同位素稀释液相色谱-串联质谱法同时测定 贝类产品中 5 种硝基呋喃代谢物

杨 鹏¹, 刘桂华^{2*}, 陈丽丽¹, 朱 舟², 刘红河², 袁冠相² (1. 南华大学公共卫生学院, 衡阳 421001; 2. 深圳市疾病预防控制中心, 深圳 518055)

摘 要:目的 建立贝类产品中呋喃唑酮、呋喃它酮、呋喃西林、呋喃妥因和硝夫索尔代谢物的同位素稀释 液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry, LC-MS/MS)检测方法。**方法** 样品中加入 同位素内标,经盐酸水解及邻硝基苯甲醛衍生,调节 pH 为 7.2±0.2,乙酸乙酯提取,氮吹浓缩,正己烷去脂净 化,色谱柱分离,电喷雾电离(electronic spray ion, ESI)正负离子多反应(multiple reaction monitoring, MRM)模 式检测,同位素内标稀释法定量。**结果** 5 种硝基呋喃代谢物的方法定量限为 0.1~0.2 µg/kg; 方法的线性范围 为 0.2~20 µg/kg; 相关系数均大于 0.999; 方法平均回收率为 88.7%~112.1%,相对标准偏差为 3.9%~13.7%。应 用该方法对 280 份贝类产品进行检测,其中 45 份样品中检出了含量较低的氨基脲,范围值在 0.21~1.86 µg/kg。 **结论** 方法灵敏准确,适合贝类产品中硝基呋喃代谢物的检测。

关键词:液相色谱-串联质谱法;硝基呋喃代谢物;同位素稀释法;贝类

Determination of 5 nitrofuran metabolites in shellfish products by isotope dilution liquid chromatography-tandem mass spectrometry

YANG Peng¹, LIU Gui-Hua^{2*}, CHEN Li-Li¹, ZHU Zhou², LIU Hong-He², YUAN Guan-Xiang²

(1. College of Public Health, University of South China, Hengyang 421001, China;

2. Shenzhen Center for Disease Control and prevention, Shenzhen 518055, China)

ABSTRACT: Objective To establish an analytical method for determination of furazolidone, furaltadone, nitrofurazone, nitrofurantoin and nifursol metabolites in shellfish by isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). **Methods** Isotopic internal standards were added to the sample, which then were hydrolyzed by hydrochloric acid and derivatized with 2-nitrobenzaldehyde. The solution was neutralized to pH 7.2±0.2, extracted with ethyl acetate, and evaporated to dryness with nitrogen. The residue was reconstituted with mobile phase, and defatted with acetonitrile saturated n-hexane. The analytes were quantified by LC-MS/MS operating in both positive and negative ion multiple monitoring modes (MRM), and quantitatively determined by isotope internal standard dilution method. **Results** Limits of quantifications for the 5 nitrofuran metabolites were 0.1-0.2 μ g/kg. The matrix calibration curves were established with correlation coefficients more than 0.999 in the range of 0.2-20 μ g/kg. The average recoveries were ranged from 88.7% to 112.1%, with the relative standard

基金项目: 国际原子能机构合作研究基金(CRP_D52039_18859)

Fund: Supported by IAEA Research Contract (CRP_D52039_18859)

^{*}通讯作者:刘桂华,主任技师,主要研究方向为食品安全与残留物检测。E-mail: 1106126629@qq.com

^{*}Corresponding author: LIU Gui-Hua, Chief Technician, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China. E-mail: 1106126629@qq.com

第10卷

deviations of 3.9%-13.7%. The method was successfully applied for 280 shellfish products, and 45 of them were confirmed with low levels of semicarbazide (SEM) ranging from 0.21 to 1.86 µg/kg. **Conclusion** The proposed method has high sensitivity and good accuracy, which is suitable for determination of nitrofuran metabolites in shellfish products.

