高效液相色谱-四极杆-高分辨飞行时间质谱直接 进样测定饮用水中 8 种微囊藻毒素

吴洁珊^{1*}, 倪清泉², 任永霞¹, 黄 晶¹, 徐日文¹, 梁 宁¹, 戴正惠¹ (1. 拱北海关, 珠海 519015; 2. 珠海生产力促进中心, 珠海 519015)

摘 要:目的 建立了高效液相色谱-四极杆-高分辨飞行时间质谱测定饮用水中 8 种微囊藻毒素的检测方法。 方法 水样经亲水聚四氟乙烯滤膜过滤后,采用 Poroshell 120 EC-C₁₈色谱柱(2.1 mm×100 mm, 2.7 μm)分离, 高效液相色谱-四极杆-高分辨飞行时间质谱检测,采用高分辨多反应监测扫描模式进行监测,外标法定量。 结果 8 种微囊毒素在 0.1~50.0 μg/L 线范围内线性关系良好,相关系数大于 0.998 以上,方法的检出限在 0.05~0.10 μg/L。在 1、5、10 μg/L 3 个水平浓度添加时,其平均回收率在 83.2%~105.4%,相对标准偏差为 2.5%~11.8%。结论 该方法简单、快速、灵敏度高、重复性好,适合于饮用水中微囊藻毒素的日常检测。 关键词:高分辨飞行时间质谱;微囊藻毒素;直接进样;饮用水

Determination of 8 microcystins in drinking water by direct injection using high performance liquid chromatography-quadrupole-high resolution time of flight mass spectrometry

WU Jie-Shan^{1*}, NI Qing-Quan², REN Yong-Xia¹, HUANG Jing¹, XU Ri-Wen¹, LIANG Ning¹, DAI Zheng-Hui¹

(1. Gongbei Customs, Zhuhai 519015, China; 2. Zhuhai Productivity Promotion Center, Zhuhai 519015, China)

ABSTRACT: Objective To establish a method for the determination of 8 microcystins in drinking water by high performance liquid chromatography-quadrupole-high-resolution time-of-flight mass spectrometry. **Methods** After filtration with hydrophilic polytetrafluoroethylene filter membrane, the water samples were separated by Poroshell 120 EC-C₁₈ chromatographic column (2.1 mm×100 mm, 2.7 μ m), detected by high performance liquid chromatograph-four-pole high-resolution time-of-flight mass spectrometry, monitored by high-resolution multiple response monitoring scanning mode, and quantified by external standard method. **Results** The linear relationships of the 8 microcystis toxins were good in the range of 0.1–50 µg/L, the correlation coefficient was greater than 0.998, and the detection limit of the method was 0.05–0.10 µg/L. The average recoveries at 3 spiked levels (1, 5, 10 µg/L) were 83.2%–105.4%, with the relative standard deviations of 2.5%–11.8%. **Conclusions** This method is simple, fast, sensitive and reproducible, and is suitable for routine detection of microcystis toxin in drinking water.

KEY WORDS: high resolution time of flight mass spectrometry; microcystins; direct injection; drinking water

*通讯作者:吴洁珊,硕士,高级工程师,主要研究方向为农药残留及污染物检测。E-mail: 28923734@qq.com

基金项目: 拱北海关科技项目(ZH2017-36)

Fund: Supported by Gongbei Customs Science and Technology Projects (ZH2017-36)

^{*}Corresponding author: WU Jie-Shan, Master, Senior Engineer, Gongbei Customs, No. 501 Yinhua Road, Xiangzhou District, Zhuhai 519015, China. E-mail: 28923734@qq.com

1 引 言

微囊藻毒素(microcystins, MCs)是蓝藻类有毒代谢物, 该类毒素毒性很强,具有较强的致癌作用,能够对人与动 物的肝脏、心脏等器官以及免疫系统产生毒害作用^[1-3]。它 是一类环状七肽化合物,现今已发现微囊藻毒素有上 100 种,其中 MC-RR, MC-LR, MC-YR 最为常见。世界卫生组 织在其推荐的饮用水标准指导中也增加了微囊藻毒素 (MC-LR,1 μg/L)的限量^[4],鉴于其毒性和危害,在我国现 行《生活饮用水卫生规范》也相应的规定 MC-LR 的限量 为 0.001 mg/L^[5]。

