改进 QuEChERS 方法结合气相色谱串联质谱检测 黄瓜中的邻苯二甲酸酯类

宫俊杰^{1,2},孙 欣³,王明林³,邓泽慧³,宋艳秋³,刘文岭^{1*},张 敏²

(1. 天津科技大学海洋与环境学院,天津 300457; 2. 龙大食品集团有限公司,烟台 265231;3. 山东农业大学食品科学与工程学院,泰安 271018)

摘 要:目的 建立 Fe₃O₄磁性纳米材料 QuEChERS 结合气相色谱串联质谱联用仪检测黄瓜中 15 种邻苯 二甲酸酯类残留的方法。**方法** 样品采用乙腈超声提取,经无水 MgSO₄和 NaCl 盐析离心后,通过 Fe₃O₄ 磁性纳米材料结合 C₁₈和 GCB 吸附剂净化,采用气相色谱串联质谱 MRM 模式测定。结果 在 20~2000 μ g/kg 范围内线性关系良好(r^2 0.9985),检出限(S/N=3)为 0.37~1.58 μ g/kg。进行了 20、50 和 200 μ g/kg 3 个添加浓度的 15 种邻苯二甲酸酯类的回收率试验,回收率在 84.9%~111.6%; RSD 为 0.41%~6.84%。 结论 该方法准确、灵敏,符合多残留检测和痕量分析的技术要求,适用黄瓜等蔬菜中邻苯二甲酸酯类 残留的分析。

关键词:邻苯二甲酸酯类;Fe₃O4磁性纳米材料;QuEChERS;气相色谱质谱法;黄瓜

Determination of 15 kinds of phthalate esters in cucumber using gas chromatography-tandem mass spectrometry with QuEChERS method

GONG Jun-Jie^{1, 2}, SUN Xin³, WANG Ming-Lin³, DENG Ze-Hui³, SONG Yan-Qiu³, LIU Wen-Ling^{1*}, ZHANG Min²

 Tianjin University of Science and Technology, College of Marine and Environmental Sciences, Tianjin 300457, China;
 Longda Foodstuff Group Co., Ltd., Yantai 265231, China;
 College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China)

ABSTRACT: Objective To establish a method based on QuEChERS sample preparation method with Fe₃O₄ magnetic nanoparticles as the absorbing material and gas chromatography-tandem mass spectrometry (GC-MS/MS) for the determination of 15 kinds of phthalate esters residues in cucumber. **Method** The samples were extracted by ultrasound (homogeneity) using acetonitrile, and then salted out with sodium chloride and anhydrous magnesium sulfate. The supernatant was purified by C_{18} , Fe₃O₄ magnetic nanoparticles and graphitized carbon black (GCB) sorbents, and detected by GC-MS/MS with multiple reaction monitoring (MRM) mode. **Results** Under the optimum conditions, a good linearity was obtained in the range of 20~2000 ug/kg with correlation coefficients ranging from 0.9985 to 1, and the detection limit(*S/N*=3)ranging from 0.37 to 1.58 ug/kg. Recovery data were obtained for 15 kinds of phthalate esters spiked into sample extracts at concentrations of 20, 50 and 200 ug/kg. The average recoveries of the phthalate esters ranged from 84.9% to 111.6% and the relative standard deviation (RSD) ranged from 0.41% to 6.84%. **Conclusion** This method is

^{*}通讯作者:刘文岭,教授,主要研究方向为海洋环境工程。E-mail: lwl@tust.edu.cn

^{*}Corresponding author: LIU Wen-Ling, Professor, Tianjin University of Science and Technology, College of Marine and Environmental Sciences, No.29, Dishisan Road, Binhai District, Tianjin 300457, China. E-mail: lwl@tust.edu.cn

339

accurate and sensitive to meet the requirements of multiple residues determination, and can be applied in the analysis of phthalate esters residues in vegetables.

