电感耦合等离子体质谱法分析铜材质食品接触 用品中 8 种金属元素迁移量

禄春强*, 周耀斌, 杨建平

(上海市质量监督检验技术研究院, 上海 201114)

摘 要:目的 建立电感耦合等离子体质谱法分析铜材质食品接触用品中 8 种金属元素(铜、砷、镉、铅、铋、镍、锡、锑)迁移量的方法。方法 以 5 g/L 柠檬酸(m:V)作为食品模拟物,利用电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)测定铜材质食品接触用品中 8 种金属元素的迁移量。结果 8 种元金属素的线性范围在 1~100 μg/L,方法检出限在 0.01~0.9 μg/kg 之间,加标回收率在 90.3%~106.0%,重复性测定相对标准偏差(n=7)在 1.3%~3.4%之间。对 10 批次铜材质食品接触用品中 8 种金属元素的迁移量进行测试,发现 5 种元素(铜、砷、铅、镍和锡)有检出。结论 该方法可以准确测定铜材质食品接触制品中 8 种金属元素(铜、砷、镉、铅、铋、镍、锡、锑)的迁移量,检测结果显示随着迁移次数的增加,大部分元素呈下降趋势。

关键词:铜;食品接触用品;电感耦合等离子体质谱;元素迁移

Migration analysis of 8 metal elements in copper-based food contact products by inductively coupled plasma mass spectrometry

LU Chun-Qiang*, ZHOU Yao-Bin, Yang Jian-Ping

(Shanghai Institute of Quality Inspection and Technical Reseach, Shanghai 201114, China)

ABSTRACT: Objective To establish a method of analysis of 8 migratory metal elements (Cu, As, Cd, Pb, Bi, Ni, Sn and Sb) in copper-based food contact products by inductively coupled plasma mass spectrometry. Methods Citric acid (0.5%, m:V) was used as food simulate, and the 8 migratory metal elements in copper-based food contact products were determined by inductively coupled plasma mass spectrometry (ICP-MS). Results Linear relationships of 8 metal elements were ranged from 1 to $100 \mu g/L$. The detection limits of 8 metal elements were ranged from $0.01 \text{ to } 0.9 \mu g/kg$, the recoveries were in the ranged of 90.3%-106.0%, and The relative standard deviation (n=7) of the repeatability test was between 1.3% and 3.4%. The migration of 8 elements in 10 batches of copper food contact products was tested and found to be detected in 5 elements (Cu, As, Pb, Ni, Sn). Conclusion The method can accurately determine the migrations of 8 metal elements (Cu, As, Cd, Pb, Bi, Ni, Sn and Sb) in copper-based food contact products, the migration amount of most elements decrease gradually with the increasing of migration times.

基金项目: 上海市科学技术委员会研发公共服务平台建设项目(14DZ2293000)

^{*}通讯作者: 禄春强, 高级工程师, 主要研究方向为食品相关产品检测技术与质量安全风险监测。E-mail: chunqiang07@163.com

^{*}Corresponding author: LU Chun-Qiang, Senior Engineer, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, China. Email:chunqiang07@163.com

KEY WORDS: copper; food contact products; inductively coupled plasma mass spectrometry; migratory elements

1 引言

铜具有良好的延展性和导热性,适合制作雕琢精美 的餐厨器具[1],从早期烹饪用的铜鼎,到现在的铜火锅、铜 合金杯等产品,铜材质(包括铜和铜合金)食品接触用品在 我国已经有两千多年的历史。目前, 市场上食品接触用铜 制品以工业纯铜为主要原料,纯铜又名紫铜,其常见杂质 有砷、镉、铅、铋、镍、锡和锑等元素[2]。铜合金中除铜 以外,还会人为添加铬、镍、铅、锡等金属元素[3-6]。这些 元素在产品使用过程中可能向食物中迁移,被人体吸收达 到一定量后,可造成一系列严重的损害[7]。铅对儿童的生 长发育产生不良影响; 镉主要损伤肝脏、神经、免疫和生 殖系统[8,9]。慢性砷摄入可能会造成非肝硬化引起的门脉高 血压。急性且大量砷暴露除了其它毒性外,可能也会出现急 性肾小管坏死、肾丝球坏死而发生蛋白尿[10]。GB 4806.9-2016^[11]中对这 3 种元素最大迁移设置了限制要求, 而对铜、铋、锑、锡等元素迁移, 目前还没有限制要求。 铜、镍虽然是人体必需的微量元素,但过量摄入也会危害 人体健康, 欧洲药品质量管理局(European Directorate for the Quality of Medicines & Health Care, EDQM)发布《关于 用作食品接触材料及制品的金属与合金指南(CM Res(2013)9)》中对砷、镉、铅、铋、镍、锡、锑等元素的 迁移设置了限定值[12]。为了避免其它元素过量摄入对人 体引起的危害, GB 4806.9-2016[11]规定"金属材料和制品 (镀锡薄板容器除外)中, 食品接触面未覆有机涂层的铝和 铝合金、铜和铜合金,以及金属镀层不得接触酸性食品"。 然而这一点并未被生产企业、商家和消费者广泛关注, 市 场上许多产品标签或说明书中也未明确其不能接触酸性 食品的特殊使用要求,可能存在因使用不当引起的安全 风险。

