气相色谱-质谱联用法快速检测乳类化妆品中 6 种合成麝香

李 菊1,2, 方 祥1*, 谢建军2, 黄雪琳3, 黄 伟3, 王志元2, 陈文锐2

- (1. 华南农业大学, 广州 510642; 2. 广东出入境检验检疫局, 广州 510623;
 - 3. 东莞出入境检验检疫局、东莞 523072)

摘 要:目的 建立同时、快速测定化妆品中葵子麝香、佳乐麝香、二甲苯麝香、麝香酮、吐纳麝香和酮麝香 6 种人造麝香的气相色谱-质谱联用分析方法。方法 以面霜、沐浴露、面膜等不同基质的化妆品为试样,选用乙酸乙酯进行提取,固相萃取(solid phase extraction, SPE)小柱净化,采用气相色谱-质谱联用外标法进行分析。结果 葵子麝香、佳乐麝香、二甲苯麝香、麝香酮、吐纳麝香和酮麝香 6 种人造麝香在 0.02~0.50 μg/mL浓度范围内线性良好,相关系数为 0.9968~0.9992。空白样品添加水平分别为 0.20、0.40、2.00 mg/kg 时,回收率在 83.0%~110.38 %之间,相对标准偏差在 2.8% ~ 7.5%之间,以上 6 种人造麝香的方法检出下限在 20.0~40.0 μg/kg 之间。结论 本方法简单、快速、准确,可满足化妆品中 6 种人造麝香的同时检测及确证需求。 关键词:人工合成麝香;气相色谱-质谱法;化妆品

Rapid determination of 6 kinds of artificial musk in cosmetics by gas chromatography-mass spectrometry

LI Ju^{1,2}, FANG Xiang^{1*}, XIE Jian-Jun², HUANG Xue-Lin³, HUANG Wei³, WANG Zhi-Yuan², CHEN Wen-Rui²

(1. South China Agricultural University, Guangzhou 51062, China; 2. Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510623; 3. Dongguan Entry-Exit Inspection and Quarantine Bureau, Dongguan 523072, China)

ABSTRACT: Objective To establish a method of determination of 6 kinds of artificial musk (musk ambrette, galaxolide, musk xylene, ketone musk, tonalid and musk ketone) in cosmetics by gas chromatography-mass spectrometry (GC-MS). Methods Totally 6 kinds of artificial musk residues were extracted from the samples (cream, body wash, facial mask, *etc*) with ethyl acetate, cleaned up by solid phase extraction (SPE), then detected by GC-MS with external standard method. Results The 6 kinds of artificial musk had good linear relationship in the range of 0.02~0.50 μg/mL with correlation coefficients of 0.9968~0.9992. The recoveries of all artificial musk were 83.0%~110.38% at the spiked levels of 0.20, 0.40 and 2.00 mg/kg in cosmetics, and the relative standard deviations (RSD) were 2.8%~7.5%. The limits of detection (LODs) of 6 kinds of artificial musk were 20.0 ~ 40.0 μg/kg. Conclusion This method is simple, rapid and accurate, which is suitable for the simultaneous determination of 6 kinds of artificial musk in cosmetics.

Fund: Supported by the Guangdong Entry-Exit Inspection and Quarantine Bureau of Science and Technology Project (G2015-952)

基金项目: 广东出入境检验检疫局科技计划项目(G2015-952)

^{*}通讯作者: 方祥, 教授, 主要研究方向为微生物与添加剂残留分析。E-mail: 22539977@qq.com

^{*}Corresponding author: FANG Xiang, Professor, South China Agricultural University, Wushan, Tianhe District, Guangzhou 510642, China. E-mail: 22539977@qq.com

KEY WORDS: artificial musk; gas chromatography-mass spectrometry; cosmetics

1 引 言

麝香由于具有香味浓郁,经久、定香和提香效果好等特性,在香料工业和医药工业中有十分重要的使用价值。由于资源有限^[1],自麝香的国际贸易被严厉禁止后,人造麝香应运而生。据专家研究发现,人造麝香在给人们带来感观愉悦的同时,也将造成2方面危害:(1)对人类健康的负面影响^[1-4],化妆品的使用接触是人工合成麝香进入生物体的途径之一^[1,2,4-7],近年来在血液与母乳中检出人造麝香说明人体已被污染^[8-11];(2)对环境和生态的持久破坏^[1,2,4],这与麝香具有较强的亲脂憎水性,难降解,且有较强的生物富集作用等特性有关^[1,4,12]。

