}\mathrm{NO}_{7}\mathrm{P}$
11	PG(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))	10.38	757.4740	24.8	$C_{44}H_{73}O_{10}P$
12	isocoproporphyrin	10.99	677.2529	23.4	$C_{36}H_{38}N_4O_8$
13	(3S,153'R,5R,6R)-7',8'-didehydro-3,6-epoxy-5,6-dihydro-b16eta,beta-ca rotene-3',5-diol	10.02	547.3938	17.6	$C_{40}H_{54}O_3$
14	2-(4-hydroxyphenyl)naphthalic anhydride	0.82	291.0702	17.4	$C_{18}H_{10}O_4$
15	LysoPC(14:1(9Z))	10.09	466.2921	17.4	$C_{22}H_{44}NO_7P$
16	cholestane-3,7,12,25-tetrol-3-glucuronide	10.64	595.3814	15.6	$C_{33}H_{56}O_{10}$
17	nonoxynol-9	10.63	639.4083	14.8	$C_{33}H_{60}O_{10}$
18	cyclopassifloside II	10.61	683.4341	13.5	$C_{37}H_{62}O_{11}$
19	25-cinnamoyl-vulgaroside	10.65	567.3317	12.8	$C_{34}H_{46}O_7$
20	notoginsenoside R10	10.44	537.3395	12.5	$C_{30}H_{50}O_9$
21	PC(18:1(9Z)/(0:0))	10.37	522.3550	12.5	$\mathrm{C}_{26}\mathrm{H}_{52}\mathrm{NO}_{7}\mathrm{P}$
22	LysoPE(0:0/24:0)	10.66	530.4022	11.9	C ₂₉ H ₆₀ NO ₇ P
23	enalkiren	13.2	329.2192	11.8	$C_{35}H_{56}N_6O_6$
24	convallagenin A 3-O-alpha-L-arabinopyranoside	10.43	581.3647	10.9	$C_{32}H_{52}O_9$

