凯氏定氮仪联合液相色谱法测定香菇中甲醛含量

李冰茹, 王纪华, 马智宏*

(农业部农产品质量安全风险评估实验室、北京农业质量标准与检测技术研究中心、北京 100097)

摘 要:目的 建立全自动定氮仪和液相色谱仪检测分析香菇中甲醛的含量。方法 利用全自动定氮仪全封闭的有利条件,利用水浴方法析出香菇中甲醛,利用液相色谱仪测定甲醛含量。结果 香菇中甲醛的检测优化条件为蒸馏 4 min,水浴温度为 $60~^{\circ}$ 、水浴时间为 $60~^{\circ}$ min。当甲醛浓度为 $0.0~^{\circ}$ 10.0 mg/kg 时,标准曲线线性关系良好,相关系数 r 为 0.9995,加标回收率为 $73.0%~^{\circ}$ 107.3%。结论 凯氏定氮仪联合液相色谱法能够快速检测香菇中甲醛含量,并且准确度高。

关键词: 香菇; 甲醛; 定氮仪; 液相色谱法

Determination of the formaldehyde in *Lentinula edodes* by automatic Kjeldahl apparatus combined with liquid chromatography

LI Bing-Ru, WANG Ji-Hua, MA Zhi-Hong*

(Risk Assessment Lab for Agro-products, Ministry of Agriculture, Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China)

ABSTRACT: Objective To establish a method for determination of formaldehyde in *Lentinula edodes* by automatic Kjeldahl apparatus combined with liquid chromatography. **Methods** The formaldehyde was collected by automatic Kjeldahl apparatus, and the content of formaldehyde in *Lentinula edodes* was detected by liquid chromatography. **Results** The optimized conditions for determination of formaldehyde in *Lentinula edodes* were as follows: distilling time was 4 min, bath temperature was 60 °C, and bath time was 60 min. When the contents of formaldehyde were 0.0~10.0 mg/kg, the standard curve had a good linear relationship, and the correlation coefficient was 0.9995. The recoveries were 73.0%~107.3%. **Conclusion** The method of automatic Kjeldahl apparatus combined with liquid chromatography is proved, which can rapidly and accurately detect the content of formaldehyde in *Lentinula edodes*.

KEY WORDS: Lentinula edodes; formaldehyde; automatic Kjeldahl apparatus; liquid chromatography

1 引 言

甲醛作为香菇新陈代谢的天然物质,能与香菇中的蛋白质和香菇多糖结合,甲醛在香菇中的形态分为游离态

和结合态^[1,2]。大部分研究主要利用分光光度计、液相色谱仪等方法检测香菇中甲醛含量^[3-5]。这些方法的前处理主要利用蒸馏的方法析出甲醛,往往存在前处理时间长、处理过程复杂、甲醛在析出过程中容易挥发等问题。有研究利

基金项目: 北京市农林科学院创新建设项目(KJCX20140422)、国家农产品质量安全风险评估重大专项(GJFP2015006)

Fund: Supported by Innovation Foundation of Beijing Academy of Agriculture and Forestry Science (KJCX20140422) and National Major Projects of Agriculture Product Quality Security and Risk Assessment (GJFP2015006)

*通讯作者: 马智宏,副研究员,主要研究方向为农田环境有害物质预警、农产品质量以及植物生理生化. E-mail: mazh@nercita.org.cn

*Corresponding author: MA Zhi-Hong, Associate Researcher, Risk Assessment Lab for Agro-products, Ministry of Agriculture, Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China. Email: mazh@nercita.org.cn

用定氮仪检测啤酒和鹅肠中的游离态甲醛^[6-8],发现利用 定氮仪检测游离甲醛具有灵敏度高、选择性好、精密度和 准确度好等优点,而且更简便、更快捷。

本研究建立采取自动蒸馏代替传统的蒸馏法提取甲醛方法,利用液相色谱测定香菇中的甲醛^[9],为快速检测香菇中的甲醛建立方法。

2 材料与方法

2.1 材料与试剂

香菇: 采集干北京市的生产基地。

冰乙酸、磷酸、2,4-二硝基苯肼(分析纯, 纯度≥90%, 北京化学试剂厂); 乙腈(色谱纯, 北京化学试剂厂); 甲醛 标准品(北京市环保局标物中心)。

缓冲液: 称取 2.64 g 乙酸钠, 以适量水溶解, 加 1 mL 冰乙酸, 用纯水定容 500 mL。

2,4-二硝基苯肼溶液: 称取 2,4-二硝基苯肼 300 mg, 用乙腈定容至 500 ml。

衍生液: 取 100 mL 2,4-二硝基苯肼溶液, 与 100 mL 的缓冲液混匀。

无特殊说明所有试剂均为分析纯、所用水为纯水。

2.2 试验仪器

2690 液相色谱仪(美国沃特斯科技有限公司); 9246A 真空干燥箱(上海博讯实业有限公司医疗设备厂); DHG-9246A 电热恒温鼓风干燥箱(上海精宏实验设备有限公司); 3k30 离心机(美国 SIGMA公司); 8400 全自动定氮仪(丹麦福斯公司)。