KEY WORDS: liquid chromatography-tandem mass spectrometry; nitrofuran metabolite; isotope internal standard dilution; shellfish

1 引 言

硝基呋喃类药物是人工合成的抗感染药物,具有杀 菌能力强、抗菌谱广等优点,曾被广泛应用于水产品养殖 中,主要包括呋喃唑酮、呋喃它酮、呋喃西林和呋喃妥 因^[1-3]。研究表明硝基呋喃及其代谢产物具有潜在致癌和诱 导突变作用^[4,5]。由于其价格低廉且药效显著,在水产养殖 中仍有违禁使用的情况^[6]。目前国内外都对呋喃类药物的 控制相当严格^[7-9],建立了各种用于禽肉产品和水产品中 硝基呋喃类代谢物的各种检测方法的最小要求性能限值为 1 µg/kg。

除上述 4 种硝基呋喃外, 硝呋索尔作为另一种硝基呋 喃类药物, 作用与其他硝基呋喃代谢物类似, 也被应用于 动物源性食品中^[10]。硝基呋喃类药物在动物体内代谢很快, 5 种硝基呋喃的代谢产物分别为 3-氨基-2 噁唑烷基酮 (3-amino-2-oxazolidinone, AOZ)、5-甲基吗啉-3-氨基-2 噁 唑 烷 基 酮 (3-amino-5-morpholinomethyl-2-oxazolidinone, AMOZ)、氨基脲(semicarbazide hydrochloride, SEM)、1-氨 基-2-内酰脲(1-aminohydantoin hydrochloride, AHD)和 3,5-二硝基水杨酸肼(3,5-dinitrosalicylhydrazide, DNSAH), 能 与蛋白质紧密结合, 较稳定地存在于动物体内。因此, 通 常国际上均采用测定其代谢物的含量。

硝基呋喃类代谢物的检测方法主要有高效液相色谱 法、液相色谱-质谱法、液相色谱-串联质谱法(liquid chromatography tandem mass spectrometry, LC-MS/MS)、酶 联免疫法和免疫层析法。酶联免疫法^[11]和免疫层析法^[12,13] 检测所需的仪器设备简单,操作简便,但方法检测灵敏度 低,易出现假阳性,不适合定量分析,可作为初级筛查 的方法。Cooper 等^[14]用高效液相色谱法测定饲料中 4 种硝基呋喃类代谢物残留,回收率为 80%~95%,检测限 为 0.5 mg/kg,定量限为 0.3 mg/kg,但将其应用于肉类样品 时,发现复杂的基质会导致基线增高,灵敏度降低。 Hormazábal 等^[15]利用液相色谱-质谱法同时测定肉类中 4 种硝基呋喃代谢物,检测限达到 0.2~0.5 mg/kg,但目前欧 盟认为液相色谱-质谱法只能用于硝基呋喃代谢物的筛选 试验,对检出的阳性结果必须再用 LC-MS/MS 进行确证。 LC-MS/MS 法^[16-18]有较高的灵敏度,且同位素内标的加入, 能提高方法的回收率和准确度。

本研究拟建立基于同位素稀释的 LC-MS/MS 方法,同时测定贝类产品中5种硝基呋喃代谢物的残留量,为有效打击抗生素的滥用,为水产品的监管提供强有力的技术支撑。

2 材料与方法

2.1 仪器与试剂

API QTRAP 4500 三重四极杆串联质谱仪(美国 AB SCIEX 公司); Shimadzu LC-20A 高效液相色谱仪(日本岛津 公司); Beckman Coulter AllegraTM X-22R 高速离心机(美 国 Beckman 公司); XS205 分析天平(瑞士 Mettler Toledo 公 司); SW22 振荡水浴槽(德国 JULABO 公司); N-EVAPTM112 氮吹仪(美国 Organomation 公司); Milli-Q IQ 7000 超纯水机(美国 Millipore 公司); Centrifuge 5424R 台式 高速离心机(德国 Eppendorf 公司); Multi reax 振荡器(德国 Heidolph 公司);