表 1 羊乳中比例较高的物质 Table 1 Higher proportions of goat's milk

					续表1
序号	名称	保留时间 min	准分子离子 m/z	差异倍数	化学式
25	Valerylcarnitine	4.57	246.1701	10.7	$C_{12}H_{23}NO_4 \\$
26	LysoPC(20:4(5Z,8Z,11Z,14Z))	10.02	544.3382	10.2	$\mathrm{C}_{28}\mathrm{H}_{50}\mathrm{NO}_{7}\mathrm{P}$
27	PS(20:2(11Z,14Z)/0:0)	10.17	572.3004	9.94	$\mathrm{C_{26}H_{48}NO_9P}$
28	iriomoteolide 1a	10.66	507.3288	9.18	$C_{29}H_{46}O_7$
29	amicycline	0.67	452.1417	8.49	$C_{21}H_{23}N_3O_7$
30	MG(0:0/18:1(9Z)/0:0)	10.36	339.2894	8.45	$C_{21}H_{40}O_4$
31	hebevinoside I	10.58	831.4863	8.33	$C_{44}H_{72}O_{13}$
32	25-hydroxyvitamin D2-25-glucuronide	10.64	611.3595	8.31	$C_{34}H_{52}O_8$
33	LysoPC(22:5(7Z,10Z,13Z,16Z,19Z))	10.19	570.3533	8.18	$\mathrm{C}_{30}\mathrm{H}_{52}\mathrm{NO}_{7}\mathrm{P}$
34	LysoPE(20:4(5Z,8Z,11Z,14Z)/0:0)	10.01	502.2929	7.99	$\mathrm{C}_{25}\mathrm{H}_{44}\mathrm{NO}_{7}\mathrm{P}$
35	notoginsenoside T1	10.76	653.4291	7.73	$C_{36}H_{60}O_{10}$
36	elatoside E	8.36	905.4796	7.73	$C_{46}H_{74}O_{16}\\$
37	LysoPE(18:2(9Z,12Z)/0:0)	10.01	478.2928	7.4	$C_{23}H_{44}NO_7P$
38	MG(18:2(9Z,12Z)/0:0/0:0)	10.01	337.2725	7.31	$C_{21}H_{38}O_4$
39	cymorcin diglucoside	10.01	473.198	6.97	$C_{22}H_{34}O_{12}$
40	LysoPE(18:1(9Z)/0:0)	10.36	480.308	6.85	$\mathrm{C}_{23}\mathrm{H}_{46}\mathrm{NO}_{7}\mathrm{P}$
41	PI(16:1(9Z)/18:4(6Z,9Z,12Z,15Z))	8.25	851.4707	6.77	$C_{43}H_{73}O_{13}P$
42	LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z))	10.17	528.3084	6.72	$\mathrm{C_{27}H_{46}NO_{7}P}$
43	LysoPE(20:2(11Z,14Z)/0:0)	10.31	528.3104	6.53	$\mathrm{C}_{25}\mathrm{H}_{48}\mathrm{NO}_{7}\mathrm{P}$
44	LysoPE(18:3(6Z,9Z,12Z)/0:0)	9.7	476.2772	6.48	$C_{23}H_{42}NO_7P$
45	tetracosahexaenoic acid	9.84	357.2781	6.47	$C_{24}H_{36}O_2$
46	PI(16:0/20:4(5Z,8Z,11Z,14Z))	10.57	859.5376	6.44	$C_{45}H_{79}O_{13}P$
47	1,4-beta-D-Glucan	0.82	559.1149	6.34	$C_{18}H_{32}O_{18}$
48	LysoPC(P-18:0)	10.11	508.3373	5.83	$\mathrm{C}_{26}\mathrm{H}_{54}\mathrm{NO}_{6}\mathrm{P}$
49	ilorasertib	0.81	551.1313	5.78	$C_{25}H_{21}FN_6O_2S$
50	PC(14:0/18:2(9Z,12Z))	10.38	752.5143	5.68	$\mathrm{C}_{40}\mathrm{H}_{76}\mathrm{NO}_{8}\mathrm{P}$
51	Cinnamic acid	7.08	131.0496	5.66	$C_9H_8O_2$
52	LysoPC(18:2(9Z,12Z))	10.02	520.3393	5.44	$C_{26}H_{50}NO_7P$
53	PI(22:4(7Z,10Z,13Z,16Z)/22:1(11Z))	10.54	991.6186	5.33	$C_{53}H_{93}O_{13}P$
54	Okadaic acid	10.59	787.4613	5.23	$C_{44}H_{68}O_{13}$
55	PE(P-16:0/18:2(9Z,12Z))	10.6	722.5044	5.22	$C_{39}H_{74}NO_7P$
56	LysoPE(16:1(9Z)/0:0)	9.82	452.2758	5.17	$\mathrm{C}_{21}\mathrm{H}_{42}\mathrm{NO}_{7}\mathrm{P}$
57	(3S,2'S)-4-ketomyxol 2'-alpha-L-fucoside	10.6	727.464	4.53	$\mathrm{C}_{46}\mathrm{H}_{64}\mathrm{O}_8$
58	LysoPE(20:0/0:0)	10.44	510.3519	4.38	C ₂₅ H ₅₂ NO ₇ P
59	1-methylguanosine	0.82	298.1147	4.36	C ₁₁ H ₁₅ N ₅ O ₅
60	sarpogrelate	10.02	452.2485	4.32	C ₂₄ H ₃₁ NO ₆