本研究建立了一种以电感耦合等离子体质谱仪 (inductively coupled plasma mass spectrometry, ICP-MS)测定铜材质食品接触用品中8种元素(铜、砷、镉、铅、铋、镍、锡、锑)在酸性食品模拟物中迁移量的方法,利用该方法测定10批次铜材质食品接触用品中元素的迁移量,分析元素迁移量随着迁移次数的变化趋势。

2 材料与方法

2.1 仪器与试剂

PE 300D 型电感耦合等离子体质谱仪(美国 PE 公司), 配置高灵敏度石英玻璃旋流雾室。

实验室用纯水由 Milli-Q 纯水器(美国 Milliore 公司)

制得的超纯水,电阻率≥18.2 MΩ•cm; 多元素混合标准溶液(1 g/L, 国家有色金属及电子材料分析测试中心); 柠檬酸(分析纯)、硝酸(优级纯, 国药试剂上海有限公司)。

实验使用的铜合金食品接触用品,铜锅、铜铲、铜壶、铜合金杯、铜合金杯盖,铜合金吸管等,均源于当地市场,样品的标签及说明书等资料均未标识"不得接触酸性食品"或类似的提示信息。

2.2 实验方法

样品清洗:自来水冲洗干净, 然后超纯水冲洗, 自然 晾干后待测。

食品模拟物:按照 GB 4806.9-2016《食品安全国家标准 食品接触用金属材料及制品》^[11],使用 5 g/L 柠檬酸作为食品模拟物。

样品迁移实验条件:常温条件下使用的产品采用 40 ℃, 2 h;加热条件下使用的产品采用 100 ℃, 2 h。对于容器类产品,按照容量加入食品模拟物,对于非容器类产品按照 6 dm²/L 加入食品模拟物。按照上述条件连续进行 3 次迁移试验,并保存每次溶液待测。

2.3 ICP-MS 仪器工作参数

等离子气体流量: 18 L/min; 辅助气体流量: 1.20 L/min; 雾化气体流量: 0.95 L/min; 射频功率: 1300 W; 碰撞气(氦气)流量: 0.7 mL/min; 反应气(氨气)流量: 0.5 mL/min。选择丰度大、干扰小、灵敏度高的同位素,分别为: ⁶³Cu、⁷⁵As、¹¹¹Cd、²⁰⁸Pb、²⁰⁹Bi、⁶⁰Ni、¹¹⁸Sn 和 ¹²¹Sb。

3 结果与分析

3.1 条件优化

采用内标法消除仪器信号漂移的影响,选用 $20~\mu g/L$ 的 Sc、Ge、In、Re、Y 混合标准溶液作为内标溶液。采用碰撞模式(collision mode, KED)消除 40 Ar、 35 Cl 离子对 75 As 的干扰,通过调节碰撞气流量,分析标准溶液液信号与空白背景的变化趋势,优化后的碰撞气体流量为 0.7~m L/min。 31 P、 16 O2、 47 Ti 16 O 和 63 Cu 的干扰通过采用动态反应池模式 (dynamic reaction cell, DRC)消除。

3.2 标准曲线与检出限

以 2%硝酸(V:V)溶液为介质将 1 g/L 的多元素混合标准溶液稀释至 1 mg/L, 然后以 5 g/L 柠檬酸为溶剂将上述标准溶液逐级稀释,标准使用溶液浓度系列为 0、1、5、10、20、40、80、100 µg/L。对上述标准溶液依次进行测试,其线性参数见表 1。检出限定义为响应值为 3

续表3

同收率

倍基线噪音时所需的样品量,实验中测定空白溶液 11次,以空白测定值标准偏差(standard deviation, SD)的 3倍所需样品量作为仪器检出限,以食品模拟物的密度为 $1 \text{ kg/L}(\text{即 1} \mu\text{g/L} 与 1 \mu\text{g/kg} 等值)进行计算,检出限结果见表 1。$