5 种硝基呋喃代谢物标准品: 1-氨基-2-内酰脲(AHD)、 氨基脲(SEM)、3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基 -2-恶唑烷基酮(AMOZ)及其同位素内标 AOZ-d₄, AMOZ-d₅, AHD-¹³C₃, SEM-¹³C-¹⁵N₂(纯度均大于 98%, 德国 Dr. Ehrenstorfer GmbH); 3,5-二硝基水杨酸肼(DNSAH)及其同 位素内标 DNSAH-¹⁵N₂(纯度均大于 98%, 加拿大 Toronto Research Chemicals Inc 公司)。

乙腈、甲醇、乙酸乙酯、正己烷(色谱纯,德国 Merck 公司);乙酸铵、邻硝基苯甲醛(纯度均大于 99.0%,瑞士 Fluka公司);磷酸钠(Na₃PO₄)、氢氧化钠(NaOH)、盐酸(HCl) (分析纯,广州化学公司);实验用水为通过 Milli-Q® AdvantageA10水净化系统(Millipore, France)产生的超纯水 (18.2 MΩ-cm)。

2.2 实验方法

2.2.1 溶液配制

硝基呋喃代谢物标准溶液配制:分别准确称取适量 的 5 种硝基呋喃代谢物标准品及对应的 5 种内标到 10 mL 的容量瓶,用乙腈溶液配制成 1.0 mg/mL 单标储备液, -20 ℃冷冻避光保存。将 1.0 mg/mL 单标储备液用乙腈逐 级稀释为 1.0 μg/mL 的混合标准中间液。准确移取混合标 准中间溶液 1.25 mL 于 25 mL 容量瓶,乙腈定容,配制成 50 ng/mL 的混合标准工作溶液,4 ℃冷藏避光保存。5 种内 标用同样方法配制成 100 ng/mL 的混合内标标准溶液。

0.2 mol/L 盐酸: 取 8.333 mL 浓盐酸, 用超纯水稀释 定容至 500 mL。

0.1 mol/L 邻硝基苯甲醛溶液:称取 0.15 g 邻硝基苯甲醛于 10 mL 容量瓶中,二甲基亚砜定容至刻度。

0.3 mol/L Na₃PO₄:称取 57 g Na₃PO₄•12H₂O 固体,用 超纯水溶解并定容至 500 mL。

2.2.2 样品前处理

称取均质贝类样品 2.00 g, 加入 5 种混合内标溶液 10 g/mL, 10 mL 0.2 mol/L HCl, 200 μL 0.1 mol/L 衍生剂邻 硝基苯甲醛, 充分混匀。于 37 ℃恒温水浴振摇过夜。衍 生结束后, 取出样品冷却至室温, 加入 0.3 mol/L Na₃PO₄ 溶液 2 mL, 充分混匀; 用 2.5 mol/L NaOH 调节 pH 为 7.2±0.2。加入 10 mL 乙酸乙酯, 充分混匀后, 8000 r/min、 10 ℃离心 5 min, 吸出上层乙酸乙酯相, 重复1次, 合并乙 酸乙酯提取液。将提取液 37 ℃水浴下氮吹至干, 用现配 的乙腈/水(1:9, V:V)定容至 1.0 mL, 充分混匀。将定容液转 人 2 mL 离心管, 加人 1 mL 乙腈饱和的正己烷(1:1, V:V), 在 15000 r/min 离心 5 min, 弃去正己烷层, 重复脱脂步骤 一次; 吸取下层清液至 2 mL 样品瓶, 待 LC-MS/MS 检测。 2.2.3 液相色谱-串联质谱条件