KEY WORDS: phthalate esters; Fe₃O₄ magnetic nanoparticles; QuEChERS; gas chromatography-tandem mass spectrometry; cucumber

1 引 言

邻苯二甲酸酯类(phthalate esters, PAEs)化合物, 俗称塑化剂或增塑剂, 是一组重要的环境污染物, 包括邻苯二甲酸二甲酯(DMP), 邻苯二甲酸二乙酯 (DEP), 邻苯二甲酸二异丁酯(DIBP), 邻苯二甲酸 二丁酯(DBP), 邻苯二甲酸二异辛酯(DEHP), 二辛 基酯(DOP)等^[1], 因其具有增加产品可塑性、透明 度、耐用性等特点被广泛应用到工业产品中^[2], 如 塑料、农药、涂料、化妆品等。据估计, 邻苯二甲 酸酯在塑料工业的全球消耗每年超过 180 亿磅^[3]。 邻苯二甲酸酯在自然中的积累, 会使得它在地表 水系统中广泛分布^[4], 从而导致它在农产品中残留 超标。

QuEChERS(Quick, Easy, Cheap, Effective, Rugged, and Safe)前处理技术是固相萃取和基质分散萃取前 处理技术最新发展的成果,于 2003 年由美国农业部 Anastassiades 教授开发,是一种快速的前处理方法 ^[5]。QuEChERS 法实质是固相萃取技术和基质固相分 散技术的衍生和进一步发展的方法,已被广泛应用 来分析农药和兽药残留^[6-8]。

纳米磁性材料通常指 1~100 nm 粒径大小的磁 性微粒,具有较大应用潜力。由于量子尺寸效应, 磁性纳米颗粒的粒径小于 30 nm 时,在磁场中有 磁性感应,撤离则磁性消失。正是由于其具有这 种特异磁性及纳米材料特点,使其成为研究热点 ^[9]。目前,磁性纳米材料已结合多种前处理方法 发展成为一种新型的样品处理方法,应用延伸到环 境、食品、中草药等分析领域,并在农药残留检测 领域发展迅速^[10-12]。但是基于 Fe₃O₄ 磁性纳米材料 检测蔬菜中的邻苯二甲酸酯类残留尚未见报道,本 研究基于这一材料的特性,改进 QuEChERS 技 术,结合气相色谱串联质谱法(GC-MS/MS)建立 了检测蔬菜中邻苯二甲酸酯类物质残留的分析 方法。

2 材料与方法

2.1 仪器、试剂与材料

气相色谱-三重四极杆质谱联用仪(TQ8030,日本岛津),自动进样器(AOC-20i+s,日本岛津);高速 台式冷冻离心机(TGL-16M,湖南湘仪);涡旋混合器 (QL-866,其林贝尔);超声清洗仪(DS-8510DTH,上 海生析);均质器(T-18,广州仪科)。为了降低 PAEs 污染,整个实验过程使用的离心管均为玻璃材质。实 验用水为二次蒸馏水。

邻苯二甲酸二甲酯(DMP)、二乙酯(DEP)、二丁 酯(DBP)、二异辛酯(DEHP)、正辛酯(DNOP)、二环 己酯(DCHP)、二戊酯(DPP)、丁苄酯(BBP)、二异丁 酯(DiBP)、二(2-甲氧基)乙酯(DMEP)、二(4-甲基-2-戊基)酯(BMPP)、二(2-乙氧基)乙酯(DEEP)、二己酯 (DHXP)(美国 o2si smart solutions 公司),邻苯二甲酸 二丙酯(DPRP)(德国 Dr. Ehrenstorfer),邻苯二甲酸二 烯丙酯(DAP)(国药);甲醇(色谱纯,山东禹王);无水 硫酸镁(分析纯,科密欧)用前在 500 ℃高温下烘4 h; 氯化钠(分析纯,天津博迪化工);C₁₈(40~60 µm, Agela Techonlogies 公司);乙二胺-N-丙基硅烷 (PSA)、石墨化炭黑(GCB)(均为 40~60 µm,天津博纳 艾杰尔);氯化铁(分析纯,广东西陇);氯化亚铁(分 析纯,天津大茂化)。

2.2 标准工作液的配制

20 种标准品用甲醇配制成 50 mg/L 的混合储备 液,于4 ℃冰箱中避光保存。

为了消除样品基质效应,将储备液用空白样品 前处理后的基质溶液稀释至为 0.02、0.05、0.2、1.0 和 2.0 mg/L浓度的系列标准工作溶液,于4 ℃冰箱中 避光保存。