在环境监测行业,关于人造麝香污染水质类阳性样 本与土壤类阳性样本的报道见多[12-14]。在食品行业, 在水 产品中也有检出佳乐麝香与叶纳麝香[15,16] 在各种环境介 质中均发现有麝香残留[4], 这都反映一个不容乐观的事实: 环境、生物乃至人类都已严重被人造麝香污染。挪威气候 和污染局在《消费性产品中禁用特定有害物质》(PoHS 禁 令)中将二甲基麝香和麝香酮纳入禁用特定有害物质[1]。我 国《化妆品安全技术规范》[17]将葵子麝香、伞花麝香与西 藏麝香规定为禁止添加的合成麝香, 将麝香酮与二甲苯麝 香规定为限制使用的麝香。人造麝香从结构方面考虑主要 分为 3 大类: 硝基麝香、多环麝香、大环麝香[1]。关于人 造麝香的检测研究, 国内外多集中在硝基麝香、多环麝香、 大环麝香三类中的1类或2类的研究。在化妆品检测中对 于 3 大类合成麝香的同时检测较少, 本方法通过选择人造 麝香中硝基麝香(葵子麝香、二甲苯麝香、麝香酮)、多环 麝香(吐纳麝香、佳乐麝香)和大环麝香(麝香酮)为研究代表, 以面霜、沐浴露、面膜等不同基质的化妆品为试样, 选用 乙酸乙酯进行提取, 固相萃取(solid phase extraction, SPE) 小柱净化, 采用气相色谱-质谱联用(gas chromatographymass spectrometry, GC-MS)外标法进行分析。建立一种同时 分析 3 类人造麝香的检测方法, 解决传统方法分次检测 3 类人造麝香的难题, 节省实验检测成本和检测时间, 提高 检测的效率。

2 材料与方法

2.1 材料与仪器

Agilent 7890A-5975C 气相色谱质谱联用仪(美国安捷伦公司); IKA 涡旋混合器(IKA 公司); Sigma 离心机(美国Sigma 公司)。

乙酸乙酯、二氯甲烷、甲醇(色谱纯, 上海安谱公司); 6

种人造麝香(葵子麝香、酮麝香、佳乐麝香、吐纳麝香、二甲苯麝香、麝香酮)(标准品, 纯度≥98%, 德国 Dr.公司); 中性氧化铝(2 g/6 mL,; 上海安谱公司)

2.2 试验方法

2.2.1 标准溶液的配制

准确称取上述人造麝香标准品,于乙酸乙酯溶液中溶解,准确定容至 10 mL,配制成人造麝香标准储备溶液(1000 µg/mL),使用前根据需要配制成 0.02、0.03、0.05、0.10、0.20、0.50 mg/L 系列浓度的标准溶液,现配现用。2.2.2 样品前处理

萃取: 取均匀化妆品样品准确称取约 1.0 g 均匀样品于洁净的 15 mL 离心管中,加入 10 mL 二氯甲烷:乙酸乙酯 (2:1, V:V)混合溶剂,混匀后,25 °C超声 10 min,然后置离心机内(20 °C)4000 r/min 离心 5 min,取出,吸取 5.0 mL 上清液至试管中,50 °C氮吹浓缩约 1 mL 待净化;

净化: 以 5 mL 二氯甲烷活化中性氧化铝柱(2 g/6 mL), 将经步骤萃取处理浓缩后的样品上柱, 用 8 mL 二氯甲烷:乙酸乙酯(2:1, V:V)混合溶剂分两次洗脱, 收集洗脱液, 缓慢氮吹至近干, 用乙酸乙酯定容至 1 mL, 振荡混匀后, 过 0.22 μm 有机相滤膜, 装瓶待测。