2.3 试验方法

2.3.1 样品前处理

取香菇可食部分样品约 500 g 匀浆。

称取匀浆后的样品 20.0 g, 加 40 mL 纯水, 置于半自动凯式定氮仪样品管中, 迅速连接到凯式定氮仪上, 定氮仪选择单步蒸馏, 设置蒸馏时间, 开始蒸馏。在自动定氮仪蒸馏 4 min, 用纯水定容 100 mL, 摇匀待测。

准确吸取待测液 1 mL,加 4 mL 缓冲液, 5 mL 衍生液于 10 mL 试管中摇匀,盖紧塞子并用封口膜封口,置于 60 ° [它恒温水浴中加热 1

2.3.2 标准溶液的配制

移取 20、30、50、70、90 mL 浓度为 100 mol/L 甲醛标准溶液,置于 15 mL 刻度管,补加缓冲溶液至 5 mL,再加 2,4-二硝基苯肼溶液定容至 10 mL,盖上塞后混匀。置于60 ℃恒温振荡器中,150 r/min 振荡,每隔 20 min 取出混匀 1 次,1 h 后取出,冷却至室温。过 0.45 μm 有机滤膜,待测。 2.3.3 色谱条件

流动相甲醇与水(70:30, V:V)溶液; 流速: 1 mL/min;

选用 ACQU-ITY UPLC HSS T3 色谱柱($2.1~mm \times 50~mm$, $1.8~\mu m$); 柱温: 40~%; 进样体积: $20~\mu L$ 。根据试样中甲醛衍生物浓度的情况选定峰而积相近的标准溶液系列。以峰面积为纵坐标,甲醛衍生物标准溶液对应的甲醛浓度为横坐标,绘制标准工作曲线。用保留时间定性,外标法定量,保留时间 3.8~min。

3 结果与讨论

3.1 蒸馏时间的选择

蒸馏时间对结果有很大的影响^[10],蒸馏时间较短会导致甲醛析出不完全,较长会降低检测效率。本文分别尝试对 2、4、5、6 min 蒸馏时间进行甲醛含量的对比分析。检测结果如图 1 所示,随着蒸馏时间的延长,甲醛析出含量呈现先升高后降低的趋势,在 4 min 时达到最高,因此选择 4 min 最为合适。

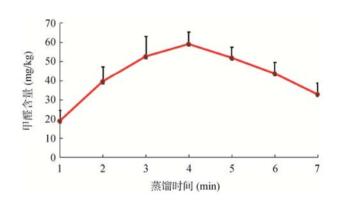
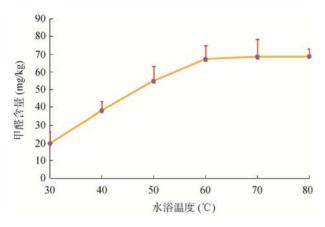


图 1 定氮仪蒸馏时间优化图(n=6)


Fig. 1 Optimization of distillation time of automatic Kjeldahl apparatus (n=6)

3.2 水浴温度的选择

水浴温度对甲醛的析出也有大的影响[11]。利用定氮仪析出甲醛不存在温度过高导致甲醛挥发的问题。但是低温不利于甲醛的完全析出,需要选择一个确保甲醛稳定析出的温度。在水浴时间固定即设定 50 min 条件下,分别将水浴温度设定 30、40、50、60、70、80 °等值进行检测。检测结果如图 2 所示,发现水浴温度到 60 °C 后,甲醛含量析出基本呈稳定状态,因此选择 60 °C 作为实验温度。

3.3 水浴时间的选择

为提高检测效率,选择适宜的水浴时间是有必要的。 在水浴温度 60 °C条件下,设定 30、40、50、60、70、80 min, 检测甲醛析出量,如图 3 所示,发现在 60 min 时,甲醛含 量趋于稳定,选择最优水浴时间为 60 min。

图 2 水浴温度对含量的影响(n=6)

Fig. 2 Effect of water bath temperature on formaldehyde content (n=6)

