高效液相色谱法测定 L-5-甲基四氢叶酸钙

陈 煜, 蒋林惠*, 周 楠, 施炎炎, 杨 俊

(南通市食品药品监督检验中心, 南通 226006)

摘 要:目的 建立高效液相色谱法测定 L-5-甲基四氢叶酸钙的分析方法。**方法** 用 $C_{18}(250 \text{ mm} \times 4.6 \text{ mm},$ 5 μ m)色谱柱,以磷酸盐缓冲液、甲醇:磷酸盐缓冲液(35:65, V:V)为流动相,流速为 1.1 μ ml/min,用高效液相色谱法进行测定;检测波长为 280 μ mm。**结果** 该方法检出限为 0.015 μ g/mL,定量限为 0.05 μ g/mL,相对标准偏差为 0.31%。对供试品中 L-5-甲基四氢叶酸钙的回收率达到 114%。对 5%目标物本底浓度加标回收率达到 97.3%。对 10%目标物本底浓度加标回收率达到 98.5%。**结论** 该方法检测准确、可靠,回收率均较高,说明该方法适用于检测 L-5-甲基四氢叶酸钙。

关键词: L-5-甲基四氢叶酸钙; 高效液相色谱法; 分析方法验证

Determination of *L*-5-methyltetrahydrofolate calcium by high performance liquid chromatography

CHEN Yu, JIANG Lin-Hui*, ZHOU Nan, SHI Yan-Yan, YANG Jun

(Nantong Food and Drug Supervision and Inspection Center, Nantong 226006, China)

ABSTRACT: Objective To establish an analytical method for the determination of calcium L-5-methyltetrahydrofolate calcium by high performance liquid chromatography was established. **Methods** Using a C_{18} (250 mm \times 4.6 mm, 5 μ m) column with phosphate buffer, methanol: phosphate buffer (35:65, V:V) as the mobile phase, flow rate of 1.1 mL/min, the measurement was carried out by high performance liquid chromatography. The detection wavelength was 280 nm. **Results** The detection limit of this method was 0.015 μ g/mL, the limit of quantification was 0.05 μ g/mL, and the relative standard deviation was 0.31%. The recovery rate of L-5-methyltetrahydrofolate in the test product reached 114%. The recovery rate of the background concentration of 5% target reached 97.3%. The recovery rate of the background concentration of 10% target reached 98.5%. **Conclusion** The method is accurate and reliable, and the recovery rate is high, which is suitable for detecting L-5-methyltetrahydrofolate.

KEY WORDS: *L*-5-methyltetrahydrofolate calcium; high performance liquid chromatography; analysis method validation

1 引言

L-5-甲基四氢叶酸钙是国际市场上一种新型的维生

素保健产品,常作为食品添加剂和营养保健品的主要成分,不产生任何副作用,同时还具有很好的疗效和功能,目前其已逐渐应用到药物以及食品当中[1.2]。*L-5*-甲基四氢叶酸

基金项目: 南通市市级科技计划项目(YYZ 17098)

Fund: Supported by Nantong Municipal Science and Technology Program (YYZ 17098)

*通讯作者: 蒋林惠, 工程师, 主要研究方向为食品添加剂检测分析。E-mail: 1033701559@qq.com

*Corresponding author: JIANG Lin-Hui, Engineer, Nantong Food and Drug Supervision and Inspection Center, No.196, Qingnian West Road, Nantong 226006, China. E-mail: 1033701559@qq.com

是叶酸的主要活性成分,其可以透过血脑屏障,预防老年痴呆、细胞贫血等症状^[3-5]。*L*-5-甲基四氢叶酸钙与其他药物相比具有疗效显著、功能齐全和副作用少的特点,逐渐成为医学和制药研究领域共同关注的焦点^[6-8]。

目前人们对 *L*-5-甲基四氢叶酸钙的合成工艺研究较多,比如韩琳等^[9]用重组甘氨酸脱羧酶基因工程菌生产 *L*-5-甲基四氢叶酸,与原始菌相比,产量增加了 23.1%。刘娅梅等^[10]研究了利用基因工程法生产 *L*-5-甲基四氢叶酸,产量显著增加。目前 *L*-5-甲基四氢叶酸的检测方法主要是高效液相色谱法,Sheladia 等^[11]通过高效液相色谱-质谱串联法测定 5-甲基四氢呋喃和血清中的叶酸含量,发现该方法精密度和回收率都很好;下筱泓等^[12]建立了高效液相色谱法测定菌体中的 *L*-5-四氢叶酸的方法,该方法在 0.5~50 μg/mL 范围内线性良好且精密度良好。但是目前对 *L*-5-甲基四氢叶酸钙的检测方法研究较少。