2	0	8	1

					续表1
序号	名称	保留时间 min	准分子离子 m/z	差异倍数	化学式
61	indoleacrylic acid	3.43	188.0708	4.32	$C_{11}H_9NO_2$
62	PC(3:0/3:0)	10.36	370.1642	4.2	$C_{14}H_{28}NO_8P$
63	simvastatin	10.67	419.2763	4.16	$C_{25}H_{38}O_5$
64	PI(18:1(9Z)/0:0)	13.34	581.3067	4.12	$C_{27}H_{51}O_{12}P$
65	PI(17:0/18:4(6Z,9Z,12Z,15Z))	10.35	845.5212	3.89	$C_{44}H_{77}O_{13}P$
66	tranexamic acid	0.81	158.118	3.85	$C_8H_{15}NO_2$
67	crustecdysone	10.66	463.3019	3.56	$C_{27}H_{44}O_{7}$
68	PA(16:0/18:1(11Z))	10.76	697.4768	3.53	$C_{37}H_{71}O_8P$
69	torvoside G	10.77	609.3967	3.52	$C_{34}H_{56}O_9$
70	desmosine	10.56	509.2816	3.44	$C_{24}H_{40}N_5O_8$
71	nystatin	8.25	908.4941	3.44	C ₄₇ H ₇₅ NO ₁₇
72	ceriporic acid A	13.11	327.252	3.35	$C_{19}H_{34}O_4$
73	LysoPE(0:0/24:1(15Z))	10.65	546.3938	3.35	$C_{29}H_{58}NO_7P$
74	acetyl-L-leucyl-L-leucylargininal	10.46	449.2847	3.28	$C_{20}H_{38}N_6O_4$
75	rigin	10.02	439.2371	3.06	$C_{18}H_{32}N_8O_6$
76	cyclopassifloic	13.11	521.3793	2.99	$C_{31}H_{52}O_6$
77	apixaban	0.81	460.2023	2.89	$C_{25}H_{25}N_5O_4$
78	glycocholic acid	8.75	466.3147	2.85	$\mathrm{C}_{26}\mathrm{H}_{43}\mathrm{NO}_{6}$
79	3-methyl-5-pentyl-2-oic acid	10.09	337.2724	2.79	$C_{21}H_{36}O_3$
80	ecdysone	11.85	465.3178	2.6	$\mathrm{C}_{27}\mathrm{H}_{44}\mathrm{O}_{6}$
81	proline betaine	0.74	144.1023	2.47	$C_7H_{13}NO_2$
82	acifluorfen	0.82	343.9942	2.42	$C_{14}H_7ClF_3NO_5$
83	2-decaprenyl-3-methyl-6-methoxy-1,4-benzoquinone	10.79	813.646	2.39	$C_{58}H_{88}O_4$
84	LysoPC(18:1(9Z))	10.47	522.3555	2.27	$\mathrm{C}_{26}\mathrm{H}_{52}\mathrm{NO}_{7}\mathrm{P}$
85	lansic acid	12.31	493.3305	2.18	$C_{30}H_{46}O_4$
86	galabiosylceramide (d18:1/16:0)	11.01	884.6047	2.18	C ₄₆ H ₈₇ NO ₁₃
87	chaksine	10.8	433.2888	2.12	$C_{22}H_{38}N_6O_4$
88	LysoPE(20:4(5Z,8Z,11Z,14Z)/0:0)	10.09	502.2934	2.09	$C_{25}H_{44}NO_7P$
89	PC(18:0/P-18:1(11Z))	10.74	736.5943	2.07	$C_{44}H_{86}NO_7P$
90	LysoPC(16:0)	10.25	496.3393	2.03	$C_{24}H_{50}NO_7P$