(1) 液相色谱条件

色谱柱为 Waters Atlantis[®] dC₁₈ 色谱柱 (150 mm× 2.1 mm, 5 μm), 柱温 35 ℃, 进样量 10 μL, 流速为 0.4 mL/min。 流动相 A 相为: 200 mL 乙腈+800 mL 10 mmol/L 乙酸铵 +0.37 mL 氨水(25 vol%), B 相为乙腈。梯度洗脱程序: 0~0.5 min, 0%B, 0.5~5.5 min, 0%B~80%B, 5.5~6.5 min, 80%B, 6.5~6.6 min, 80%B~0%B, 6.6~9.0 min, 0%B。

(2) 质谱条件

离子源为电喷雾离子源(electronic spray ion, ESI),正 负离子同时采集,扫描方式为多反应监测(multiple reaction monitoring, MRM);离子喷雾电压(ionic spray, IS)分别为 +5500 V 及-4500 V;离子源温度 550 ℃;驻留时间(dwell time, DT)为 20 ms;气帘气(curtain gas, CUR)压力为 40 psi; 雾化气(GS1)压力为 55 psi;加热辅助气(GS2)压力为 55 psi; 碰撞气流速中等。5 种硝基呋喃代谢物质谱参数见表 1。

分析物	离子模式	前体离子 (m/z)	子离子(m/z)	去簇电压/V	入口电压/V	碰撞室出口电压/V	碰撞电压/V
AOZ	+	236	134*	68	10	9	17
		236	104	68	10	9	27
AOZ-d ₄	+	240	134*	84	7	11	20
		240	104	84	7	10	30
AMOZ	+	335	291*	75	10	13	17
		335	262	75	10	13	22
AMOZ-d ₅	+	340	296*	60	12	10	17
		340	265	60	12	8	23
AHD	+	249	134*	72	10	9	16
		249	104	72	10	9	26
AHD- ¹³ C ₃	+	252	134*	78	6	7	19
		252	104	78	6	7	35
SEM	+	209	166*	60	9	8	13
		209	192	60	9	8	15
SEM- ¹³ C- ¹⁵ N ₂	+	212	168*	60	8	10	13
		212	195	60	8	10	15
DNSAH	-	374	181.9*	-60	-10	-9	-30
		374	182.9*	-60	-10	-9	-35
DNSAH- ¹⁵ N ₂	-	376	181.9*	-60	-10	-9	-30
		376	182.9	-60	-10	-9	-35

表 1 5 种硝基呋喃代谢物质谱参数 Table 1 MS parameters for 5 nitrofuran metabolites using ESI⁺ and ESI⁻ mode

注:*为定量离子。

3 结果与分析

3.1 基质效应

基质效应采用峰面积比值法来评定。计算公式为: ME=(A_m/A_s)*100%,式中 A_m 表示分析物在基质中响应信 号的峰面积,A_s表示分析物在纯溶剂中响应信号的峰面积。 分别在扇贝、花甲、生蚝、鲍鱼4种空白基质样品中添加 浓度为5 μg/mL 硝基呋喃代谢物标准溶液,按样品前处理 步骤进行处理。结果显示4种基质均有抑制效应,扇贝为 65%~85%,花甲为45%~85%,生蚝为25%~60%,鲍鱼为 20%~50%。生蚝、鲍鱼的抑制效应较为明显,如图1所示。 实际样品检测分析时,外标法会对定量结果有较大的偏差, 因此本研究采用同位素内标稀释法进行定量分析。

3.2 质谱条件优化

分别取浓度为 1.0 mg/mL 的 5 种硝基呋喃代谢物标准 及内标溶液 0.5 mL,按样品处理方法进行衍生化之后定容 至 10 mL。将已衍生好的各硝基呋喃代谢物以针泵注射器 恒流进样,分别在正、负离子模式下进行全扫描,确定母 离子。结果表明,DNSAH 在负离子模式下有较强的响应强 度,其余 4 种衍生物在正离子模式下,响应强度较高。因 此采用正负离子同时采集模式,并对母离子进行二级质谱 扫描,选取丰度较强、干扰较小碎片离子作为定量和辅助 定性离子。优化碰撞能量、去簇电压入口电压等质谱参数, 优化后的质谱参数见表 1。