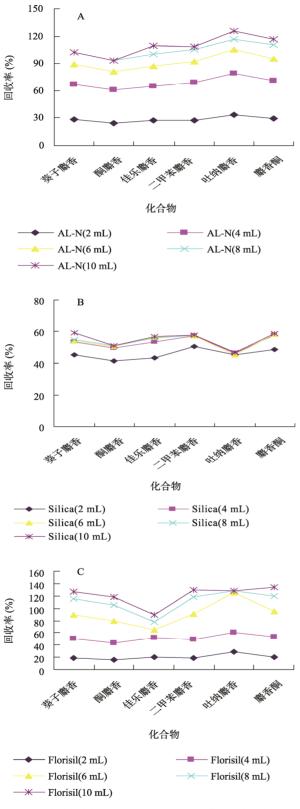
2.2.3 色谱条件

(1)GC 色谱条件

色谱柱: Agilent HP-5MS(30 mm×0.25 mm, 0.25 μm); 升 温程序: 90 ℃以 20 ℃/min 升至 182 ℃, 保持 3 min, 以 1.5 ℃/min 升至 192 ℃, 再以 25 ℃/min 升至 280 ℃, 保持 3 min; 运行共 20.79 min。 进样口温度: 260 ℃; 流速 2.0 mL/min; 进 样体积: 1 μL (不分流); 载气: 高纯氦(≥99.999%)。

(2)质谱条件

离子化方式: 电子电离(electronic ionization, EI); 离子源温度: 230 \mathbb{C} ; 电离能: 70 eV; 检测模式: 选择离子模式 (selected ion monitor, SIM)模式; 接口温度: 260 \mathbb{C} 。


3 结果与讨论

3.1 样品前处理条件的选择优化

3.1.1 固相萃取净化柱的选择

本实验通过选择中性氧化铝、硅胶柱以及弗罗里硅土进行净化平行测试,对葵子麝香、酮麝香、佳乐麝香、二甲苯麝香、吐纳麝香及麝香酮的吸附情况进行分析。由实验所制淋洗曲线得到,硅胶柱对于葵子麝香、酮麝香、佳乐麝香、二甲苯麝香、吐纳麝香及麝香酮这 6 种物质的保留较强,难以洗脱,因此不作考虑;弗罗里硅土与中性氧化铝对于这 6种物质的净化回收率相近,但考虑到化妆品类样品中含有油脂成分较多,对比弗罗里硅土以及中性氧化铝,本实验选用

中性氧化铝小柱作为样品的净化柱子,并且对中性氧化铝的用量也做了筛选实验。比较实验如图 1 所示。

注: A 中性氧化铝小柱; B 硅胶小柱; C 佛罗里硅土小柱 图 1 SPE 小柱的选择优化结果图

Fig. 1 Optimization results of SPE column selection

3.1.2 中性氧化铝克数的选择

本实验选取中性氧化铝 1.0、1.5、2.0、2.5 g, 比较淋洗溶液体积 2.0、4.0、6.0、8.0、10.0 mL 的加标回收情况,根据实验结果数据,中性氧化铝在 1.0~2.0 g 之间对于 6种麝香的保留基本可以用 8 mL 或 10 mL 洗脱液洗脱,考虑到化妆品样品中预期含有较多油脂成分,为达到较好的净化效果,本方法选用 2.0 g 中性氧化铝作为样品的净化柱。比较实验如图 2 所示。

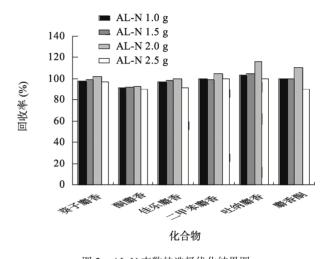


图 2 AL-N 克数的选择优化结果图 Fig. 2 Optimization results of AL-N grams

3.1.3 提取溶液的选择:

选用一个不含目标物的某品牌宝宝润肤乳作为空白样品,添加 200 ng 的 6 种麝香混合标准溶液,选用二氯甲烷、二氯甲烷:乙酸乙酯(2:1, V:V)、乙酸乙酯、丙酮、正己烷与甲苯 6 种有机溶剂对样品中添加的目标物进行提取回收实验,结果见图 3。

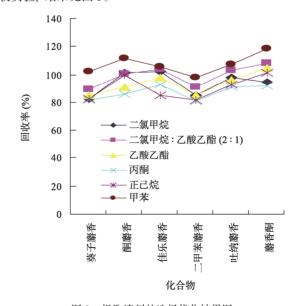


图 3 提取溶剂的选择优化结果图 Fig. 3 Optimization results of extraction solvent

分析实验数据,发现采用这6种溶剂对6种人造麝香的提取率均介于81.15%~118.36%之间。所选择的6种有机溶剂对于6种人造麝香的提取率,二氯甲烷:乙酸乙酯(2:1, V:V)与甲苯能取得满意结果,但是使用甲苯为萃取溶剂时,氮吹浓缩步骤耗时过长,而且甲苯的毒性较大,综合考虑,本方法选择二氯甲烷:乙酸乙酯(2:1, V:V)为实验方法的萃取溶剂。