2.3 样品前处理

前处理方法采用改进后的 QuEChERS 方法, 黄 瓜样品切成小块用组织捣碎机捣碎, 获得均匀的样 品。称取样品 10.00 g 于 50 mL 玻璃具塞离心管, 加 入 10 mL 乙腈, 采用超声(时间 15 min、温度 30 °C) 进行提取; 加入 1 g 氯化钠和 4 g 无水硫酸镁后立即 涡旋 1 min, 随后在 4000 r/min 条件下离心 5 min 后; 取 1 mL 上清液同时加入 100 mg 无水 MgSO₄, 10 mg GCB、10 mg C₁₈和 40 mg Fe₃O₄磁性纳米粒子^[15]; 旋 涡 30 s, 通过外加磁场收集上清液; 取 1 μ L 注入 GC-MS/MS。

2.4 气相色谱-质谱条件

色谱柱: Rtx-5ms (30 m×0.25 mm, 0.25 μm); 载 气: 氦气; 进样口温度: 280 ℃; 升温程序: 初始温度 60 ℃, 保持1 min, 以 20 ℃/min 升至 220 ℃保持1 min, 然后再以5 ℃/min 升到 280 ℃保持5 min; 色谱 柱流量: 1 mL/min; 进样量: 1 μL; 不分流进样。

采用多反应监测(MRM)模式, EI 分析。离子源温 度: 280 ℃; 传输线温度: 280 ℃; 碰撞气: 氩气; 溶 剂延迟: 3.0 min; 检测器电压: 1.2 kV。15 种邻苯二甲 酸酯类在串联质谱条件下的目标离子对和参考离子 对等质谱参数及保留时间见表 1。

质谱条件的优化及数据处理采用 Labsolution 和 Excel2010, 作图软件采用 OriginPro8.0。

3 结果与讨论

3.1 萃取方式的选择

萃取方式是影响萃取率的一个重要参数。食品中 有害物质萃取方式有很多种,传统 QuEChERS 方^[13] 法主要采用振荡萃取的方式,但本实验采用的是玻 璃离心管,重量大,易碎,不易使用振荡法,且振荡 提取不能充分使溶剂与样品接触。本实验考查了超声 萃取^[14]和均质萃取^[15]对邻苯二甲酸酯类回收率的影 响。结果如图 1 所示,采用超声萃取 15 min 选取的 6 种目标物的回收率均高于均质萃取。因此最终确定使 用超声萃取 15 min。

邻苯二甲 酸酯类	保留时间 /min	目标离子对 (m/z)	碰撞电压 /eV	参考离子对 (m/z)	碰撞电压 /eV	参考离子对 (m/z)	碰撞电压 /eV
DMP	7.9	163.0>77.1	25	163.0>133.1	10	163.0>92.0	25
DEP	8.8	149.0>65.0	20	149.0>93.0	15	149.0>121.1	10
DAP	9.8	149.0>65.1	20	149.0>93.1	15	149.0>121.0	10
DPRP	10.0	149.0>65.1	25	149.0>93.0	15	149.0>121.0	15
DIBP	10.7	149.0>65.1	25	149.0>93.0	20	149.0>121.0	15
DBP	11.5	149.0>65.1	25	149.0>93.0	15	149.0>121.1	15
DMEP	11.9	59.0>57.1	30	59.0>55.0	40	59.0>52.0	25
BMPP	12.6	149.0>65.1	25	149.0>93.1	20	149.0>121.0	15
DEEP	12.9	73.0>60.9	10	73.0>55.1	5	73.0>58.1	20
DPP	13.5	149.0>65.1	25	149.0>93.0	20	149.0>121.0	15
DHXP	15.8	149.0>65.1	25	149.0>93.0	20	149.0>121.0	15
BBP	15.8	149.0>65.1	20	149.0>93.0	15	149.0>121.1	15
DCHP	18.3	149.0>65.1	25	149.0>121.0	15	149.0>93.0	20
DEHP	18.3	149.0>65.1	25	149.0>93.0	20	149.0>121.0	15
DNOP	21.0	149.0>65.1	25	149.0>93.1	20	149.0>121.0	15

表 1 15 种邻苯二甲酸酯类的 GC-MS/MS 分析参数 Table 1 GC-MS/MS parameters for the 15 phthalate esters