表 2 牛乳中比例较高的物质 Table 2 A higher proportion of cow's milk

序号	名称	保留时间 min	质荷比 m/z	差异倍数	化学式
1	(2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy}-5-(ethylami no)-6-hydroxy-2-(hydroxymethyl)tetrahydro-2H-pyran-4-yl]oxy}-5-(4-amin obutyl)-10-carbamoyl-2,13-dimethyl-4,7,1132,15-tetraoxo-3,6,11,14-tetraaza heptadecan-1-oic acid	7.92	863.4332	20.3	$C_{36}H_{64}N_8O_{17}\\$
2	5-aminoacenaphthene	5.58	170.0967	17.1	$C_{12}H_{11}N$
3	bilirubin diglucuronide	8.25	901.3076	16.7	C45H52N4O18
4	(1R,2S,3S,4R,6S)-4,6-Diamino-3-{[3-deoxy-3-(methylamino)-alpha-D-xylo pyranosyl]oxy}-2-hydroxycyclohexyl2-amino-2-deoxy-alpha-D-glucopyran oside	7.29	491.2356	15.7	$C_{18}H_{36}N_4O_{10}$
5	fosamprenavir	0.73	586.1946	15.1	$C_{25}H_{36}N_3O_9PS$
6	N-methylsalsolinol	5.58	158.0966	14.1	C ₁₁ H ₁₅ NO ₂
7	1,2,3,4,6-Pentagalloyl glucose	8.25	905.0981	14.1	C41H32O26
8	3'-(2",3"-digalloyl-4",6"-hexahydroxydiphenoylglucosyl)-phloroacetophenon e	8.25	901.1081	12.3	$C_{42}H_{32}O_{25}$
9	isoscoparin 2"-(6-(E)-p-coumaroylglucoside)	8.35	753.2014	11.1	$C_{37}H_{38}O_{18}$
10	lacto-N-triaose	0.7	546.2018	10.2	C ₂₀ H ₃₅ NO ₁₆
11	Luteolin 7-O-[(beta-D-glucosyluronic acid)-(1->2)-(beta-D-glucosiduronic acid)] 4'-O-beta-D-glucosiduronic acid	0.73	837.1319	8.67	$C_{33}H_{34}O_{24}$
12	prolyl-arginine	2.13	254.1613	6.58	$C_{11}H_{21}N_5O_3$
13	pyridoxal	0.73	168.0685	6.48	C ₈ H ₉ NO ₃
14	N-acetyl-L-glutamate 5-semialdehyde	0.73	138.0554	6.48	C ₇ H ₁₁ NO ₄
15	glucosamine-1P	0.73	260.0531	6.4	C ₆ H ₁₄ NO ₈ P
16	vinylacetylglycine	0.73	144.066	6.27	C ₆ H ₉ NO ₃
17	orotic acid	0.78	157.0247	5.91	$C_5H_4N_2O_4$
18	evacetrapib	9.97	621.2756	5.51	$C_{31}H_{36}F_6N_6O_2$
19	N-acetylneuraminic acid	0.72	274.0918	5.19	C11H19NO9
20	N-acetyl-b-D-galactosamine	0.73	204.0869	5.1	$C_8H_{15}NO_6$
21	GDP-4-dehydro-6-L-deoxygalactose	0.78	552.0511	4.38	$C_{16}H_{23}N_5O_{15}P_2$
22	4-amino-2-methyl-5-diphosphooxymethylpyrimidine	0.79	282.0039	4.03	$C_6H_{11}N_3O_7P_2$
23	6"'-O-sinapoylsaponarin	0.71	783.2149	3.82	$C_{38}H_{40}O_{19}$
24	3-(6-caffeoylglucoside)5-glucoside	8.35	756.1971	3.7	$C_{36}H_{37}O_{19}$
25	1-amino-4-[[4-[[4-chloro-6-[(3-sulfophenyl)amino]-s-triazin-2-yl]amino]3-s ulfo-phenyl]amino]-9,10-diketo-anthracene-2-sulfonic acid	8.35	755.9972	3.7	$C_{29}H_{20}ClN_7O_{11}S_3$
26	glycerophosphocholine	0.67	258.1101	3.36	$C_8H_{20}NO_6P$
27	DG(20:1(11Z)/18:0/0:0)	13.13	615.5722	3.33	$C_{41}H_{78}O_5$
28	balagyptin	8.35	753.4075	3.2	$C_{39}H_{64}O_{16}$
29	glyceryl 1,2 dicaprat	11.72	423.3073	2.79	$C_{23}H_{44}O_5$
30	fentiazac	0.81	330.0607	2.71	$C_{17}H_{12}ClNO_2S$
31	LysoPC(14:0)	9.8	468.3079	2.54	$C_{22}H_{46}NO_7P$
32	orthocaine	0.81	150.0558	2.37	$C_8H_9NO_3$
33	PC(6:0/0:0)	6.08	356.1833	2.34	$C_{14}H_{30}NO_7P$
34	PC(12:0/0:0)	9.25	440.2766	2.24	$C_{20}H_{42}NO_7P$
35	LysoPC(15:0)	10.09	482.3233	2.22	$C_{23}H_{48}NO_7P$
36	2-iodo-6-methoxyphenol	0.58	249.95	2.14	$C_7H_7IO_2$
37	indolylacryloylglycine	5.15	227.0818	2.12	$C_{13}H_{12}N_2O_3$
38	DG(18:0/16:1(9Z)/0:0)	10.59	577.5194	2.06	$C_{37}H_{70}O_5$

