植物源性食品中农药残留筛选平台研究

冯 超,徐 骞,金玉娥,卢大胜,陈 冲,熊丽蓓,汪国权^{*} (上海疾病预防控制中心,上海 200336)

摘 要:目的 针对植物源性食品中的未知农药残留,在原农药残留筛选平台的基础上,采用气相色谱-三 重四极杆质谱联用仪和 UPLC-Q-Orbitrap 两种色质技术并配合商业和自建农药筛查库建立共 1200 多个农药 及其降解产物的筛选平台,满足未知农残的快速筛选要求。**方法** 建立筛选平台相关筛选方法和准则,并通 过两次欧盟国际比对(EUPT)对该平台进行验证评估。结果 该平台在 24 h 内可完成农残筛选,筛选方法基 于农药数据库和空白基质,两次能力验证中阳性化合物的检出率均在 90%以上且结果无假阳性。 结论 该 平台利用串联质谱和高分辨质谱的高选择性,结合农药数据库和智能筛选软件,在无标准参考物质的情况 下实现非靶向农药的快速筛查。

关键词:非靶向筛选;农药残留;气相色谱-三重四极杆质谱联用法;UPLC-Q-Orbitrap

Research on a pesticide residue screening platform in botanical food

FENG Chao, XU Qian, JIN Yu-E, LU Da-Sheng, CHEN Chong, XIONG Li-Bei, WANG Guo-Quan^{*} (Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China)

ABSTRACT: Objective To establish a rapid non-targeted pesticide residue screening platform involving more than 1200 pesticides residues and their degradation products by using gas chromatography tandem mass spectrometry/mass-spectrometry and ultra performance liquid chromatography-Q-Orbitrap technology for unknown pesticide residue in botanical food, on the basis of original screening platform. **Methods** The principal and criterion of pesticides screening platform were established, and the platform was evaluated through twice proficient tests from Europe Union Reference Lab. **Results** The platform successfully completed the tests based on comprehensive database and blank matrix in 24 h with 90% screening rate and without false positive. **Conclusion** The platform achieved rapid screening of non-targeted pesticide residue without reference of standard materials by using the properties of high selectivity of triple quadrupole and high-resolution mass spectrometer combined with comprehensive pesticides database and advanced compound screening software.

KEY WORDS: non-targeted screening; pesticide residue; gas chromatography-mass spectrometry/mass spectrometry; UPLC-Q-Orbitrap

基金项目:国家重大科学仪器设备开发专项 (2013YQ150557)、农药残留参比实验室政府专项

Fund: Supported by National Key Scientific Instrument and Equipment Development Projects (2013YQ150557), Laboratory for Pesticide Residues Monitoring Government Projects

^{*}通讯作者:汪国权, 主任技师, 主要研究方向为色谱-质谱在公共卫生领域的分析。E-mail: gqwang@scdc.sh.cn

^{*}Corresponding author: WANG Guo-Quan, Senior Technologist, Shanghai Municipal Center for Disease Control and Prevention, No.1380, West Zhongshan Road, Changning District, Shanghai 200336, China. E-mail: wangguoquan@scdc.sh.cn

1 引 言

目前全世界使用的农药超过 1180 多种, 其中包 含 435 种除草剂, 335 种杀虫剂和 410 种杀菌剂^[1]。这 些农药的物化性质差异很大、涵盖了从中低极性化 合物如有机氯、有机磷、拟除虫菊酯至较高极性化合 物如氨基甲酸乙酯、硝基苯胺类、三嗪、苯基脲、苯 酰脲、吡咯、苯并咪唑、吗啉、苯甲酸、苯甲氧酸和 磺脲类等,数量多且性质各异的农药给多农残分析 带来巨大挑战。目前、我国已有多农药残检测方法、 涉及的农药达到500多种,但由于其方法使用面较窄, 未覆盖所有样品基质,同时存在通量性差、耗时长以 及需要定期更新标准品所带来的高成本等问题。我国 GB 2763-2014 新限量标准涉及 387 种农药和 3650 项 限量指标、但由于我国各地还没有贯彻农药的合理 使用、诸多的限量标准所涉及的农药检测范围可能 远小于农药实际使用范围,所以有必要建立一个快 速、高通量和准确可靠的农药筛选平台、通过筛选确 定可疑农药分析物后再根据农药性质和样品基质确 定相应的定量分析方法,尽可能实现不具备标准品 的非靶向农药的全谱鉴定。通过快速筛选平台的建立、 能提高公共安全的快速应急响应能力、减少由于农 药残留的食品安全事件带来的恶劣社会影响。