Fig. 1 Selection of extraction methods

3.2 净化剂的选择

传统 QuEChERS 前处理方法是采用 PSA 为净化 剂,但由于不同净化剂对杂质和分析物有不同的吸 附,所以对 PSA、C₁₈、GCB、Fe₃O₄磁性纳米材料 4 种净化剂在颜色外观和回收率效果进行比对(添加量 均为 50 mg)。图 2a 为四种净化剂对色素的吸附的对 比(添加量均为 50 mg),由图可以看出,GCB 去除黄 瓜中的色素能力较强;C₁₈和 Fe₃O₄磁性纳米都对色素 有一定的吸附;PSA 基本没有除去黄瓜中色素。图 2b 为净化剂对邻苯二甲酸酯类回收率的影响,结果表 明,GBC 对 6 种有平面结构的 PAEs 都有一定吸附, 但其能有效的去除色素;C₁₈对 DEHP 有轻微吸附,但 能除去样品中酯类干扰物;Fe₃O₄ 磁性纳米材料对六 种 PAEs 都没有吸附,且能加快分离缩短分析时间。 综合考虑选择 C₁₈/GCB/Fe₃O₄ 磁性纳米材料 3 种吸附 剂组合为净化剂。

图 2b 净化剂的选择 Fig. 2b Selection of adsorbents

3.3 净化剂用量的优化

3.3.1 GCB 用量的优化

图 3 为 GCB 用量在 2~25 mg 时对邻苯二甲酸酯 类回收率的影响。由图 3 可以看出, GCB 的用量为 2~10 mg 时, 回收率均在 80%以上, 满足残留分析的 要求。但考虑去除色素效果, 用量越多净化效果越好, 因此最终确定 GCB 用量为 10 mg, GCB 的用量为 10 mg 时, 6 种目标物回收率分别为 94%、91%、93%、 94%、101%、81%, 回收率最好。

图 3 GCB 用量的优化 Fig. 3 Optimization the mass of GCB

3.3.2 C₁₈用量的优化

图 4 考查了 C₁₈ 用量在 0~70 mg 时对邻苯二甲酸 酯类回收率产生影响。当添加的 C₁₈ 的量为高于 10 mg 时,开始对目标物吸附,因此,实验确定 C₁₈的添 加量为 10 mg,回收率分别为 103%、94%、93%、85%、86%、84%。

图 4 C_{18} 用量的优化 Fig. 4 Optimization the mass of C_{18}

3.3.3 Fe₃O₄磁性纳米材料用量的优化

图 5 为 Fe₃O₄磁性纳米材料用量在 0~60 mg 时对 目标农药回收率产生的影响。当 Fe₃O₄的添加的量低 于 20 mg 时,外加磁场不能使混合吸附剂快速与样品 基质分离。可能是因为 Fe₃O₄ 量太少磁特性表现不明 显。当 Fe₃O₄的添加量越接近 40 mg 时,目标物回收 率越高。因此,实验最终确定 Fe₃O₄的添加量为 40 mg。另外,增加 Fe₃O₄ 用量造成平面结构农药回收率 的降低远远小于增加 GCB 用量引起的。

图 5 Fe₃O₄磁性纳米材料用量的优化

Fig. 5 Optimization the mass of Fe₃O₄ magnetic nanoparticles

3.4 方法学验证

3.4.1 线性方程、检出限、定量限

以各组分的峰面积 Y 对质量浓度 X(μg/L)绘制基 质标准曲线,线性关系、相关系数、添加回收率等参 数见表 2。测定结果表明 15 种标准品目标物在质量 浓度范围为 20~2000 μg/kg 时线性关系良好,相关系 数均高于 0.9985。

3.4.2 回收率和精密度

设置 3 个添加水平分别为 20、50、200 μg/kg, 15 种标准品目标物在黄瓜样品中的平均回收率为 84.9%~111.6%; RSD 为 0.41%~6.84%。表明该方法有 良好的精密度和准确度, 能满足 15 种邻苯二甲酸酯 的检测要求。