本研究建立了高效液相色谱法测定 *L-5-*甲基四氢叶酸钙含量的方法,并分析了该方法的分离度、检测限、定量限等指标,以期为保健品中 *L-5-*甲基四氢叶酸钙的准确测定提供可行的检测方法。

2 材料与方法

2.1 仪器及试剂

CPA225D 电子分析天平(德国赛多利斯公司); Agilent1260高效液相色谱仪(美国安捷伦公司); PHS-3C 酸度计(上海仪电科学仪器股份有限公司)。

甲醇(色谱纯, 美国 Honeywell 公司); NaH₂PO₄·2H₂O、碳酸氢钠、碳酸钠(分析纯, 国药集团化学试剂有限公司); 氢氧化钠(分析纯, 上海润捷化学试剂有限公司); 叶酸对照品(纯度 98.5%)、对氨基苯甲酰谷氨酸对照品(纯度 98%)、 L-5-甲基四氢叶酸钙对照品(纯度 99% 美国西格玛公司)。

供试品: 叶源酸(纯度 99%, 厂家连云港金康和信药 业有限公司)。

2.2 实验方法

2.2.1 色谱条件

色谱柱: AGAD02421 C_{18} (250 mm×4.6 mm, 5 μm), 进样量: 10 μL; 流速: 1.1 mL/min; 检测波长: 280 nm; 柱温: 32 °C; 流动相为 A: 磷酸盐缓冲液、B: 甲醇: 磷酸盐缓冲液(35:65, V:V), 按照表 1 的条件进行梯度洗脱。

2.2.2 溶液配制

标准曲线的配制: 称取 50 mg L-5-甲基四氢叶酸钙,加水溶解后移入 100 mL 容量瓶中,并稀释至刻度,制得 500 mg/L L-5-甲基四氢叶酸钙标准使用液。

溶液配制: 称取 25 mg 叶酸标准品及 25 mg 对氨基苯甲酰谷氨酸标准品,用少量水转移到 100 mL 容量瓶中,分別加入含 15 mg 碳酸氢钠、15 mg 碳酸钠的水溶液,超声

溶解后加水稀释到刻度,摇匀。移取 1 mL 溶液至另一个预 先加入 50 mg L-5-甲基四氢叶酸钙的 100 mL 容量瓶中,加 水溶解后稀释至刻度。

表 1 梯度洗脱条件
Table 1 Conditions of gradient elution

时间/min	A/%	B/%
0	100	0
14	45	55
17	0	100
24	0	100
24.01	100	0
33	100	0

对照品溶液配制: 称取 25 mg L-5-甲基四氢叶酸钙对照品,用少量近冰点的无二氧化碳水溶解后转移至50 mL 的容量瓶中,用近冰点的无二氧化碳水溶解并稀释至刻度。

供试品溶液配制: 称取 25 mg 供试品用少量近冰点的 无二氧化碳水溶解后转移至 50 mL 的容量瓶中, 用近冰点 的无二氧化碳水溶解并稀释至刻度。

2.2.3 系统适用性试验

分离度是判断物质在一个方法中分离的程度,虽然与柱效相关,但在衡量系统适用性时,首先强调的应该是分离度,只有当色谱图中仅有一个色谱峰或测定微量成分时,规定柱效才有其特殊重要性^[13]。按照《中国药典》^[2]的相关规定,待测组分与相邻共存物之间的分离度(R)应大于 1.5, *R*=1.5 时表示两峰可以完全分离。

2.2.4 测定方法

按表 2 进样序列进样, 并记录色谱图。以保留时间定性, 以峰面积定量。

表 2 进样序列 Table 2 Sequence of samples

次序	溶液名称	进样针数	进样体积/μL	
1	空白溶液	1	10	
2	系统适用性溶液	1	10	
3	对照液 1#	1	10	
4	对照液 2#	1	10	
5	对照液 3#	1	10	
6	供试液 1#	1	10	
7	供试液 2#	1	10	

2.2.5 结果计算:

L-5-甲基四氢叶酸钙含量(以干品计)按外标法以峰面积计算,按下式计算:

$$X1(\%) = \frac{Au \times W_S \times P}{A_S \times Wu \times (1 - w\%)} \times 100$$

式中:

 X_1 : L-5-甲基四氢叶酸钙含量, %;

Au: 供试品中主峰峰面积;

Wu: 供试品的称样量, mg;

As: 对照品主峰峰面积;

Ws: 对照品的称样量, mg;

w%: 供试品水分;