3.2 色谱-质谱条件的选择优化

3.2.1 色谱柱的选择

用 AgilentHP-5MS(30 m×0.25 mm, 0.25 μm)色谱柱进行混合目标物质的色谱分离时发现,选用既定的色谱分析条件,6 种混合麝香物质各组分能很好的定性与定量,故而本方法选择 HP-5MS 为分析柱,效果见图 4B。

3.2.2 流速的选择

参考文献,本实验以 1.5、2.0、2.5 mL/min 3 个流速, 在其他条件一致的情况下,比较 0.20 μg/mL 混合待测物的 3 平行平均响应值,分析实验数据发现,流速升高,目标物 的响应值下降,在保证目标物不拖尾的情况下,选用适合 的流速,本实验选择 2.0 mL/min 为测试方法的流速。

3.2.3 定性筛选与定量检测方法的建立

采用全扫描模式(scan)对质量浓度为 1.00 μg/mL 的 6 种人造麝香混合标准溶液进行分析,得到质谱图,选择其中 3 个特征离子作为其定性分析的质谱条件(见表 1);然后分别采用选择 SIM 模式测定 6 种人造麝香混合标准溶液。

3.3 线性关系和检出限

在上述色谱质谱分析条件下对 6 种人造麝香浓度分别为 0.02、0.03、0.05、0.100、0.200、0.500 $\mu g/mL$ 的标准溶液建立标准曲线,见表 2.6 种麝香的线性范围为 0.02~0.500 $\mu g/mL$,相关系数大于 0.9968,检出限为 20.0~40.0 $\mu g/kg$ 。

3.4 回收率与精密度

选用一个不含目标物的某品牌宝宝润肤乳作为空白样品,准确称取 1.0 g,分别添加不同量的人造麝香标准品,GC-MS 测定方法的添加回收率,结果见表 3。可以看出,6 种人造麝香的添加回收率在 83.0%~110.38%之间,相对标准偏差(relative standard deviation, RSD)为 2.8%~7.5%。

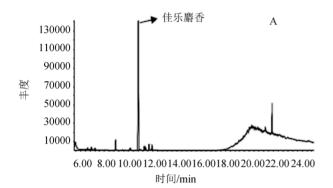
表 1 6 种人造麝香的特征离子
Table 1 Characteristic ions of 6 kinds of artificial musks

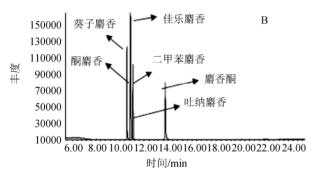
化合物	特征离子(m/z)		· 化合物 -	特征离子(m/z)	
	定性离子	定量离子	- 化自彻	定性离子	定量离子
葵子麝香	253,254	263	二甲苯麝香	297,265	282
酮麝香	223,239	238	吐纳麝香	258,201	243
佳乐麝香	213,258	243	麝香酮	294,128	279

表 2 6 种人造麝香的标准曲线、线性相关系数及检出限(n=6)

Table 2 Standard curves, linear correlation coefficients and detection limits of 6 kinds of artificial musk (n=6)

化合物	线性范围(μg/mL)	线性方程	相关系数 r ²	检出限(μg/kg)
葵子麝香	0.02 ~ 0.500	$Y=3.69\times10X-3.765\times10^2$	0.9986	40.0
酮麝香	$0.02 \sim 0.500$	$Y=5.39\times10X-4.53\times10^2$	0.9980	40.0
佳乐麝香	$0.02 \sim 0.500$	$Y=2.48\times10^2X-2.55\times10^3$	0.9992	20.0
二甲苯麝香	$0.02 \sim 0.500$	$Y=1.69\times10^2 X-2.85\times10^3$	0.9979	40.0
吐纳麝香	$0.02 \sim 0.500$	$Y=2.35\times10^2X-3.67\times10^3$	0.9968	20.0
麝香酮	$0.02 \sim 0.500$	$Y=3.55\times10X-4.16\times10^2$	0.9987	40.0


表 3 6 种人造麝香的回收率与 RSD(n=6)


Table 3 Recoveries and RSD of 6 kinds of artificial musks (n=6)