3.3 方法重复性和回收率

对 7 份加标模拟物进行重复性测试,结果见表 2,7 种元素的相对标准偏差(relative standard deviation, RSD)值在 1.3%~3.4%之间。对样品溶液进行 3 个不同浓度加标回收试验,结果如表 3 所示,回收率在 90.3%~106.0%之间。

表 1 线性回归方程、相关系数和检出限 Table 1 Linear regression equations, correlation coefficients and limits of detection

元素	线性范围/(μg/L)	检出限/(μg/kg)	线性方程	相关性系数(r²)	模式
Cu	1~100	0.9	Y=0.0523X-0.001	0.9997	DRC
As	1~100	0.3	<i>Y</i> =0.0021 <i>X</i> -0.002	0.9998	KED
Cd	1~100	0.01	Y=0.0003X	0.9998	STD
Pb	1~100	0.2	Y=0.0037X+0.002	0.9998	STD
Bi	1~100	0.1	Y=0.0054X-0.006	0.9998	STD
Ni	1~100	0.5	Y=0.0049X-0.010	1.0000	STD
Sn	1~100	0.1	Y=0.0012X-0.003	0.9991	STD
Sb	1~100	0.05	<i>Y</i> =0.0011 <i>X</i>	0.9993	STD

表 2 重复性试验结果(n=7) Table 2 Results of the repeated test (n=7)

						-			
元素			狈	定值/(μg/k	g)			平均值/(µg/kg)	RSD/%
Cu	52.0	50.7	51.5	52.9	49.0	50.7	48.6	50.8	3.1
As	48.7	48.5	49.6	48.4	49.3	46.8	49.1	48.6	1.9
Cd	51.7	52.7	53.6	52.4	53.3	51.9	52.7	52.6	1.3
Pb	49.3	48.1	48.5	47.8	48.3	51.3	48.6	48.8	2.4
Bi	49.9	50.4	51.9	53.4	49.3	48.5	49.2	50.4	3.4
Ni	48.9	49.8	49.2	47.7	49.9	47.7	49.6	49.0	1.9
Sn	47.5	48.9	48.6	47.9	49.0	46.6	48.2	48.1	1.8
Sb	49.3	48.5	48.9	49.3	49.2	50.2	52.7	49.7	2.8

表 3 回收试验结果(n=7)

Table 3 Results of the recovery test (n=7)

— 测定值 加标量 测定总量 RSD

	测定值	加标量	测定总量	RSD	回收率	元素	/(μg/kg)	ли尔里 /(µg/kg)	炽ル心里 /(µg/kg)	/%	四収 年 /%
元素	/(µg/kg)	/(μg/kg)	/(µg/kg)	/%	/%		ND	30	31.5	1.3	105.0
	1.7	30	28.9	1.3	90.7	Ni	ND	60	60.2	2.5	100.3
Cu	1.7	60	62.7	2.5	101.7		ND	90	93.8	4.2	104.2
	1.7	90	90.3	4.2	98.4		2.3	30	29.4	1.3	90.3
	ND	30	30.6	1.3	102.0	ъ.					
As	ND	60	62.7	2.5	104.5	Bi	2.3	60	58.9	2.5	94.3
	ND	90	91.6	4.2	101.8		2.3	90	89.7	4.2	97.1
	ND	30	31.8	1.3	106.0		ND	30	29.6	1.3	98.7
Cd	ND	60	62.7	2.5	104.5	Sn	ND	60	60.5	2.5	100.8
	ND	90	93.5	4.2	103.9		ND	90	89.8	4.2	99.8
	ND	30	30.3	1.3	101.0		ND	30	29.4	1.3	98.0
Pb	ND	60	61.8	2.5	103.0	Sb	ND	60	61.3	2.5	102.2
	ND	90	89.2	4.2	99.1	_	ND	90	88.5	4.2	98.3

3.4 样品分析

按照试验方法对 10 批次铜材质食品接触用品样品进行 3 次迁移试验。按照 CM Res(2013)9 的规定进行样品处理和测定。8 种元素的最高迁移量结果见表 4。结果显示,除镉、铋和锑以外,铜、砷、铅、镍和锡均有检出,不同元素检出率有所不同。从表 4 可以看出:铜及铜合金在接触酸性食品的情况下,主成分元素迁移量较大,可能与金属在酸性环境下的腐蚀有关^[13-15]。