3.3 色谱条件的优化

本研究比较了不同流动相组成对各物质电离效果、检测灵敏度、噪声和峰形的影响。比较的流动相包括甲醇-甲醇/水、乙腈-乙腈/水及在水相中添加不同调节剂如0.1% 甲酸、0.1%乙酸、氨水、乙酸铵、及甲酸铵。结果表明:在 正负离子同时采集模式,流动相中加入 0.1%甲酸或乙酸, 对负离子有抑制作用;添加甲酸铵,负离子有拖尾现象; 添加乙酸铵溶液的流动相峰形较好,且添加氨水溶液有助 于待测组分的电离,提高灵敏度。乙腈-乙酸铵溶液作流动相时,可降低基线噪音,提高分离效果,尤其改善AMOZ的峰形,如图2所示(图左为乙腈,图右为甲醇体系)。因此本研究采用乙腈—乙腈+10 mmoL/L 乙酸铵(2:8, V:V)+0.37 mL 氨水作为流动相。

对流动相的洗脱程序及流速进行了优化。实验比较了 不同流速、不同洗脱梯度下,各物质的峰形及响应,结果 表明流速为 0.4 mL/min 时,采用上述的洗脱梯度,可有效 改善峰拖尾现象,得到较为理想的色谱峰,峰形尖锐且对 称性好。在优化好的色谱条件下,空白扇贝基质中添加硝 基呋喃代谢物的标准和相应内标的特征离子质量色谱图 (MRM)见图 2~3。

3.4 样品前处理方法的优化

3.4.1 衍生剂邻硝基苯甲醛的溶解

实验比较了甲醇和二甲基亚砜 2 种有机溶剂的效果, 发现二甲基亚砜可提高 AMOZ 的衍生效率(6 倍),对其余 物质,差别不大。因此,实验采用二甲基亚砜溶解衍生剂。 3.4.2 提取后复溶剂的优化

实验比较了不同溶剂及不同组成比例,如乙腈、甲醇、 水、乙腈/水和甲醇/水等作为复溶剂,经对比分析,AHD的 峰形受复溶剂影响较大,见图4。进一步比较复溶剂为水、 甲醇/水(1:1, V:V),甲醇/水(2:8, V:V),甲醇/水(1:9, V:V), 乙腈/水(1:9, V:V)和乙腈/水(2:8, V:V)各物质的回收率,采 用乙腈/水 (1:9, V:V)作为复溶剂,各物质峰形较好,且回 收率较为理想,见图 5。

3.4.3 净化条件

复溶后比较经过乙腈饱和正己烷脱脂、过 0.45 μm Nylon 滤膜过滤、不做处理比较实验,发现经过过滤, DNSAH、DNSAH-¹⁵N₂损失严重,回收率 9%;经饱和正己 烷脱脂,无明显损失:不作处理,易出现乳化现象,且油 脂较多,色谱峰基线较高。故本研究采用乙腈饱和正己烷 脱脂。

3.5 方法性能

3.5.1 线性范围、检出限与定量限

由于贝类样品种类繁多,各种基质效应差别较大,为 了进行准确定量,实验中在样品前处理时加入同位素内标。 考虑基质效应,采用扇贝、生蚝、青口、鲍鱼的混合空白 基质(1:1:1:1)。将适量的硝基呋喃代谢物的混合标准溶液 添加到混合空白基质中,最终浓度水平为0、0.2、0.5、1.0、 2.0、5.0、10、20 μg/kg,同时加入同位素内标最终浓度为 5 μg/kg,处理步骤同样品前处理过程,并进行 LC-MS/MS 检测分析。以硝基呋喃代谢物的浓度为横坐标,硝基呋喃 代谢物与内标的峰面积值比为纵坐标,绘制标准曲线, 0.2~20 μg/kg 范围内具有良好的线性,相关系数(r)均大于 0.999,结果见表 2。 第1期