P: 对照品含量,%。

3 结果与分析

3.1 分离度结果

本研究,对氨基苯甲酰谷氨酸与 4-氨基谷氨酸的分离度大于 6;叶酸与 5-甲基四氢叶酸的分离度大于 8。分离度好,能够满足实际检测需求。

3.2 标准曲线与线性范围

精密吸取标准溶液 0.2.4.6.8.10 mL, 定容至 100 mL, 配制成 0~50 mg/mL 的 L-5-甲基四氢叶酸钙标准溶液,按上述 2.2.1 中色谱条件进行分析,以标准溶液浓度为横坐标(X),以峰面积为纵坐标(Y)绘制标准曲线(图 1)。在 0~50 mg/mL 范围内,线性回归方程为Y=491.3X-74.238,相关系数 r^2 为 0.9997,说明在此范围内其线性关系良好。

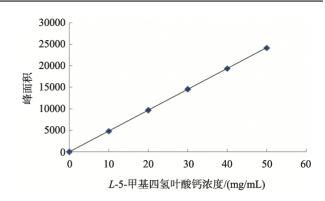


图 1 L-5-甲基四氢叶酸钙的标准曲线 Fig.1 Standard curve of L-5-methyltetrahydrofolate

3.3 定量限与检测限

将 L-5-甲基四氢叶酸钙标准溶液,以水多级稀释后得到浓度为 $0.10~\mu g/mL$ 的标准溶液,按 2.2.1 中的色谱条件测试 3~次,得到平均信噪为 20.0。以信噪比为 10:1 时的相应浓度为定量限(the limit of quantitation, LOQ),以信噪比为 3:1 时的相应浓度为检出限(the limit of detection, LOD),得到该方法的 LOQ 为 $0.05~\mu g/mL$,LOD 为 $0.015~\mu g/mL$ 。

3.4 精密度

参照表 2 进样序列进样,对照液取样 3 次进样,供试液取样 6次进样,结果见表 3,计算得到样品测定的相对标准偏差(relative standard deviation, RSD)为 0.31%,说明该方法精密度良好。

表 3 精密度实验结果 Table 3 Results of precision experiment

序号	取样量/mg	定容体积/mL	对照品主峰 峰面积	对照品主峰平均峰面积	相对标准偏差/%
1	25.0		11296		_
2	25.0	50.0	11297	11317	0.31
3	25.0		11357		

表 4 回收率实验结果
Table 4 Table 4 recovery rate test results

				•				
序号	取样量 /mg	供试品中的 L-5-甲 基四氢叶酸钙本底 含量/mg	供试品中的 L-5-甲基 四氢叶酸钙加标量	供试品主峰 峰面积	供试品中的 L-5-甲 基四氢叶酸钙含量	回收率/%	平均回收率 /%	RSD/%
1	0.0	0.0	2.50 μg	1.532	2.870 μg	115		
2	0.0	0.0	2.50 μg	1.490	2.791 μg	112	114	1.46
3	0.0	0.0	2.50 μg	1.523	2.853 μg	114		
1	25.3	21.5	1.06 mg	12035	22.5 mg	98.2		
2	25.2	21.4	1.06 mg	11994	22.5 mg	99.0	97.3	0.25
3	25.2	21.4	1.06 mg	11971	22.4 mg	94.9		
4	25.5	21.7	2.12 mg	12673	23.7 mg	97.4		
5	25.4	21.6	2.12 mg	12637	23.7 mg	98.3	98.5	0.24
6	25.3	21.4	2.12 mg	12607	23.6 mg	99.6		

3.5 回收率

参照表 2 进样序列进样,对照液取样 3 次进样,供试液取样 3 次进样,结果见表 4,在此条件下供试液平均标回收率为 114%,RSD 值为 1.46。5%目标物本底浓度(加标量 1.06 mg)时的平均加标回收率为 97.3%,RSD 值为 0.25%;10%目标物本底浓度(加标量 2.12 mg)时的平均加标回收率为 98.5%,RSD 值为 0.24%。结果说明,在加标量为 2.50 μg、1.06 mg、2.12 mg 时,该方法的回收率结果较好,该方法准确性较好。

4 结 论

本研究建立了高效液相色谱法测定 L-5-甲基四氢叶酸钙含量的方法,并对该方法的精密度和准确度进行了分析,该方法检出限为 $0.015~\mu g/mL$,定量限为 $0.05~\mu g/mL$,RSD 为 0.31%,精密度良好。该方法对供试品中 L-5-甲基四氢叶酸钙的回收率达到 114%,对 5%目标物本底浓度加标回收率达到 97.3%,对 10%目标物本底浓度加标回收率达到 98.5%,回收率均较高,说明该方法准确性良好,适用于 L-5-甲基四氢叶酸钙的检测。