名称	线性范围/(µg/kg)	标准曲线	r^2	检出限(S/N=3)/(µg/kg)	定量限(S/N=10)/(µg/kg)
DMP	20-2000	$Y = 2.25 \times 10^{6} X + 4.00 \times 10^{5}$	0.9985	0.49	1.64
DEP	20-2000	$Y = 8.49 \times 10^5 X - 3.64 \times 10^4$	0.9991	0.63	2.10
DAP	20-2000	$Y=1.71\times10^{5}X-1.97\times10^{4}$	0.9990	0.56	1.88
DPRP	20-2000	$Y = 1.00 \times 10^{6} X - 6.55 \times 10^{5}$	0.9995	0.29	0.98
DIBP	20-2000	$Y=1.25\times10^{6}X+6.77\times10^{4}$	0.9999	0.27	0.88
DBP	20-2000	$Y=1.30\times10^{6}X-1.12\times10^{5}$	0.9999	0.51	1.69
DMEP	20-2000	$Y=1.16\times10^{5}X-1.55\times10^{4}$	0.9997	1.63	5.45
BMPP	20-2000	$Y = 4.49 \times 10^5 X - 1.31 \times 10^4$	0.9988	0.52	1.73
DEEP	20-2000	$Y=3.50\times10^{5}X-8.01\times10^{4}$	0.9999	0.72	2.42
DPP	20-2000	$Y=1.21\times10^{5}X+1.39\times10^{4}$	0.9990	0.55	1.85
DHXP	20-2000	$Y=9.80\times10^{5}X-1.38\times10^{4}$	0.9986	0.37	1.23
BBP	20-2000	$Y = 8.24 \times 10^5 X - 1.58 \times 10^4$	0.9999	1.30	4.33
DCHP	20-2000	$Y = 7.57 \times 10^5 X - 8.56 \times 10^4$	0.9995	1.58	5.28
DEHP	20-2000	$Y = 7.58 \times 10^5 X - 9.55 \times 10^4$	0.9996	0.78	2.61
DNOP	20-2000	$Y = 5.09 \times 10^5 X - 8.40 \times 10^4$	0.9988	1.24	4.12

表 2 15 种邻苯二甲酸酯的线性范围、相关系数、检出限和定量限 Table 2 Linear ranges, correlation coefficients (*r*), LOD and LOQ for the 15 kinds of phthalate esters

	20 µg	/kg	50 µg/	kg	200 µg/kg	
初本一中酸酯 一	回收率(%)	RSD (%)	回收率(%)	RSD(%)	回收率(%)	RSD (%)
DMP	103.3	1.26	101.0	2.89	100.7	3.82
DEP	96.0	1.65	87.4	1.80	87.2	1.19
DAP	95.7	0.62	90.5	2.20	92.5	0.94
DPRP	109.4	1.98	92.5	2.19	90.5	2.53
DIBP	100.6	2.72	93.7	3.89	85.6	0.73
DBP	93.2	6.84	101.0	1.01	103.8	3.37
DMEP	95.3	1.69	89.3	2.72	94.3	0.56
BMPP	94.1	0.84	105.1	1.05	92.3	1.10
DEEP	102.6	1.04	94.9	4.27	85.8	1.89
DPP	111.6	0.83	104.0	1.60	98.3	0.41
DHXP	90.3	2.24	102.5	2.96	87.9	2.97
BBP	96.7	1.12	106.2	4.18	95.0	5.14
DCHP	97.1	1.81	89.1	1.51	103.1	2.03
DEHP	88.9	3.58	86.8	5.11	94.2	3.61
DNOP	94.6	2.29	84.9	2.96	93.8	3.13

表 3 15 种邻苯二甲酸酯类的添加浓度、平均回收率和相对标准偏差(n=3) Table 3 Spiked level, average recovery and RSD for 15 kinds of phthalate esters (n=3)

4 结 论

本文建立了 QuEChERS 方法结合气相色谱串联 质谱检测黄瓜中 15 种邻苯二甲酸酯类的方法。该法 利用 Fe₃O₄ 磁性纳米材料-QuEChERS 方法作为黄瓜 样品的前处理, 操作简便、溶剂使用少, 分析所需时 间大幅减短。此外, 该法利用气相色谱-串联质谱法 具有较高的精密度和灵敏度, 能满足多种邻苯二甲 酸酯类残留的分析检测要求。所以该方法可用于黄瓜 等蔬菜中邻苯二甲酸酯类的定量和定性检测。