4 结 论

本研究基于 UPLC-Q-TOF 高分辨质谱和代谢组学技 术,以小分子化学物质为研究对象,旨在寻找牛乳与羊乳 中的差异物质。通过分析正离子模式下的 TIC 谱图并借由 主成分分析和正交偏最小二乘法-判别式分析牛乳与羊乳 中的差异物质,将筛选后的差异物质通过 Progenesis QI 软 件与数据库进行匹配,初步鉴定出 128 种物质,其中在牛 乳中含量高的物质有38种,在羊乳中含量高的物质90种。 研究结果显示牛乳和羊乳在小分子代谢物上有明显差异 (P<0.05), 差异代谢物主要有脂质、有机酸、糖类等, 并对 伏马毒素 B₁、牛磺鹅去氧胆酸和乳清酸等物质进一步剖 析。本方法简单、便捷、且灵敏度高,为牛羊乳的真假鉴 别以及后续的牛羊乳差异性分析提供了理论支持。

参考文献

- [1] Yang Y, Zheng N, Zhao X, et al. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals [J]. J Proteom, 2016, 136: 174-182.
- [2] Caboni P, Murgia A, Porcu A, et al. A metabolomics comparison between sheep's and goat's milk [J]. Food Res Int, 2019, 119: 869-875.
- [3] Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis [J]. Analyst, 2012, 137: 293-300.
- [4] 袁芳芳, 王永兴, 杨琳. 代谢组学及其相关技术与应用研究[J]. 畜牧 兽医杂志, 2013, 32(2): 41-44. Yuan FF, Wang YX, Yang L. Study on metabonomics and related technology and application [J]. J Animal Sci Veter Med, 2013, 32(2):
- 41 44[5] 张宏达, 王立娜, 张宇, 等. 基于脂质组学法对母乳、牛乳及羊乳脂质 的差异分析[J]. 食品科学. [2019-04-11]. http://kns.cnki.net/kcms/detail/ 11.2206.ts.20190409.1410.038.html Zhang HD, Wang LN, Zhang Y, et al. The difference of milk lipid between milk and sheep was analyzed based on lipid omics [J]. Food Sci, [2019-04-11]. http://kns.cnki.net/kcms/detail/11.2206.ts.20190409.1410.038.html
- [6] Emilia B, Chancre S, Massimo D, et al. Separation and determination of denatured $\alpha_{S1}\text{-},~\alpha_{S1}\text{-},~\beta\text{-and}$ k-caseins by hydrophobic interaction chromatography in cows', ewes' and goats' milk, milk mixtures and cheeses [J]. J Chromatogr A, 2003, 994: 59-74.
- [7] 李宝宝, 葛武鹏, 耿伟, 等. 基于 β-胡萝卜素检测的牛羊乳混掺鉴别技 术[J]. 现代食品科技, 2014, 30(8): 264-269. Li BB, Ge WP, Geng W, et al. Identification technology of mixed cow and goat milk based on β-carotene detection [J]. Mod Food Sci Technol, 2014, 30(8): 264-269.
- [8] Alberto, Gimeno, 王琦, 等. 霉菌毒素对奶牛的不良影响[J]. 中国乳业, 2010, (7): 34-37 Alberto, Gimeno, Wang Q, et al. Adverse effects of mycotoxins on cows [J]. China Dairy, 2010, (7): 34-37.
- [9] 赵希娟,赵无疾,许华超. 超高效液相色谱-四级杆飞行时间质谱结合 Progenesis QI 分析不同品种橙的指纹图谱及其差异性代谢物[J]. 中国 农业科学, 2018, 51(13): 2551-2560. Zhao XJ, Zhao WJ, Xu HC. Analysis of the fingerprints of different

orange varieties and their differential metabolites based on ultra-performance liquid chromatography coupled with quadrupole

time-of-flight mass spectrometry and Progenesis OI [J]. Sci Agric Sin. 2018, 51(13): 2551-2560.