目前的农药筛选技术已从最初的低分辨质谱 (mass spectrometer, MS)^[2,3]向多级质谱(IT, QqQ)^[3-6], 高分辨质谱(ToF, Orbitrap)^[7-10]和杂合质谱(Q-ToF, Q-Orbitrap)^[11,12]发展。同时,逐步完善的农药数据库 和智能化信息处理软件的发展也极大地提高了化合 物筛选效率。本实验室曾基于凝胶渗透色谱-气相色 谱质谱联用仪(GPC-GC/MS)、液相色谱-四极杆飞行 时间质谱仪联用仪(LC-Q-ToF)和气相色谱-三重四极 杆质谱联用仪(GC-MS/MS)技术在国内较早地建立了 有关植物源性样品中农药的快速筛选和确证方法^[4], 本研究基于前期研究,采用 GC-MS/MS 和 UPLC-Q-Orbitrap 两种技术并配合商业农药库和自建 库的使用,建立一个更加高效全面的农药筛选平台。

本文根据本实验室参加两次欧盟国际比对的样 品检测来阐述该筛选平台的运行过程、相关技术要点 和难点并验证该平台的有效性。一次比对项目为 EUPT-FV-SM06(青椒),举办方未给出农药筛选范围, 并要求在 72 h 之内完成样本的定性报告,另一比对 项目为 EUPT-FV-T02(茶叶),要求在 175 种疑似农药 范围内进行筛选并定量。

2 材料和方法

2.1 仪器与试剂

Aglient 7000B GC-MS/MS 气相色谱-三重四极 杆质谱联用仪, 配备 7890GC 和 PTV 进样口(美国 Agilent 公司); 色谱柱配置: 保护柱(脱活 DB 柱, 5 mL×0.25 mm, 0.25 μ m d_F)串联色谱柱 A 和 B(HP-5MS, 15 mL×0.25 mm, 0.25 μ m d_F), 柱 A 与 B 间连接反吹 系统; 农残数据库: G9250AA(Agilent), 数据分析软 件: Agilent MassHunter Quantitative Analysis 6.0。

ThermoScientific[™] Q-Exactive 四极杆-静电场轨 道阱高分辨质谱, DionexUltiMate 3000 快速高效液相 色谱系统(美国 Thermo 公司)。色谱柱: ThermoFisher[™]AccucoreaQ(150 mm×2.1 mm, 2.6 µm)。数据分析软件为 ThermoXcalibur 2.2 SP1 和 ThermoScientific[™]TraceFinder 3.1。

乙腈,甲醇(色谱纯,Fisher Scientific),甲酸,甲酸铵(色谱纯,TEDIA);乙酸,乙酸钠,氯化钠,无水硫酸镁 (分析纯,国药试剂有限公司);N-丙基乙二 胺 (PSA)和石墨化炭黑 (GCB)购买自美国 SEPAX-UCT公司;TPT粉末购买自天津博纳艾杰尔 科技有限公司;农药标准品均购买自 Dr. Ehrenstorfer公司;本研究青椒和茶叶考核样品均由 欧盟参考实验室(EURL)提供。

2.2 实验方法

2.2.1 仪器条件

(1) 气相色谱-三重四极杆质谱联用仪 (GC-MS/MS)