Fig. 2 MRN chromatograms of a spiked scallop sample with standard solution at 2.0 µg/mL

图 3 空白扇贝样品中添加 1.0 μg/mL 混标和 10 μg/mL 内标的色谱图 Fig. 3 Chromatograms of a blank scallop spiked with 1.0 μg/mL mixed nitrofuran standard and 1.0 μg/mL internal standard

第1期

表 2 5 种硝基呋喃代谢物的线性方程和相关系数 Table 2 The matrix calibration equations and correlation coefficients (r) for 5 nitrofuran metabolites

	()			
化合物	线性方程	相关系 数(r)	LOD /(µg/kg)	LOQ /(µg/kg)
AHD	<i>Y</i> =0.3337 <i>X</i> +0.000773	0.9992	0.1	0.2
AOZ	<i>Y</i> =0.475 <i>X</i> +0.00902	0.9995	0.05	0.1
AMOZ	<i>Y</i> =0.172 <i>X</i> +0.000283	0.9994	0.1	0.2
SEM	<i>Y</i> =0.588 <i>X</i> +0.16	0.999	0.1	0.2
DNSAH	<i>Y</i> =0.67 <i>X</i> +0.0095	0.9999	0.05	0.1

以 3 倍信噪比的结果作为检出限(limit of detection, LOD), 10 倍信噪比的结果作为定量限(limit of quantitation, LOQ), 得到 AHD、SEM、AMOZ 的 LOD 为 0.1 µg/kg、 LOQ 为 0.2 µg/kg, AOZ、DNSAH 的 LOD 为 0.05 µg/kg、 LOQ 为 0.1 µg/kg。

3.5.2 回收率和精密度

混合空白基质按照 0.5、1.0、2.0、20.0 µg/kg 4 个最 终浓度水平进行添加回收实验,每个添加水平6个平行样, 计算平均回收率和相对标准偏差(relative standard deviation, RSD), 硝基呋喃代谢物的平均回收率为 88.7%~112.1%, 相对标准偏差为 3.9%~13.7%。结果见表 3。

3.6 实际样品测定

将建立的方法应用于280份贝类样品中5种硝基呋喃 代谢物的测定。采集扇贝类样品 117 份、青口 46 份、鲍鱼 23 份、生蚝 7 份、花甲 23 份、蛏子 32 份、带子 14 份、 沙白18份。结果显示除呋喃西林的代谢物外,其他硝基呋 喃代谢物均未检出。然而, 呋喃西林代谢物 SEM 检出有 45份样品,检出率为16.07%,但检测浓度低,其中25份扇 贝检出 SEM, 含量为 0.23~1.14 µg/kg; 9 份青口检出 SEM, 含量为 0.21~1.33 µg/kg; 4 份鲍鱼检出 SEM, 含量为 0.25~0.45 µg/kg; 3 份带子检出 SEM, 含量分别为 0.21、0.34、 1.86 µg/kg; 2 份花甲检出 SEM, 含量为 0.42、0.53 µg/kg; 2 份圣子检出 SEM, 含量为 0.35、0.71 μg/kg。仅有 4 份样品 SEM 超出国家最小要求性能限值(1 µg/kg),为1.15、1.86、 1.33、1.14 µg/kg。2017年中国科学院烟台海岸带研究所田

metabolites (<i>n</i> =6)				
化合物	添加水平 /(µg/kg)	平均回收率 (%, n=6)	相对标准偏差 (%, n=6)	
	0.5	103.8	10.9	
	1.0	107.4	7.6	
AHD	5.0	106.2	6.3	
	10.0	95.9	4.5	
	0.5	100.5	10.3	
407	1.0	106.7	11.3	
AOZ	5.0	104.7	4.3	
	10.0	112.1	8.2	
	0.5	95.1	9.6	
SEM	1.0	98.9	11.7	
SEM	5.0	100.6	11.5	
	10.0	96.7	3.9	
	0.5	106.4	13.7	
AMOZ	1.0	88.7	10.6	
AMOZ	5.0	94.3	4.1	
	10.0	106.2	5.3	
	0.5	96.0	7.9	
DNCAU	1.0	95.7	5.9	
DNSAH	5.0	93.4	4.4	
	10.0	96.8	5.8	