化合物 —	0.20 mg/kg		0.40 mg/kg		2.00 mg/kg	
	平均回收率(%)	RSD (%)	平均回收率(%)	RSD (%)	平均回收率(%)	RSD (%)
葵子麝香	83.0	7.5	91.7	4.3	93.4	5.7
酮麝香	101.12	4.0	92.29	3.4	96.19	2.8
佳乐麝香	92.25	4.6	100.29	6.9	101.53	4.4
二甲苯麝香	96.00	3.5	92.10	4.2	100.23	5.8
吐纳麝香	91.56	3.3	99.83	4.0	110.38	4.4
麝香酮	101.26	6.8	106.81	4.7	109.08	5.6

3.5 实际样品检测

采用本方法对本地商市场上 20 个乳类化妆品样品进行检测分析。分析发现有 17 个样品检出含有合成麝香,其中佳乐麝香阳性样品 17 个,吐纳麝香阳性样品 12 个。检出佳乐麝香最高含量达 2440.78 μg/kg,吐纳麝香最高含量达 570.17 μg/kg。图 4 为某品牌洗面乳样品与标准溶液的总离子色谱图(total ion chromatogram, TIC)。

注: A 样品; B 标准品图 4 人造麝香样品与标准溶液的 TIC 图

Fig. 4 Total ion current chromatograms of artificial musk sample and standard solution

4 结 论

本方法采用二氯甲烷:乙酸乙酯(2:1,V:V)对乳类化妆品中的合成麝香进行提取, GC-MS 外标法定量。结果表明, 当添加水平为 0.20~2.00 mg/kg 时, 6 种人造麝香(葵子麝香、酮麝香、佳乐麝香、二甲苯麝香、吐纳麝香与麝香酮)的回收率介于 83.0%~110.38%之间, 葵子麝香、酮麝香、二甲苯麝香与麝香酮的方法的测定下限为40.0 μg/kg, 吐纳麝香与佳乐麝香的测定下限为 20.0 μg/kg, 相对标准差(n=6)小于 7.5%。该方法灵敏度高,操作简便快捷, 结果准确可靠, 可同时检测 6 种人造麝香,满足日常检测工作的需求, 值得推广应用。

参考文献

[1] 李菊, 谢建军, 黄雪琳, 等. 人造麝香的危害性及其残留检测方法研究

- [J]. 理化检验-化学分册, 2015, 51(2): 272-276.
- Li J, Xie JJ, Huang XL, *et al.* Recent advances of researches on the harmfulness of articial musk and methods determination of its residual amount [J]. Phys Test Chem Anal Part B, 2015, 51(2): 272–276.
- [2] 阎俊秀, 李琼, 崔俭杰, 等. 二甲苯麝香和酮麝香的分析方法进展[J]. 上海应用技术学院学报(自然科学版), 2011, 2(11): 103–107. Yan JX, Li Q, Cui JJ, *et al.* Detection progress of musk xylene and musk
 - ketone [J]. J Shanghai Inst Technol (Nat Sci Ed). 2011, 2(11): 103–107.
- [3] 欧盟对酮麝香的危险性分类听取意见[J]. 国内外香化信息, 2006, (1): 22.
 - The listen of EU hazard classification musk ketone [J]. Domest Overseas Flavor Frag Cosmet Inform, 2006, (1): 22.
- [4] 周启星,王美娥,范飞,等.人工合成麝香的环境污染、生态行为与毒理效应研究进展[J]. 环境科学学报,2008,28(1):1-11.
 - Zbou QX, Wang ME, Fan F, *et al.* Research progress in environmental pollution, ecological behavior and toxicological effects of synthetic musks [J]. Acta Sci Circum, 2008, 28(1): 1–11
- [5] 杨润. GC/MS 法测定化妆品中三种人造麝香的方法[J]. 中国卫生检验杂志, 2003, 13(4): 456-457.
 - Yang R. The methods of three kinds of artificial musk by GC/MS in Cosmetics [J]. Chin J Health Lab Technol, 2003, 13(4): 456–457
- [6] 马强,白桦.固相萃取—同位素稀释—气相色谱—串联质谱法测定化 妆品中的二甲苯麝香[J].分析化学,2009,37(18):1776–1780.
 - Ma Q, Bai H. Determination of musk xylene in cosmetics by solid phase extraction-isotope dilution-gas chromatography tandem mass spectrometry [J]. Chin J Anal Chem, 2009, 37(18): 1776–1780.
- [7] 叶洪, 林永辉, 杨方. 气相色谱串联质谱法测定个人护理品中九种合成麝香[J]. 分析实验室, 2013, 32(2): 64-68.
 - Ye H, Lin YH, Yang F, *et al.* Determination of 9 synthetic musks in personal care and sanitation products by GC-MS /MS [J]. Chin J Anal Lab, 2013, 32(2): 64–68.
- [8] 梁高锋, 王琚, 周静, 等. 气相色谱一质谱联用测定母乳中合成麝香 [J]. 环境化学, 2010, 29(1): 113-116.
 - Liang GF, Wang J, Zhou J, *et al.* Determination of synthetic musk sinhuman milk samples by gas chromatography/mass spectrometry [J]. Environ Chem, 2010, 29(1): 113–116.
- [9] Kannan K, Reiner JL, Yun SH, et al. Polyccycli musk compounds in higher trophic level aquatic organisms and humans from the United States [J]. Chemosphere, 2005, 61: 693–700.
- [10] Reiner JL, Wong CM, Arcaro KF, et al. Synthetic musk fregrances in human breast milk from the United States [J]. Environ Sci Technol, 2007, 41: 3815–3820.
- [11] 胡正君, 史亚利, 蔡亚岐. 气相色谱-质谱法测定人体血液样品中合成 麝香[J]. 环境化学, 2010, 29(3): 530-535.
 - Hu ZJ, Shi YL, Cai YQ. Determination of synthetic musks inhuman blood by gas chromatography-mass spectrometry [J]. Environ Chem, 2010, 29(3): 530–535.
- [12] 胡正君, 史亚利, 蔡亚岐. 加速溶剂萃取气相色谱质谱法测定污泥、底泥及土壤样品中的合成麝香[J]. 分析化学, 2010, 38(6): 885-888.
 - Hu ZJ, Shi YL, Cai YQ. Determination of synthetic musk fragrances in sewage, sludge, and sedimentand soil using accelerated solvent extraction with gas chromatography-mass spectrometry [J]. Chin J Anal Chem, 2010, 38(6): 885–888.