GC采用 PTV 溶剂排空进样模式(进样量为 5 μL), 进样口升温程序为:初始温度为 70 °C,维持 0.3 min, 以 360 °C/min 升温至 280 °C,维持 45 min;在 0 psi 压力下完成载气辅助溶剂排放(30 mL/min 维持 0.2 min)。柱箱温度升温程序为:60 °C 维持 1 min,以 40 °C/min 升温至 120 °C,再以 5 °C/min 升温至 310 °C, 维持 5 min。色谱柱的流速控制模式为恒流模式,色 谱柱 A 的流速为 1.0 mL/min,色谱柱 B 的流速为 1.1 mL/min(为匹配农药数据库各化合物的保留时间,需 要通过微调色谱柱 A 与 B 的流速将参照物质-甲基毒 死蜱的保留时间锁定为 11.1 min)。反吹系统:柱温箱 程序升温结束后以 310 °C 维持 5 min,期间色谱柱 B 的流速为 7 mL/min,色谱柱 A 的流速为-4 mL/min。 质谱参数: 传输线,离子源和四极杆温度分别为 280 ℃,280 ℃和150 ℃,碰撞气流速为1.5 mL/min, 淬灭气流速为 2.25 mL/min,质谱分析器采用 MRM 监测模式,监测参数中各个目标化合物所对应的保 留时间、前级离子、子离子和碰撞能量等参数都源自 Agilent G9250AA 数据库。

(2) UPLC-Q-Orbitrap

UPLC 采用梯度洗脱, 流动相 A(水相)为含 0.1% 甲酸和 5 mmol 甲酸铵的水溶液, B(有机相)为含 0.1% 甲酸和 5 mmol 甲酸铵的甲醇溶液。梯度洗脱程序为: 100%(-5 min), 100%(0 min), 80%(4 min), 60%(5.5 min), 0%(10.5 min)。流速为 0.4 mL/min; Orbitrap 采 用 ESI(+)和 ESI(-)电离模式, 加热电喷雾离子源条件 (HESI): 喷雾电压为 3.0 kv, 离子传输管温度为 320 ℃, 鞘气流速为 40 arb, 辅助气流速为 10 arb, 辅 助气温度为 350 ℃。质谱的扫描模式为 Full MS, 扫 描范围 90~900 m/z, 分辨率 70000, 自动增益控制 (AGC): 1e6, 最大注入时间(MAX IT): 200 ms。针对 疑似化合物的二次确证采用的质谱扫描模式为 SIM-dd-MS², SIM 的扫描参数:分辨率: 70000, AGC: 1e6, MAX IT: 200 ms, 离子监测循环数(Loop count): 1, 多离子扫描数(MSX count): 1, 质量扫描宽度 (Isolation window): 2 m/z, 扫描范围 90~900 m/z。 dd-MS²扫描参数, 分辨率 17500, AGC 1e5, MAX IT: 100ms, Loop count: 1, MSX count: 1, Isolation window: 2 m/z, 碰撞能量: 40, 触发二级碰撞阈值(Underfill ratio): 1.0%, 同位素排除(Exclude Isotope)开启, 峰顶 触发时间(Apex trigger): 2~6 s、动态排除时间 (Dynamic exclusion): 5 s。目标离子列表(Inclusion List) 中设置具体化合物分子离子的核质比,离子化极性, 保留时间和碰撞能量。

2.2.2 样本前处理方法

样品前处理方法参照本实验室之前的研究^[13], 这里介绍欧盟考核样品 SM06(青椒)和 FV-T02(茶叶) 的样品前处理方法。

青椒的前处理方法:称取 5.0 g 匀质的样品于 50 mL 具塞塑料管中,加入含 1%醋酸的乙腈 10 mL, 振荡 5 min。依次加入 1 g 醋酸钠和 4 g 无水硫酸镁, 剧烈振荡 5 min 后置于离心机中以 3500 r/min 离心 3 min, 然后用取 1 mL 上清液经 0.22 μm 滤膜后待 分析。