参考文献

- Ma LJ, Qiao Y, Lu Y, *et al.* Determination of phthalate esters in teas and tea infusions by gas chromatography-mass spectrometry [J]. Food Chem, 2015, 197(11): 1–7.
- [2] 孙欣, 齐莉, 秦廷亭, 等. QuEChERS-气相色谱-三重串联四极
 杆质谱法检测黄瓜中的 19 种邻苯二甲酸酯[J]. 色谱, 2014, 11(32): 1260–1265.
 Sun X, Wang WW, Qin TT, *et al.* Determination of 19 phthalate

esters in cucumber using QuEChERS coupled with gas chromatography-triple quadrupole mass spectrometry [J]. Chin J Chromatogr, 2014, 11(32): 1260–1265.

[3] Amayreh M, Chanbasha, A. Rahman AA. Determination of phthalate esters in bottled water using dispersive liquid-liquid microextraction coupled with GC-MS [J]. Sep Sci, 2013, 36(12): 2003-2009.

- [4] Wu X, Hong H, Li X, *et al.* Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water [J]. Sci Total Environ, 2013, 444: 224–230.
- [5] Yang RZ, Wang JH, Wang ML, *et al.* Dispersive solid-phase extraction cleanup combined with accelerated solvent extraction for the determination of carbamate pesticide residues in radix glycyrrhizae samples by UPLC-MS-MS [J]. J Chromatogr Sci, 2011, 49: 702–208.
- [6] Diez C, Traag WA, Zommer P, et al. Comparison of anacetonitrile extraction/partltioinng and "dispersive solid-Phase extraction" method with classical multi-residue methods for the extraction of herbicide residues in barely samples [J]. J Chromatogr A, 2006, 1131(1–2): 11–23.
- [7] Xu X, Zhang XM. Determination of methenamine residues in edible animal tissues by HPLC-MS/MS using a modified QuEChERS method: Validation and pilot survey in actual samples [J]. Food Control, 2016, 61: 99–104.
- [8] Aysal P, Ambrusá, Lehotay SJ, et al. Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethylacetate for extraction [J]. Environ Sci Health, Part B, 2007, 42(5): 481 –490.
- [9] 王会娟,李忠海,黎继烈,等. Fe3O4 磁性纳米材料在食品安全检测中的研究进展 [J]. 食品工业科技, 2013, 32(6): 377-380.

Wang HJ, Li ZH, Li JL, et al. Research progress in application of

Fe3O4 magnetic nanocomposites in food safety detection [J]. Sci Technol Food Ind, 2013, 32(6): 377–380.

- [10] 许丽卫, 王久荣, 韩雪峰. 纳米磁性材料在中草药分析中的应用 [J]. 中国中药杂志, 2012, 37(23): 3513–3517.
 Xu LW, Wang JR, Han XF. Application of magnetic materials in analysis on Chinese herb medicines [J]. J Chin Mater Med, 2012, 37(23): 3513–3517.
- [11] Deng XJ, Guo QJ, Chen XP, et al. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography-mass spectrometry [J]. Food Chem. 2014, 145: 853–858.
- [12] Chen LG, Li B. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey [J]. Food Chem, 2013, 141(1): 23–28.
- [13] Anastassiades M., Lehotay SJ, Stajnbaher D, et al. Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce [J]. J AOAC Int, 2003, 86(2): 412–431.
- [14] 路杨, 吕志强, 刘印平, 等. QuEChERS 净化超高效液相色谱 法快速测定豆制品中的 9 种工业染料 [J]. 食品安全质量检测 学报, 2015, 6(10): 3804–3809.

Lu Y, Lv ZQ, Liu YP, *et al.* Determination of 9 kinds of dyes in bean products by ultra performance liquid chromatography with QuEChERS cleanup [J]. J Food Saf Qual, 2015, 6(10): 3804–3809.

[15] Li YF, Qiao LQ, Li FW, et al. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry [J]. J Chromatogr A, 2014, (1361):77–87.

(责任编辑:金延秋)

作者简介

宫俊杰,硕士,主要研究方向为农业 环境工程。 E-mail: gongjj@longda.cn

刘文岭,教授,主要研究方向为海洋 环境工程。 E-mail: lwl@tust.edu.cn