[10] 高亚男, 王加启, 郑楠. 牛奶中霉菌毒素来源、转化及危害[J]. 动物营 养学报, 2017, (1): 34-41. Gao YN, Wang JQ, Zhen N. Mycotoxins in cow's milk: Origin, transform

and hazard [J]. Chin J Animal Nutr, 2017, (1): 34-41.

- [11] The European Food Safety Authority. Opinion of the scientific panel on contaminants in the food chain related to fumonisins as undesirable sub stances in animal feed [R]. Parma: The European Food Safety Authority, 2005, 235: 1-32.
- [12] 邱楠楠, 邓春丽, 周爽, 等. 2011 年中国 15 个省母乳中真菌毒素的污 染状况[J]. 卫生研究, 2018, 47(1): 65-72. Qiu NN, Deng CL, Zhou S, et al. Occurrences of mycotoxins in human breast milk in 15 provinces in China in 2011 [J]. J Hyg Res, 2018, 47(1): 65 - 72
- [13] 雷凯, 张程亮, 刘雅楠, 等. 胆汁酸代谢轮廓的研究进展及其应用[J]. 中国药学杂志, 2018, 53(2): 92-97. Lei K, Zhang CL, Zhang YN, et al. Research progress and application of metabolite profiling of bile acids [J]. Chin Pharm J, 2018, 53(2): 92-97.
- [14] 刘倩. TCDCA 对 TGR5 介导的信号通路中 AMP 含量的影响[D]. 呼和 浩特: 内蒙古农业大学, 2014. Liu Q. The effect of taurochenodeoxycholic acid on cAMP production in signaling pathway of TGR5-mediated [D]. Hohhot: Inner Mongolia Agricultural University, 2014.
- [15] 李欣, 沈昕, 关红, 等. TCDCA 对大鼠脂肪代谢影响的初步研究[J]. 畜牧与饲料科学, 2015, (9): 4-6. Li X, Shen X, Guan H, et al. Preliminary study on effects of TCDCA on fat metabolism in rats [J], Animal Husband Feed Sci. 2015, (9): 4-6.
- [16] 范子玲, 宋玉锡, 张江, 等. 基于~1H-NMR 技术的产后卵巢静止奶牛 乳清和血清代谢谱分析[J]. 畜牧兽医学报, 2018, 49(12): 73-82. Fan ZL, Song YX, Zhang J, et al. Analysis of metabolic profiles of whey and serum in postpartum dairy cows with ovary quiescence based on 1H-NMR [J]. Acta Veter Et Zootechnica Sin, 2018, 49(12): 73-82.
- [17] 王逸斌, 徐莎, 侯艳梅, 等. 山羊奶的营养成分研究进展[J]. 中国食物 与营养, 2012, 18(10): 67-71. Wang YB, Xu S, Hou YM, et al. Research advancement of nutritional components in goat milk [J]. Food Nutr China, 2012, 18(10): 67-71.
- [18] 张青,赵娟娟,石贤枝,等.山羊乳的营养组分分析及作为婴幼儿配方 乳粉的喂养优势[J]. 中国乳品工业, 2017, 45(9): 35-39. Zhang Q, Zhang JJ, Shi XZ, et al. Analysis of goat milk nutrition composition and the feeding advantages as an infant formula [J]. China Dairy Ind. 2017, 45(9): 35-39.
- [19] 李贺, 马莺. 羊乳营养及其功能性特性[J]. 中国乳品工业, 2017, (1): 29-33.

Li H, Ma Y. Nutrition and functional properties of goat milk [J]. China Dairy Ind, 2017, (1): 29-33.

(责任编辑: 韩晓红)

房 艳,博士,高级工程师,主要研究 方向为食品、环境、药品、新能源等相关产 品及材料的分析化学研究。 E-mail:yfh@ponytest.com