茶叶的前处理方法: 准确称取粉碎后的茶叶样

品 2.0 g 于 15 mL 离心管中,加入 4 mL 去离子水,振 荡 2 min 后静置 20 min,加入 10 mL 含 1%醋酸的乙 腈,涡旋混匀后超声提取 10 min。依次加入 1 g 醋酸 钠和 4 g 无水硫酸镁,剧烈振荡 5 min 后置于离心机 中以 3500 r/min 离心 3 min,取 1 mL 提取液,加入 50 mg N-丙基乙二胺(PSA)粉末和 50 mg TPT 粉末,振 荡 2 min 后以 3500 r/min 离心 3 min,取 1 mL 上清液 经 0.22 μm 滤膜过滤后待分析。

2.2.3 筛选方法

GC-MS/MS 的筛选流程:

见图 1, GC-MS/MS 数据库有 725 种农药, 分成 8 组进行采集分析, 初步筛选的可疑物满足以下条件: 两个离子通道色谱峰的信噪比(*S/N*)均大于 3, 且保留 时间与理论值的偏差小于 0.3 min。可疑似化合物进 行4个通道扫描进行二次确证, 若各离子丰度比值与 理论值偏差小于 50%(考虑到浓度可能较低和基质干 扰的原因)定为阳性结果。

UPLC-Q-Orbitrap 的筛选流程:

见图 1, 采用 Full-MS 进行 ESI 源正负极的同时 采集,在分辨率为 70000 采集 0~15 min 内 90~900 m/z 的数据。初步筛选采用 TraceFinder 软件,数据库涵 盖了 715 种农药,筛选条件中峰鉴别的积分模式使用 Genesis,鉴别模式使用"全部"(即所有满足筛选条件 的峰),平滑指数设为 7,信噪比阈值设为 3。可疑分 析物判断标准为:确证离子质量偏差的阈值为 5 ppm (5×10⁻⁶),同位素的匹配度阈值为 80%,同位素质量 偏差为 5 ppm (5×10⁻⁶),相对响应的偏差在 50%。如 果有空白基质样品,可选空白扣除选项(use matrix blank),信号的放大倍数(amplifier)设为 10 倍。初步 筛选后,对可疑分析物采用 SIM-dd-MS²确证,如果 目标化合物的碎片离子存在两个及以上与谱库吻合, 且质量偏差在 5 ppm (5×10⁻⁶)以下,则认为化合物可 能为阳性。

3 结果与讨论

3.1 样品的提取和净化

有关植物源性样品中农药残留快速筛选的样品 提取和净化方法已在本实验室前期研究^[13]中详细描 述。包括非缓冲体系和缓冲体系,缓冲体系包括醋酸 和醋酸钠(AOAC 2007.1)和柠檬酸二钠和柠檬酸三钠 (EN 15662:2008)体系,其中醋酸和醋酸钠作为较强 的缓冲体系更适合 pH 较为敏感的化合物如百菌清 (chlorothalonil)和吡蚜酮(pymetrozine)的分析。本实验 测定百菌清时发现,与柠檬酸二钠和柠檬酸三钠相比, 醋酸和醋酸钠提供了更好的回收率(101% vs 61%)和 线性(见图 2),两种体系的测定结果相差 60%。

本实验还发现复杂基质的基质效应对定量结果 影响较大,表 1 是茶叶样品(FV-T02)经过 2 倍和 10 倍稀释后 GC-MS/MS 的测定结果和举办方公布的最 终结果,其中本研究对基质 10 倍稀释结果是 2 倍稀 释结果的 0.8~30 倍,误差对于气相色谱可能是源于 沉积于样品进样口或色谱柱前端样品基质充当活性 点吸附分析物的原因,而对于液相可能由于基质对 样品离子化的抑制或增强效应^[14],具体原因有待进 一步研究。