秀慧团队发表了 SEM 在海水及贝类的时空分布的研究^[19], 在渤海和黄海的晋城与四十里湾采集的 90 份贝类样品, SEM检出率高,含量在 0~0.75 μg/kg之间,本项研究结果 与他们的研究结果吻合,深入的研究和探讨有待进一步 完成。

4 结 论

本文建立了同位素稀释结合 LC-MS/MS 同时测定贝 类产品中 5 种硝基呋喃代谢物 AOZ、SEM、AMOZ、AHD 和 DNSAH 的检测方法。通过对质谱条件、色谱条件及前处 理方法的优化, 经 Waters Atlantis[®] dC₁₈色谱柱 (150 mm× 2.1 mm, 5 µm)分离, MS/MS 采用电喷雾电离(ESI)正负同时 监测,多反应(MRM)模式检测,同位素内标法进行定量。 方法的检出限为 0.05~0.1 µg/kg,定量限为 0.1~0.2 µg/kg, 本方法高效灵敏,准确可靠,回收率和重现性等方法学指 标均能满足水产品中硝基呋喃代谢物残留检测的要求。应 用该方法对 280 份贝类产品进行检测,结果显示 45 份样品 检出硝基呋喃代谢物残留,全部为 SEM,但其浓度范围较低,特别是部分品种检出率很高。本方法适用于贝类海产品中 5 种硝基呋喃类代谢物的残留量检测及准确确证分析。

参考文献

- 李芳, 陈莹, 李献刚, 等. 动物源性食品中硝基呋喃及其代谢物产物检 测方法研究进展 [J]. 食品安全质量检测学报, 2016, 7(6): 2320-2327.
 Li F, Chen Y, Li XG, *et al.* Progress on determination of nitrofuran and their metabolites in animal-derived food [J]. J Food Saf Qual, 2016, 7(6): 2320-2327.
- [2] 邢丽红,李兆新,孙伟红,等.液相色谱-串联质谱法检测水产品中硝 基呋喃类药物的残留量[J].食品安全质量检测学报,2017,8(4): 1233-1239.

Xing LH, Li ZX, Sun HW, *et al.* Determination of nifursol metabolites in aquatic products by high performance liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2017, 8(4): 1233–1239.

- [3] 宋利军,于晖,程鑫,等.液相色谱-串联质谱法检测动物性食品中硝 基呋喃代谢产物的残留[J].中国卫生检验杂志,2017,27(3):321–323. Song LJ, Yu H, Cheng X, *et al.* Determination of nifursol metabolites in animal derived food with liquid chromatography tandem mass spectrometry [J]. Chin J Health Lab Technol, 2017, 27(3): 321–323.
- [4] Kaufmann A, Butcher P, Maden K, *et al.* Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry [J]. Anal Chim Acta, 2015, (862): 41–52.
- [5] Chiu S, Su Y, Le A, et al. Nanocarbon material-supported conducting poly(melamine) nanoparticle-modified screen-printed carbon electrodes for highly sensitive determination of nitrofuran drugs by adsorptive stripping voltammetry [J]. Anal Bioanal Chem, 2018, 410(25): 6573–6583
- [6] Veach B, Anglin R, Mudalige T, et al. Quantitation and confirmation of chloramphenicol, florfenicol, and nitrofuran metabolites in honey using LC-MS/MS [J]. J AOAC Int, 2018, 101(3): 897–904.
- [7] Chang G, Chen H, Lin F. Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) [J]. Mar Pollut Bull, 2016, 113(1–2): 579–584.
- [8] Veach B, Baker C, Kibbey J, et al. Quantitation of chloramphenicol and nitrofuran metabolites in aquaculture products using microwave-assisted derivatization, automated SPE, and LC-MS/MS [J]. J AOAC Int, 2015, 98(3): 588–594.
- [9] Tao Y, Yu H, Chen D, et al. Determination of sodium nifurstyrenate and nitrovin residues in edible food by liquid chromatography-tandem mass spectrometry after ultrasound-assisted extraction [J]. J Chromatogr B, 2010, 878(32): 3415–3420.
- [10] Barbosa J, Freitas A, Mour OJ, et al. Determination of furaltadone and nifursol residues in poultry eggs by liquid chromatography-electrospray ionization tandem mass spectrometry [J]. J Agric Food Chem, 2012, 60(17): 4227–4234.
- [11] 闵成军,罗晓琴,汪善良,等. 酶联免疫法检测猪肉中呋喃唑酮代谢物 残留[J]. 肉类研究, 2015, 25(12): 29.
 Min CJ, Luo XQ, Wang SL, *et al.* The determination of furazolidone metabolite residues in pork by ELISA [J]. Meat Res, 2015, 25(12): 29.