- [13] 李贵梅, 项敏, 毕东苏. 城市污水处理厂中多环麝香的迁移转化途径研究 [J]. 上海应用技术学院学报(自然科学版), 2010, 10(3): 224–227 Li GM, Xiang M, Bi DS. Study on translation and conversion behavior of polycyclic musks in municipal wastewater treatment [J]. J Shanghai Inst Technol (Nat Sci Ed), 2010, 10(3): 224–227.
- [14] 罗兴, 孙丽娜, 张耀华. 土壤中多环麝香微波辅助提取与其它提取方法的对比研究[J]. 分析测试学报, 2011, 30(7): 745–749. Luo Q, Sun LN, Zhang YH. Comparative study of microwave assisted solvent extraction and other extraction methods of polycyclic musks in soil [J]. J Instrum Anal, 2011, 30(7): 745–749
- [15] 叶洪, 林永辉, 杨方, 等. 气相色谱 质谱法测定水产品中 9 种合成麝香[J]. 福建农林大学学报(自然科学版), 2013, 42(2): 202–206. Ye H, Lin YH, Yang F, et al. Determination of 9 kinds of synthetic musk in aquatic products by GC-MS [J]. J Fujian Agric Forest Univ (Nat Sci Ed), 2013, 32(2): 64–68.
- [16] 胡正君, 史亚利, 蔡亚岐. 加速溶剂萃取/气相色谱质谱法测定鱼类样品中的多环麝香[J]. 环境化学, 2011, 30(1): 362–265.

 Hu ZJ, Shi YL, Cai YQ. Determination of polycycli musks in fish samples by accelerated soventextraction (ASE) and gas chromatography-mass spectrometry [J]. Environ Chem, 2011, 30(1): 362–365.
- [17] 国家食品药品监督管理总局关于发布化妆品安全技术规范(2015 年版)

的公告[EB/OL]. [2015-12-23]. http://www.sda.gov.cn/WS01/CL0053/140161.html

Announcement of the State Food and Drug Administration on releasing the technical specifications for cosmetics (2015 Edition) [EB/OL]. [2015-12-23]. http://www.sda.gov.cn/WS01/CL0053/140161.html

(责任编辑: 姜 姗)

作者简介

李 菊,硕士,工程师,主要研究方向为添加剂残留分析。

E-mail: GDDGJUJU@163.com

方 祥, 博士, 教授, 主要研究方向 为微生物与添加剂残留分析。

E-mail: 22539977@qq.com