目前, 作为水样中微囊藻毒素的常用化学分析方法 主要有高效液相色谱法^[6-10]和液相色谱质谱联用法^[11-18]。 但高效液相色谱法灵敏度较低,测定是时需对大体积水样 进行富集,现行的国标 GB/T 20466-2006《水中微囊藻毒素 的测定》^[9], GB/T 5750.8-2006《生活饮用水标准检验方法 有机物指标》[10],测定时需对水样进行多次的富集,需用 上1L和5L水样进行富集浓缩,才能满足检测要求。液相 色谱串联质谱法具有很高的灵敏度, 其直接进样测定灵敏 度可达到 0.1 μg/L 以下, 是目前微囊藻毒素最常用的检测 方法。而采用高分辨质谱的分析方法比较少, 主要是采用 高分辨质谱对化合物的相对分子质量进行精确测定,实现 其定性定量[19,20]。高分辨飞行时间质谱,其超高质量分辨 率,降低样品基质的干扰,进一步提高了方法定性能力和 检测灵敏, 新型的四极杆高分辨飞行时间质谱存在多种数 据采集模式,而且其多反应监测采集模式,是对子离子相 对质量进行精确测定,进一步降低样品基质的干扰,其灵 敏度和准确性更优。结合日常检测的需求,本实验采用高 分辨飞行时间质谱直接进样测定饮用水中8种微囊藻毒素, 方法简单,灵敏度高,适合饮用水、自来水中微囊藻毒素 的日常检测。

2 材料与方法

2.1 仪器、试剂与材料

AB X500R 高效液相色谱-四极杆-飞行时间质谱(美国 应用生物系统公司); LC-30AD液相色谱仪(日本岛津公司); TDL-40C 台式离心机(上海安亭科学仪器厂)。

微囊藻毒素-LA、微囊藻毒素-LF、微囊藻毒素-LR、 微囊藻毒素-LW、微囊藻毒素-LY、微囊藻毒素-RR、微囊 藻毒素-YR、微囊藻毒素-WR(浓度为10µg/mL,北京曼哈 格生物科技有限公司);甲醇、甲酸、乙腈(色谱纯,美国 TEDIA 试剂公司);聚四氟乙烯亲水滤膜(PTFE-Q, 0.2µm, 13 mm,美国安捷仑公司)。

购买于本地超市桶装水和瓶装水样各 10 个,实验室 送检样品 50 个样品,本地 10 处自来水样。

2.2 实验条件

2.2.1 样品的提取和净化

取饮用水样 1.0 mL, 过 0.2 μm 亲水性四氟乙烯滤膜 于进样瓶中, 直接进样, 按仪器工作条件进行测定。

2.2.2 色谱与质谱条件(1)液相色谱测定条件

色谱柱: Poroshell 120 EC-C₁₈色谱柱(2.1 mm×100 mm, 2.7 μm); 流动相为: A 为乙腈, B 为 0.1%甲酸水溶液, 0~3 min, A 由 10%~90%, B 由 90%~10%, 3~4 min, A 为 90%, B 为 10%, 4~8 min, A 为 10%, B 为 90%; 流速: 0.30 mL/min; 进样量: 20 μL。

(2) 质谱条件

电喷雾离子源(electrospray ionization, ESI), 正离子检 测模式。离子源温度: 600 ℃, 气帘气(curtain gas, CUR): 30 psi, 雾化气(GS1): 55 psi, 辅助加热气(GS2): 55 psi, 碰 撞气(CAD): 7 psi, 离子喷雾电压(IS): 5500 V, 高分辨多反 应监测(High-resolution multiple response monitoring, MRM HR)监测参数见表 1。