图 2 柠檬酸二钠和柠檬酸三钠体系(左图)和醋酸和醋酸钠体系(右图)下百菌清的线性

Fig. 2 The linearity of chlorothalonil in disodium citrate & trisodium citrate buffer system (left) and acetic acid & sodium acetate buffer system (right)

in lever tea sample deterr		5
稀释	收空 往 用(/\)	
2 倍(mg/kg)	10 倍(mg/kg)	- 金疋纪禾(llig/kg)
0.012	0.371	0.332
0.298	0.600	0.657
0.079	0.171	0.163
0.333	0.654	0.702
0.078	0.137	0.172
0.070	0.606	0.291
0.037	0.076	0.071
0.034	0.059	0.062
0.063	0.128	0.114
0.028	0.023	0.023
0.116	0.156	0.156
0.020	0.051	0.039
	稀释 2倍(mg/kg) 0.012 0.298 0.079 0.333 0.079 0.333 0.078 0.070 0.037 0.034 0.063 0.028 0.116 0.020	稀释倍数 2倍(mg/kg) 10倍(mg/kg) 0.012 0.371 0.298 0.600 0.079 0.171 0.333 0.654 0.078 0.137 0.070 0.606 0.037 0.076 0.034 0.059 0.063 0.128 0.028 0.023 0.116 0.156 0.020 0.051

表 1 不同稀释倍数茶叶中农残 GC-MS/MS 部分测定结果 Table 1 Results of different dilution level tea sample determined by GC-MS/MS

表 2 GC-MS/MS 化合物列表方法参数和筛选结果 Table 2 Screen parameters and results of compounds using method of GC-MS/MS

鉴定	ビスノントナビルケッ	保留时间(min)			相对丰度(%)		
结果	疑1以方1杆抄	理论	测定	定量	定性	理论	测定
Y	甲拌磷(phorate)	14.21	14.21	121~65	121~47	24	20.4
S	克百威(carbofuran)	15.21	15.23	164~149	149~121	78.4	75.6
Y	仲丁通 (secbumeton)	16.62	16.82	169~154	196~85	82	83
Ν	消螨通 (dinobuton)	21.80	22.07	211~163	211~117	84	125
Y	六氯苯 (hexachlorobenzene)	14.59	14.60	283.8~248.8	283.8~213.9	110	113
Y	莠去津 (atrazine)	15.32	15.38	215~58	215~200	76	76
Y	特丁硫磷 (terbufos)	15.87	15.86	231~175	231~129	81	93
Y	苄草丹 (prosulfocarb)	18.78	18.76	91~65	128~86	102	168
Y	异狄氏剂 (endrin)	24.17	24.14	263~193	244.8~173	41	39
Y	双酰草胺 (carbetamide)	20.15	20.28	119~91	119~64	119	96
Y	硫线磷 (cadusafos)	14.08	14.09	159~97	159~131	82	84
Y	磺吸磷 (demeton-S-methyl sulfon)	18.82	18.93	169~125	169~109	137	129
Y	灭线磷 (ethoprophos)	14.08	14.11	157.9~97	157.9~114	89	82
Y	氟虫腈 (fipronil)	21.65	21.71	351~255	367~213		
Ν	3-三氟甲基苯胺 (3-trifluoromethylaniline)	4.10	4.23	161.1~111.1	161~142; 161~114; 114~88		
Y	呋喃酚 (carbofuran,7-phenol-)	6.95	7.01	164.1~149	149~121; 131~103; 149~77		
V	四黄灵 (dadamarnh)	20.49	20.64	154~82.1	154~97; 154~112; 281~154		
1	Y 中国次 (dodemorph)		21.13	154~82.1	154~97; 154~112; 281~154		
S	氟虫腈亚砜 (fipronil sulfide)	21.39	21.42	351~254.9	420~351; 255~228; 351~228		
S	氟虫腈砜 (fipronil sulfone)	23.95	24.01	382.8~254.9	385~257; 255~228; 213~143		
S	异狄氏剂酮 (endrin ketone)	27.71	27.83	316.8~100.8	317~281; 281~245; 281~173		
Y	呋线威 (furathiocarb)	29.28	29.36	272~254.2	272~209; 273~255; 231~157		
Y	螺甲螨酯 (spiromesifen)	27.76	27.93	163.1~107.1	163~135; 135~107; 135~77		
Y	苯锈啶 (fenpropidin)	18.87	19.12	98~55.1	98~70; 117~91; 273~98		
Y	伏草隆 (fluometuron)	13.08	13.37	187~159	232~72; 187~109; 187~139		
Y	麦穗宁 (fuberidazole)	18.08	18.39	184~156.2	184~155; 183~155; 155~102		
Ν	扑灭通 (prometon)	15.17	15.06	210~168.1	183~168; 225~58; 225~168		