10 批次样品中,有3 批次样品中的铜、砷、铅和镍超过 CM Res(2013)9 参考限量,详见表5。铜是人体所需元素,WHO 制定了一个2 mg/L 的饮用水中铜的暂定健康指导值,

虽然,观察到的铜污染尚不构成安全问题。但是,铜的迁移可能引起食物感官的劣变。除材质主体元素铜以外,砷、镉和铅等 3 种元素在非酸性食品条件下析出的风险基本被GB4806.9-2016 规避,但在接触酸性食物时,其迁移量超过限量值,可能对人体的健康产生风险。

为分析元素迁移量随迁移次数的变化规律,选取 3 铜材质食品接触用品进行分析,其 3 次迁移试验结果见表 6。从表 6 可以看出,随着迁移次数的增多,Cu、As、Pb 和 Sn 迁移量逐渐降低。镍元素迁移量有增加趋势,这可能是因为酸性条件破坏了合金表面结构,增大了接触面积,导致产品内部的元素析出。

表 4 样品最高迁移量分析结果
Table 4 Analytical results of maximum migration

元素	Cu	As	Cd	Pb	Bi	Ni	Sn	Sb
最高迁移量/(mg/kg)	8.821	0.016	ND	0.132	ND	33.182	0.040	ND
检出率/%	100.0	20.0	0	80.0	0	90.0	30.0	0

表 5 样品参考限量分析结果(mg/kg)
Table 5 Test results of reference maximum limit (mg/kg)

		0 0,		
元素	Cu	As	Pb	Ni
参考限量(第1次迁移+第2次迁移)	≤28	≤0.014	≤0.07	≤0.14
参考限量(第3次迁移)	≤4	≤0.002	≤0.01	≤0.07
铜锅测定值(第1次迁移+第2次迁移)	_	_	_	_
铜合金杯测定值(第1次迁移+第2次迁移)	_	0.019	_	_
铜合金吸管测定值(第1次迁移+第2次迁移)	_	_	0.227	49.532
铜锅测定值(第3次迁移)	6.817	_	_	_
铜合金杯测定值(第3次迁移)	_	_	_	_
铜合金吸管测定值(第3次迁移)	_	_	0.087	33.182

注: _ 表示未超参考值, 未列。

表 6 不同迁移次数条件下各元素的迁移量
Table 6 Migration of the metal elements under different tests

样品名称	迁移次数	元素迁移量/(mg/kg)									
件吅石你	迁移伏奴	Cu	As	Cd	Pb	Bi	Ni	Sn	Sb		
	第1次迁移	8.821	ND	ND	ND	ND	0.007	ND	ND		
铜锅(煮沸, 2 h)	第2次迁移	7.965	ND	ND	ND	ND	0.004	ND	ND		
	第3次迁移	6.817	ND	ND	ND	ND	0.005	ND	ND		
	第1次迁移	0.942	0.016	ND	ND	ND	0.053	ND	ND		
铜合金杯(40 ℃, 2 h)	第2次迁移	0.320	0.003	ND	ND	ND	0.055	ND	ND		
	第3次迁移	0.225	0.002	ND	ND	ND	0.121	ND	ND		
	第1次迁移	4.818	ND	ND	0.132	ND	23.995	0.035	ND		
铜合金吸管(40 ℃, 2 h)	第2次迁移	1.805	ND	ND	0.095	ND	25.537	0.012	ND		
	第3次迁移	0.574	ND	ND	0.087	ND	33.182	0.004	ND		

4 总结与展望

建立了使用 ICP-MS 测铜材质食品接触产品中 8 种元金属素迁移量的方法,该方法具有准确、快速等特点。利用该方法对 10 批次铜及铜合金食品接触产品进行测试,实验结果表明:铜、砷、铅、镍和锡有检出,同时分析了迁移次数对铜材质食品接触产品中 5 种元素迁移量的影响,5 g/L 柠檬酸食品模拟物条件下,随着迁移次数的增加,铜、砷、铅和锡呈逐渐减小趋势,镍迁移量无明显规律。