表 1 各微囊藻毒素的 MRM HR 监测参数 Table 1 MRM HR parameters of MCs

化合物名称	母离子 (m/z)	子离子 (<i>m/z</i>)	去簇电压 /V	碰撞能量 /V
MC DD	520.00	135.0805*	20	28
MC-KK	520.00	620.3425	38	27
MC VD	523.30	135.0801	42	19
MC-YK		911.4627*	43	14
MCID	400.20	135.0804	45	20 16
MC-LR	498.30	861.4829*	45	
MC WD	524.90	135.0809	70	19
MC-WR	554.80	934.4812*	/0	14
MCIA	910.80	135.0809*	22	64 66
MC-LA		107.0853	32	
MC-LY	1002.80	135.0806*	24	66
		163.1117	34	50
MOLW	1005 50	135.0801*	26	74
MC-LW	1025.70	213.0874	30	42
MOLE	006.00	135.0804*	24	70
MC-LF	986.80	163.1120	34	48

注:*为定量离子

3 结果与分析

3.1 色谱条件与质谱条件的优化

四极杆-高分辨飞行时间质谱的 MRM HR 扫描模式, 相似于普通的四极杆串联质谱,需对待测物的母离子、子 离子进行选择和仪器参数优化,并使其达到最优效果, MRM HR 扫描模式因其超高的分辨率,降低了基质离子的 干扰,其灵敏和准确性更优。微囊藻毒素(MC)在电喷雾离 子化源中可以形成单电荷离子[M+H]⁺和多电荷离子 [M+nH]ⁿ⁺。实验中 MC-RR、MC-YR、MC-WR 和 MC-LR 以[M+2H]²⁺响应值更高,MC-RR 基本不出现[M+H]⁺离子, 而 MC-LW、MC-LY、MC-LF 和 MC-LA 以单电荷离子 [M+H]⁺响应值更高。因此,在 MRM HR 扫描模式进行测 监测时,MC-RR、MC-YR、MC-WR 和 MC-LR以[M+2H]²⁺ 做分子母离子进行子离子选择与参数优化,各参数见表 1。 为了确保仪器质量轴的准确性,每 5 次进样分析,仪器自 动校准 1 次。

实验也考察了 8 种微囊藻毒素在色谱柱 PAK C₁₈ ACR (2.0 mm×150 mm, 3 μm)和 Poroshell 120 EC-C₁₈(2.1 mm×100 mm, 2.7 μm)的分离效果。MC-LW、MC-LY、MC -LF 和 MC-LA 在 PAK C₁₈ ACR(2.0 mm×150 mm, 3 μm)色谱柱的分离效果较 差,较晚出峰,峰型较宽,灵敏度差。而 8 种微囊藻毒素在 Poroshell 120 EC-C₁₈(2.1 mm×100 mm, 2.7 μm)色谱柱的分离效 果好,见图 1。因此,实验采用 Poroshell 120 EC-C₁₈ (2.1 mm×100 mm, 2.7 μm)色谱柱进行分离。不同流动相对待测 物信号存在影响,流动中有机相甲醇、乙腈对各微囊藻毒素的 洗脱能力存在一定的影响,乙腈的洗脱能力较强,各微囊藻毒 素的色谱峰型对称尖锐,响应值更强。而水相中乙酸铵和甲酸 的浓度影响各微囊藻毒素的离子化效果,以 0.1%甲酸水溶液 作流动相时,响应值最高,因此,实验选择乙腈与 0.1%甲酸 水溶液作为流动相,进行梯度洗脱。色谱图见图 1~2。

3.2 样品前处理

用于水样中微囊藻毒素的样品处理方法主要有固相 萃取^[6-12]、加热蒸发浓缩^[19]或直接进样分析^[13-18],固相萃 取、加热蒸发浓缩可提高方法的检出限,但方法相比较于 直接进样繁琐复杂,由于高辨飞行时间质谱其仪器灵敏较 高,直接进样分析时,其灵敏度可达到日常检测的需求, 因此,方法采用直接进样分析。

样品测定时,为了防止样品溶液中微小颗粒物对测 定系统的影响,一般采用样品溶液通过滤膜后,进行测 定。有文献报道,滤膜对微囊藻毒素存在吸附作用,影响 其收率。实验比较了9种不同材料、不同规格的滤膜对微 囊藻毒素的吸附作用,结果见表 2,以亲水聚四氟乙烯 (hydrophilic polytetrafluoroethylene, PTFE-Q)、玻璃纤维 (glass fibre, GF)、再生纤维素(regenerated cellulose, RC)、 醋酸纤维(cellulose acetate, CA)材料的滤膜,对微囊藻毒素 的吸附作用最小,考虑到成本,实验中选择了亲水聚四氟 乙烯的滤膜进行样品处理。