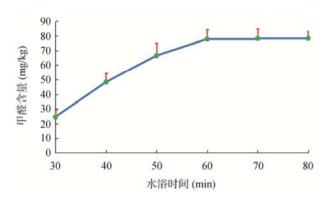


图 3 水浴加热时间对含量的影响(n=6)

Fig. 3 Effect of water bath heating time on formaldehyde content (*n*=6)

3.4 样品检测

按方法对 10 个不同来源的新鲜香菇样品进行检测,同时选择 1 个本底较低样品,添加高、中、低 3 个不同水平的浓度,分别进行 6 次平行试验进行加标回收率实验。检测结果如表 1 所示,样品均符合国家卫生标准 $[^{12,13}]$,加标回收率为 $73.0\%\sim107.3\%$,相对标准偏差 (relative standard deviation, RSD)在 $2.4\%\sim5.3\%$ 之间,符合检测要求。

测结果表明,本方法中甲醛浓度为 $0.0\sim10.0$ mg/kg 时,标准曲线线性关系良好,线性方程为 Y=655666.32X-93453.19,相关系数 r 为 0.9995,如表 2 所示。以噪声的 3 倍计算出最低检出限为 1.0 mg/kg。

4 结 论

香菇中态甲醛的自动定氮仪测定-液相色谱法优化条件为定氮仪蒸馏时间为 4 min, 水浴温度为 60 ℃, 水浴时间为 60 min; 液相色谱法采用国家标准。利用自动定氮仪,不仅提高了检测效率,降低了检测时间,极大地优化了香菇中甲醛含量检测的技术流程。对比比色法中需要先把甲醛蒸馏出来,再用分光光度法进行检测的流程[12-15], 不难发现传统蒸馏方法在蒸馏时很难控制, 蒸馏时间长, 耗时,而且精密度和回收率都受到很大影响。而自动定氮仪-液相色谱法能更快速的进行液相分析, 更适合大批量样品的检测。本方法可同时检测香菇中甲醛, 具有灵敏度高、选择性好、精密度和准确度好等优点, 且简便快捷。

表 1 加标回收率实验测定结果(n=6)
Table 1 Results of the recovery of standard addition (n=6)

样品中实际甲醛含量(mg/kg)	加标(mg/kg)	测试甲醛含量(mg/kg)	均值(mg/kg)	回收率(%)	相对标准偏差(%)	
	20	166.7		83.5		
150		170.2	167.8	101.0		
		165.9		79.5	8.7	
		171.4		107.0		
		164.6		73.0		
	50	201.3	196.9	102.6		
		194		88.0		
		188.7		77.4	4.8	
		198.8		97.6	4.6	
		198.5		97.0		
		200.3		100.6		
	100	257.3		107.3		
		248.4	251.9	98.4		
		245.2		95.2	2.1	
		248.1		98.1	2.1	
		255.9		105.9		
		256.7		106.7		

表 2	实际检测值			
Table 2	The test values			

峰面积	待测液浓度(mg/L)	质量(g)	定容体积(mL)	吸取体积(mL)	定容体积(mL)	甲醛含量(mg/kg)	均值(mg/kg)
157891	0.38	2.666	100	1	10	144	150
173473	0.41	2.587	100	1	10	157	130

参考文献

[1] 张烨. 香菇中甲醛的影响因素及其存在状态研究[D]. 重庆: 西南大学, 2007

Zhang Y. Studies on influence factor and existing form of formaldehyde in Lentinulac edodes [D]. Chongqing: Southwest University, 2007.

[2] 夏苗. 香菇内源性甲醛含量的消长规律及采后调控研究[D]. 杭州: 浙 江工商大学, 2011.

Xia M. The growth and decline of endogenous formaldehyde in shiitake mushroom (*Lentinus edodes*) as well as its control research [D]. Hangzhou: Zhejiang Gongshang University, 2011.

- [3] Bianchi F, Careri M, Musci M, et al. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis [J]. Food Chem, 2007, 100: 1049–1053.
- [4] Liu Y, Yuan Y, Lei XY, et al. Purification and characterisation of two related to endogenous formaldehyde in *Lentinula edodes* [J]. Food Chem, 2013, 138(4): 2174–2179.
- [5] 胡子豪、励建荣. 影响香菇甲醛代谢的物质研究[J]. 中国食品学报、 2008, 8(3): 50-56.

Hu ZH, Li JR. Studies on the substances effecting on formaldehyde metabolization in *Lentinus edodes* [J]. J Chin Inst Food Sci Technol, 2008, 8(3): 50–56.

[6] 李绮, 邢志强, 李莹, 等. 保鲜香菇中甲醛含量的分析研究[J]. 辽宁大学学报(自然科学版), 2004, 31(2): 105-107.