参考文献

- [1] 卢晶. 铜银餐具前景广阔[J]. 上海工艺美术, 1996, (4): 32–33. Lu J. Copper and silver tableware has broad prospects [J]. Shanghai Art Craft, 1996, (4): 32–33.
- [2] 池克. 紫铜中微量杂质元素光谱分析的探讨[J]. 光谱实验室, 1993, (2): 14-19
 - Chi K. Analysis on spectrum of the trace impurities in copper [J]. Chin J Spec Lab, 1993, (2): 14–19.
- [3] 王自森. 银铜合金中杂质元素的化学光谱测定[J]. 分析试验室, 1986, (10): 58-59.
 - Wang ZS. Determination of impurity elements in silver-copper alloys by chemical spectrometry [J]. Chin J Anal Lab 1986, (10): 58–59.
- [4] 热孜万古丽, 张旭龙, 秦婷. ICP-AES 测定铜-锌合金中锌及杂质元素 砷、铅、锑和铋[J]. 光谱实验室, 2011, 28(4): 1947–1949.
 - Re ZWGL, Zhang XL, Qin T. Determination of Zn and impurity elements of As, Pb, Sb and Bi in Cu-Zn copper alloy by ICP-AES [J]. Chin J Spec Lab, 2011, 28(4): 1947–1949.
- [5] 李莉. ICP-AES 测定铜合金中的铜及 10 种杂质元素[J]. 光谱实验室, 2013, 30(5): 2700-2703.
 - Li L. Determination of Cu and ten elements in copper alloy by ICP-AES [J]. Chin J Spec Lab, 2013, 30(5): 2700–2703.
- [6] 邓飞, 丁轶聪. ICP-MS 法测定铜及铜合金中杂质元素的不确定度评定 [J]. 湖南有色金属, 2018, 34(2): 77-80.
 - Deng F, Ding YC. Evaluation of uncertainty for determination of impurity elements in copper and copper alloy by ICP-MS [J]. Hunan Nonferrous Met, 2018, 34(2): 77–80.
- [7] 陈煊红, 商贵芹. 食品接触材料对食品安全的影响[J]. 质量与认证, 2015, (12): 46-47, 52.
 - Chen XH, Shang GQ. Effect of food contact materials on food safety [J]. Chin Qual Certif, 2015, (12): 46–47, 52.
- [8] 申媛, 吴学文, 孙虹. 铅神经毒性相关基因多态性的研究进展[J]. 环

境与健康杂志, 2017, 34(2): 178-181.

Shen Y, Wu XW, Sun H. Gene polymorphism related with neurotoxic effects of lead: A review of recent studies [J]. J Environ Health, 2017, 34(2): 178–181.

- [9] 岳茜岚, 霍娇, 曹梦思, 等. 铅的神经行为学毒性研究进展[J]. 食品安全质量检测学报, 2018, 9(14): 3567-3572.
 - Yue QL, Huo J, Cao MS, *et al.* Research progress in neurobehavioral toxicity of lead [J]. J Food Saf Qual, 2018, 9(14): 3567–3572.
- [10] 曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018, 8(2): 221-230.
 - Zeng C, Guo SJ, Yang LX. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic [J]. J Environ Eng Technol, 2018, 8(2): 221–230.
- [11] European Directorate for the Quality of Medicines and Health Care. Metals and alloys used on food contact materials and articles: a practical guide for manufacturers and regulators [M]. Brussels: Council of Europe, 2013.
- [12] GB 4806.9-2016 食品安全国家标准 食品接触用金属材料及制品[S]. GB 4806.9-2016 National food safety standard-Metal materials and its products for food contact [S].
- [13] 向斌,郑思思,李文坡,等. 几种腐蚀介质中紫铜的腐蚀行为研究[C]. 中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会, 2016. Xiang B, Zheng SS, Li WP, et al. Corrosion behavior of copper in several corrosive media [C]. China Corrosion and Protection Society Corrosion Electrochemistry and Test Methods Committee, 2016.
- [14] 赵娟, 刘细旭, 刘龙华, 等. 盐雾条件下紫铜的腐蚀行为研究[J]. 广东 化工, 2013, 40(1): 17-18.
 - Zhao J, Liu XX, Liu LH, *et al*. Corrosion behavior of red copper in the salt spray tests [J]. Guangdong Chem Ind, 2013, 40(1): 17–18.
- [15] 李倩, 张建良, 左海滨, 等. 软水对碳钢和紫铜腐蚀的影响因素[J]. 中国冶金, 2014, 24(6): 17-23.
 - Li Q, Zhang JL, Zuo HB, *et al.* Influence factors of demineralized water on the corrosion of carbon steel and red copper [J]. Chin Meta, 2014, 24(6): 17–23.

(责任编辑: 陈雨薇)

作者简介

禄春强,高级工程师,主要研究方向 为食品相关产品检测技术与质量安全风险

E-mail: chunqiang07@163.com