3.3 线性范围、相关系数与检出限

用 5%甲醇溶液配制浓度为 0.1、0.5、1、5、10、20、 50 μg/L 的标准工作溶液进行测定, 绘制标准曲线, 以分析 物峰面积对其浓度作线性回归, 得到各化合物的线性回归 方程, 各微囊藻毒素的线性回归方程见表 3, 各化合物在 所分析的含量范围(0.1~50 μg/L)内线性关系良好, 相关系 数大于 0.998。分别以 3 倍信噪比(S/N)计算检测限方法的 检测限, 10 倍信噪比(S/N)计算方法的定量限, 8 种微囊藻毒 素的检出限和定限见表 3。

3.4 方法的回收率与精密度

将一定量的微囊藻毒素标准溶液添加到空白饮用水 样品中,制得 3 个浓度,分别为 1、5、10 μg/L,进行 5 个 平行样分析。测得的方法的平均回收率 83.2%~105.4%,相 对标准偏差 (relative standard deviation, RSD)为 2.5%~11.8%(见表 4),符合残留分析的要求(在浓度含量为 10⁻⁹时,相对标准偏差小于 30%)^[21]。

3.5 实际样品检测

实际测定本地超市购买的桶装水和瓶装水样各 10 个、实验室送检样品 50 个样品、本地 10 处自来水样,均 未检出这 8 种微囊藻毒素,结果表明目前本地市场所售的 桶装水、瓶装水和自来水未被该类化合物污染。

4 结 论

本方法水样经过滤后,采用 LC-QqQ-TOF-MS 检测, MRM HR 扫描模式监测。方法灵敏度非常高、简单、快速, 并具有良好的精密度与准确度,能满足中日常检测的要求, 适合于众多样品的批量测定。

Table 2 Recovery rates of microcystins in water samples treated with different material specifications								
材料规格	回收率/%							
	MC-RR	MC-YR	MC-LR	MC-WR	MC-LA	MC-LY	MC-LW	MC-LF
PES (0.2 μm,13 mm)	87.6	85.6	105.6	47.9	78.3	80.1	24.8	62.2
PVDF (0.2 μm,13 mm)	49.1	17.0	21.9	1.6	0.8	0	0	0.6
尼龙 (0.2 µm,13 mm)	88.5	75.3	94.2	37.9	44.5	3.3	0	1.4
PTFE (0.2 μm,13 mm)	87.8	93.8	96.3	96.5	66.7	70.2	49.5	51.9
PTFE-Q (0.2 μm,13 mm)	93.0	105.4	97.1	102.0	97.4	101.5	89.9	83.9
GF (0.7 µm, 15 mm)	97.3	96.1	117.1	103.1	95.3	91.0	89.4	82.8
PES (0.2 μm,15 mm)	98.3	109.7	117.6	83.0	97.0	80.5	45.1	70.1
RC (0.2 μm, 15 mm)	114.8	108.5	121.6	112.0	113.1	103.8	88.6	104.7
CA (0.45 µm, 28 mm)	99.1	99.2	109.7	113.5	94.1	114.0	97.5	90.3

表 2	不同材料规格滤膜处理水样中微囊藻毒素的回收率
Recovery rates of i	vicrocystins in water samples treated with different material specificatio

表 3 各微囊藻毒素的线性回归方程、相关系数、检出限和定量限 sion equations, correlation coefficients, limits of detection and limits .

Table 3	Linear regression equations, correlation coefficients, limits of detection and limits of quantitation of MCs					
项目名称	回归方程	相关系数/r	检出限/(µg/L)	定量限/(µg/L)		
MC-RR	<i>Y</i> =1870.9 <i>X</i> -151.6	0.9999	0.05	0.1		
MC-YR	<i>Y</i> =5238.7 <i>X</i> +2128	0.9989	0.05	0.1		
MC-LR	<i>Y</i> =4968.8 <i>X</i> +147.5	0.9997	0.05	0.1		
MC-WR	<i>Y</i> =3126.0 <i>X</i> -797.2	0.9995	0.05	0.1		
MC-LA	<i>Y</i> =630.50 <i>X</i> -785.9	0.9982	0.10	0.2		
MC-LY	<i>Y</i> =500.42 <i>X</i> -140.4	0.9994	0.10	0.2		
MC-LW	<i>Y</i> =454.7 <i>X</i> -431.8	0.9988	0.10	0.2		
MC-LF	<i>Y</i> =516.93 <i>X</i> -519.8	0.9983	0.10	0.2		