Li Q, Xing ZQ, Li Y, *et al.* Analysis on determination of formaldehyde in black mushroom of keeping fresh [J]. J Liaoning Univ (Nat Sci Ed), 2004, 31(2): 105–107.

[7] 王宝仁,董彩霞. 香菇中甲醛的提取与测定[J]. 光谱实验室, 2010, 27(3): 1223-1225.

Wang BR, Dong CX. Extraction and determination of formaldehyde in dry mushroom [J]. Chin J Spectrose Lab, 2010, 27(3): 1223–1225.

[8] 黄文水, 佘晓麒, 吴丽苹, 等. 凯氏定氮仪-分光光度法测定鹅肠中甲醛[J]. 光谱实验室, 2012, 29(4): 2607-2609.

Huang WS, She XQ, Wu LP, *et al.* Determination of formaldehyde in goose sausage by Keldahl nitrogen with spectrophotometry [J]. Chin J Spectrosc Lab, 2012, 29(4): 2607–2609.

[9] 杨雪娇,黄伟,林涛.快速蒸馏—乙酰丙酮分光光度法测定香菇的甲醛[J].食品科技,2006,10:240-242.

Yang XJ, Huang W, Lin T. Fast distilling-acetylcholine spectrophoto method to determine the formaldehyde content in the mushroom [J]. Food Sci Technol, 2006, 10: 240–242.

[10] 张博,石矛,马杰,等.全自动凯式定氮仪-超高效液相色谱法测定啤酒中甲醛的残留量[J].中国卫生检验杂志,2015,25(3):326-329.

Zhang B, Shi M, Ma J, *et al.* Determination of formaldehyde residues in beer by Kjeltec auto analyzer- UPLC [J]. Chin J Health Lab Technol, 2015, 25(3): 326–329.

[11] 彭锦峰, 刘景富, 吕爱华, 等. HPLC 法测定食用香菇中的甲醛[J]. 分

析试验室, 2005, 24(4): 57-59.

Peng JF, Liu JF, Lu AH, *et al.* Determination of formaldehyde in edible shiitake mushroom by high performance liquid chromatography [J]. Chin J Anal Lab, 2005, 24(4): 57–59.

第8卷

[12] 徐宝根 出口蔬菜农药残留控制实用手册[M] 杭州:浙江科学技术出版社,2007.

Xu BG Practical book for control of residues of pesticides on the vegetable for exportation [M]. Hangzhou: Zhejiang Science and Technology Press, 2007.

[13] 中华人民共和国商务部. 香菇出口标准化手册[R]. 2009.

Ministry of Commerce of P. R. C. Standardization Directory for mushroom exportation [R]. 2009.

[14] 吴清盛, 茅小燕. 香菇中甲醛的提取及其乙酰丙酮分光光度法测定[J]. 食品与发酵科枝, 2015, 51(1): 84-86.

Wu QS, Mao XY. Extraction of formaldehyde in mushrooms and determination with acetylacetone spectrophotometric method [J]. Food Ferment Technol. 2015. 51(1): 84–86.

[15] 李冰茹, 王纪华, 马智宏. 京畿地区香菇中甲醛含量检测及分析[J]. 食品安全质量检测学报, 2015, 6(9): 3632-3636.

Li BR, Wang JH, Ma ZH. Determination and analyzation on the formaldehyde content in *Lentinula edodes* from the capital region and its environs [J]. J Food Saf Qual, 2015, 6(9): 3632–3636.

[16] 邵仕萍,相大鵬,李华斌,等.乙酰丙酮衍生化高效液相色谱-荧光检测法测定食品中的甲醛[J].食品科学,2015,36(16):241-245

Shao SP, Xiang DP, Li HB, *et al.* Determination of formaldehyde in foods by high-performance liquid chromatography with fluorescence detection through derivatization with acetylacetone [J]. Food Sci, 2015, 36(16): 241–245

[17] 吕玉琼, 林凯, 侯穗波. 香菇中甲醛含量的监测报告[J]. 中国卫生检验杂志. 2002, 12(6): 701.

Lv YQ, Lin K, Hou HB. Monitoring report of formaldehyde content in *Letinous edodes* [J]. Chin J Health Lab Technol, 2002, 12(6): 701.

(责任编辑: 姜姗)

作者简介

李冰茹,硕士,工程师,主要研究方向为农产品质量检测及污染评价。

E-mail: libingru80@163.com

马智宏, 博士, 研究员, 主要研究方向为农田环境有害物质预警、农产品质量 以及植物生理生化等。

E-mail: mazh@nercita.org.cn