表 3	5 种硝	肖基呋喃代谢物回收率、	精密度测定结果(n=6)	
Т	able 3	Recoveries and precisi	ons of 5 nitrofuran	
metabolites (n=6)				

[12] YanXD, Hu XZ, Zhang HC, et al. Direct determination of furaltadone metabolite, 3-amino-5-morpholinomethyl-2-oxazolidinone, in meats by a simple immunoassay [J]. Food Agric Immunol, 2012, 23(3): 203–215.

第1期

- [13] 赵正苗,罗晓琴,汪善良,等.应用胶体金兔疫层析法检测动物组织中 呋喃西林代谢物的残留[J]. 上海畜牧兽医通讯, 2012, (5): 4-5.
 Zhan ZM, Luo XQ, Wang SL, *et al.* The determination of nitrofurazone metabolite residues in animal tissue by colloidal gold method [J].
 Shanghai J Anim Husb Vet Med, 2012, (5): 4–5.
- [14] Cooper K, Mulder P, Van R J, et al. Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV [J]. Food Addit Contam, 2005, 22(5): 406–414.
- [15] Hormazábal V, Norman Asp T. Determination of the metabolites of nitrofuran antibiotics in meat by liquid chromatography-mass spectrometry [J]. J Liq Chromatogr Relat Technol, 2005, 27(17): 2759–2770.
- [16] Aldeek F, Hsieh K, Ugochukwu O, et al. Accurate quantitation and analysis of nitrofuran metabolites, chloramphenicol, and florfenicol in seafood by ultrahigh-performance liquid chromatography-tandem mass spectrometry: Method validation and regulatory samples [J]. J Agric Food Chem, 2018, 66(20): 5018–5030.
- [17] Li J, Liu J, Wang J. Multidetermination of four nitrofurans in animal feeds by a sensitive and simple enzyme-linked immunosorbent assay [J]. J Agric

Food Chem, 2009, 57(6): 2181-2185.

- [18] Park M, Kim K, Kang J. Development of an analytical method for detecting nitrofurans in bee pollen by liquid chromatography-electrospray ionization tandem mass spectrometry [J]. J Chromatogr B, 2017, 1046: 172–176.
- [19] Tian X, Xu Y, Gong X, et al. Environmental status and early warning value of the pollutant semicarbazide in Jincheng and Sishili Bays, Shandong Peninsula, China [J]. Sci Total Environ, 2017, 576: 868–878.

(责任编辑: 武英华)

作者简介

杨 鹏,硕士研究生,主要研究方向为 理化检验。 E-mail: 1121742615@qq.com

刘桂华, 主任技师, 主要研究方向为食 品安全与残留物检测。 E-mail: 1106126629@qq.com