表 4 方法的回收率和精密度 Table 4 Recovery rates and RSDs of the method

添加浓度	1 µg/L		5 μg/L		10 µg/L	
项目名称	平均回收率/%	RSD/%	平均回收率/%	RSD/%	平均回收率/%	RSD/%
MC-RR	93.5	9.4	88.3	7.0	95.3	4.1
MC-YR	83.2	10.3	86.1	4.3	96.2	6.9
MC-LR	100.9	10.0	100.2	6.2	89.4	8.9
MC-WR	105.4	8.2	101.2	8.2	102.2	8.0
MC-LA	86.7	11.8	91.1	9.7	96.8	8.2
MC-LY	92.3	10.7	94.4	6.8	91.1	10.6
MC-LW	89.0	9.1	98.2	2.5	96.3	4.6
MC-LF	89.5	8.2	89.9	8.8	89.1	8.5

参考文献

- 王小宁,杨传玺,宗万松. 微囊藻毒素生物毒性作用机制与调控策略的研究进展[J]. 环境污染与防治, 2015, 37(6): 90–95.
 Wang XN, Yang CX, Zong WS. Research progress on the mechanism and regulation strategy of microcystins [J]. Environ Poll Control, 2015, 37(6): 90–95.
- [2] 张庭廷,张胜娟. 微囊藻毒素的危害及其分析方法研究进展[J]. 安微师范大学学报(自然科学版), 2014, 37(1): 53-57.

Zhang TT, Zhang SJ. Research progress of microcystins's harm and its analysis techniques [J]. J Anhui Normal Univ (Nat Sci), 2014, 37(1): 53–57.

- [3] 黄艺,张郅灏. 微囊藻毒素的致毒机理和人体健康风险评价研究进展
 [J]. 生态环境学报, 2013, 22(2): 357–364.
 Huang Y, Zhang ZH. Advances in the study of toxicology and human health risk assessment of microcystin [J]. Ecol Environ Sci, 2013, 22(2): 357–364.
- [4] Guidelines for drinking-water quality, fourth edition [Z].
- [5] GB 5749-2006 生活饮用水卫生规范[S].GB 5749-2006 Standards for drinking water quality [S].
- [6] 张维昊, 徐小清. 固相萃取高效液相色谱法测定水中痕量微囊毒素[J].
 分析化学, 2001, 29(5): 522-525.

Zhang WH, Xu XQ. Determination of trace level microcystins in water using solid-phase extraction and high performance liquid chromatography [J]. Chin J Anal Chem, 2001, 29(5): 522–525.

- [7] 刘碧波,肖邦定,刘剑彤,等. 天然水体痕量微囊藻毒素的高效液相色 谱测定方法优化[J]. 分析化学, 2005, 33(11): 1577–1579.
 Liu BB, Xiao BD, Liu JT, *et al.* Optimization of high performance liquid chromatographic method for analysis of trace microcystins in natural water bodies [J]. Chin J Anal Chem, 2005, 33(11): 1577–1579.
- [8] 王阳, 徐明芳, 曾晓琮, 等. CE和HPLC测定水源水体中微囊藻毒素方法比较[J]. 食品科学, 2016, 37(22): 210–215.
 Wang Y, Xu MF, Zeng XC, *et al.* Comparison of HPLC and CE for estimation of microcystins in drinking water [J]. Food Sci, 2016, 37(22): 210–215.
- [9] GB/T 20466-2006 水中微囊藻毒素的测定[S].
 GB/T 20466-2006 Determination of microcystins in water [S].
- [10] GB/T 5750.8-2006 生活饮用水标准检验方法 有机物指标[S]. GB/T 5750.8-2006 Standard examination methods for drinking water—Organic parameters [S].
- [11] Beltrán E, Ibáñez M, Sancho JV, et al. Determination of six microcystins and nodularin in surface and dringking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry [J]. J Chromatogr A, 2012, 1266: 61–68.
- [12] Liu XY, Gao SQ, Li XY, et al. Determination of microcystins in

environmental water samples with ionic liquid magnetic graphene [J]. Ecotoxicol Environ Saf, 2019, 176: 20–26.