参考文献

- [1] 王晓佳. L-5-甲基四氢叶酸钙的合成及工艺研究[D]. 石家庄: 河北科 技大学, 2016.
 - Wang XJ. Synthesis and process of *L*-5-methyltetrahydrofolate [D]. Shijiazhuang: Hebei University of Science and Technology, 2016.
- [2] 国家药典委员会. 中华人民共和国药典第四部通则[M]. 北京: 中国医药科技出版社, 2015.
 - National Pharmacopoeia Commission. General principles of the fourth pharmacopoeia of the People's Republic of China [M]. Beijing: China Medical Science and Technology Press, 2015.
- [3] Henderson AM, Aleliunas RE, Loh SP, et al. L-5-methyltetrahydrofolate supplementation increases blood folate concentrations to a greater extent than folic acid supplementation in Malaysian women [J]. J Nutr, 2018, 148(6): 885–890.
- [4] Servy EJ, Jacquesson-Fournols L, Cohen M, et al. MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series [J]. J Ass Reprod Gen, 2018, (35): 1431–1435.
- [5] Sicińska E, Brzozowska A, Roszkowski W, et al. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces serum homocysteine concentrations in older adults [J]. Int J Food Sci Nutr, 2018, 69(1): 64–73.
- [6] 张越,姚永波,牛玉环,等. (6S)-5-甲基四氢叶酸的合成及其研究[J]. 精细与专用化学品, 2005, 13(22): 13-22.
 - Zhang Y, Yao YB, Niu YH, et al. Study and synthesis of

- (6S)-5-methyltetrahydrofolic acid [J]. Fin Spec Chem, 2005, 13(22): 13–22.
- [7] 姜凌,张春义.作物叶酸生物强化[J].生命科学,2015,27(8):1055-1060.
 - Jiang L, Zhang CL. Folate fortification in crops [J]. Chin Bullet Lif Sci, 2015, 27(8): 1055–1060.
- [8] Martin H, Comeskey D, Simpson RM, et al. Quantification of folate in fruits and vegetables: a fluorescence-based homogeneous assay [J]. Anal Biochem, 2010, 402(2): 137–145.
- [9] 韩琳, 许激杨, 卞筱泓, 等. 重组甘氨酸脱羧酶基因工程菌生产 L-5-甲基四氢叶酸[J]. 生产医学前沿, 2013, 22(20): 2379-2382.
 - Han L, Xu JY, Bian XH, *et al.* Recombinant glycine decarboxylase engineered bacteria forproduction of *L*-5-methyl-tetrahydrofolate [J]. Chin J New Drug, 2013, 22(20): 2379–2382.
- [10] 刘娅梅, 卞筱泓, 许激扬, 等. 基因工程法生产 L-5-甲基四氢叶酸的研究[J]. 中国生化药物杂志, 2012, 33(3): 243-247.
 Liu YM, Bian XH, Xu JY, et al. Study on the genetic engineering for L-5-methylenetetrahydrofolate production [J]. Chin J Biochem Pharm,
- [11] Sheladia S, Patel B. Determination of escitalopram oxalate and L-methylfolate in tablet by spectrophotometric and reverse phase high-performance liquid chromatographic methods [J]. J Chromatogr Sci, 2017, 55(5): 550–555.
- [12] 卞筱泓, 刘娅梅, 许激扬, 等. 菌体中 *L-5*-甲基四氢叶酸的 HPLC 法检测[J]. 生物医药前沿, 2012, 21(15): 1743–1745.

 Bian XH, Liu YM, Xu JY, *et al.* Determination of *L-5*-methyltetrahydrofolate in bacteria by HPLC [J]. Chin J New Drug, 2012, 21(15): 1743–1745.
- [13] Fazili Z, Sternberg MR, Paladugula N, et al. Two international round-robin studies showed good comparability of 5-methyltetrahydrofolate but poor comparability of folic acid measured in serum by different high-performance liquid chromatography-tandem mass spectrometry methods [J]. J Nutr, 2017, 147(9): 1815–1825.

(责任编辑: 陈雨薇)

作者简介

2012, 33(3): 243-247.

陈 煜, 工程师, 主要研究方向为食品添加剂检测分析。

E-mail: 181000030@qq.com

蒋林惠, 工程师, 主要研究方向为食品添加剂检测分析。

E-mail: 1033701559@qq.com