[13] 李芳, 王颖, 李献刚, 等. 液相色谱-三重四级杆串联质谱法快速检测水 中微囊藻毒素-LR[J]. 食品安全质量检测学报, 2018, 9(20): 5423-5427.

Li F, Wang Y, Li XG, *et al.* Determination of microcystin-LR in water by high performance liquid chromatography coupled with triple quadrupole mass spectrometry [J]. J Food Saf Qual, 2018, 9(20): 5423–5427.

- [14] 沈斐, 许燕娟, 姜晟, 等. 超高效液相色谱-串联质谱法快速测定地表 水中 9 种藻毒素[J]. 理化检验(化学分册), 2018, 54(11): 1287–1291.
 Shen F, Xu YY, Jiang S, *et al.* Rapid determination of 9 algal toxins in surface water by UHPLC-MS/MS [J]. Phys Test Chem Anal (Part B: Chem Anal), 2018, 54(11): 1287–1291.
- [15] 张秀尧,蔡欣欣,张晓艺,等.直接进样-超高效液相色谱-三重四极杆 质谱法同时快速测定水中12种微囊藻毒素和1种节球藻毒素[J].色谱, 2017, 35(12): 1286–1293.

Zhang XY, Cai XX, Zhang XY, *et al.* Simultaneous rapid determination of 12 mi-crocystins and one nodularin in water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chin J Chromatogr, 2017, 35(12): 1286–1293.

- [16] 邹康兵,向彩红,董玉莲. 超高效液相色谱--串联质谱法测定饮用水中 微囊藻毒素[J]. 化学分析计量, 2017, 26(1): 42-46.
 Zou KB, Xiang CH, Dong YL. Determination of microcystin in drinking water by UPLC-MS-MS [J]. Chem Anal Meter, 2017, 26(1): 42-46.
- [17] 赵起越,赵经帅,刘保献,等.直接进样-高效液相色谱-串联质谱法测 地表水中 9 种微囊藻毒素[J]. 分析化学, 2015, 43(4): 594–598. Zhao QY, Zhao JS, Liu BX, *et al.* Simultaneous determination of 9 microcystins in surface water by high performance liquid chromatography-tandem mass spectrometry [J]. Chin J Anal Chem, 2015, 43(4): 594–598.
- [18] 姜蕾,张东.高效液相色谱-串联质谱法同时分析水中 9 种典型藻毒素
 [J]. 给水排水,2013,39(6):37-41.

Jiang L, Zhang D. Simultaneous determination of nine cyanotoxins in water by high performance liquid chromatography-tandem mass spectrometry [J]. Water Wastewater Eng, 2013, 39(6): 37–41.

[19] 周倩如,何岸檐,杨伟,等.水中微囊藻毒素的超高效液相色谱-四极 杆-静电场轨道阱高分辨质谱测定法[J].环境与健康杂志,2018,35(6): 524-527.

Zhou QR, He AY, Yang W, *et al.* Determination of microcystins in water by ultra high performance liquid chromatography-quadrupole-Orbitrap mass spectrometry [J]. J Environ Health, 2018, 35(6): 524–527.

[20] Flores C, Caixach J. An integrated strategy for rapid and accurate determination of free and cell-bound microcystins and related peptides in natural blooms by liquid chromatography–electrospray-high resolution mass spectrometry and matrix-assisted laser desorption/ionization

549

time-of-flight/time-of-flight mass spectrometry using both positive and negative ionization modes [J]. J Chromatogr A, 2015, 1407: 76–89.

[21] GB/T 32465-2015 化学化析方法验确认和内部质量控制要求[S].
 GB/T 32465-2015 Requirement for verification & validation of detection methods and internal quality control on chemical analysis [S]

(责任编辑: 韩晓红)

作者简介

吴洁珊,硕士,高级工程师,主要研究 方向为农药残留及污染物检测。 E-mail: 28923734@qq.com