注:Y确证,S怀疑,N假阳性

3.2 GC-MS/MS 筛选

青椒样品 GC-MS/MS 的筛选结果见表 2, 本研究 采用保留时间, 特征离子和离子丰度比对化合物进 行人工筛查, 初步鉴定出 26 种化合物, 其中消螨通 (dinobuton)由于定量定性离子间相对丰度与理论差 异较大被认为是假阳性, 而 3-三氟甲基苯胺 (3-trifluormethylaniline)在二次确证中不满足 4 个离 子通道均为阳性的准则被剔除, 扑灭通(prometon)虽 然各个离子通道均满足要求, 但由于保留时间比理 论值小, 而其他阳性化合物保留时间均比理论值大, 偏差在 0.1~0.3 min 左右, 所以排除了可能。对于有 标准参考物质的疑似化合物, 则根据化合物的实际 空白加标情况进行保留时间和相对丰度的确证, 而 对于多数不具备标准的化合物本研究主要基于数据 库的理论值。疑似化合物鉴定结果中 12 个化合物在 UPLC-Q-Orbitrap 方法中得到确证。

3.3 UPLC-Q-Orbitrap 筛选

青椒样品的筛查结果见表 3, 根据化合物保留时间, 精确质荷比, 同位素丰度比和碎片离子的质量偏

差,共筛选了 14 个化合物,其中 13 个(93%)在 GC-MS/MS 筛选方法中得到验证,扑灭通(prometon) 在 UPLC-Q-Orbitrap 分析中虽具有较小的质量、同位 素和二级碎片偏差,但由于其结果在 GC-MS/MS 平 台(保留时间差异)被排除,所以被认为是假阳性,这 个案例说明了两个筛选平台互相确证的重要性,虽 然 UPLC-Q-Orbitrap 可提供更为广泛的农残数据库, 但由于目前数据库对于许多农药无保留时间或二级 碎片辅助确证,所以仍需要 GC-MS/MS 作为辅助筛 选确证平台。

本实验在茶叶样品中, UPLC-Q-Orbitrap 漏筛了 两个化合物—三氯杀螨醇(dicofol, 0.291 mg/kg)和灭 多虫(methomyl, 0.067 mg/kg), 其中 dicofol 适合 GC-MS/MS和 UPLC-Q-Orbitrap 检测, methomyl 仅适 合 UPLC-Q-Orbitrap 检测。在比对筛选中我们发现, GC-MS/MS 准确筛选出了样品中的 dicofol, UPLC-Q-Orbitrap 能够筛选出样品加标(0.050 mg/kg) 中的 dicofol 和 methomyl, 但未检测出样品中的这两 个化合物(见图 3), 其具体原因有待进一步研究。

收宁	疑似化合物	保留时间(min)		同位素比例(%) -		质量偏差			
玉仁						母离子		碎片离子	
结果		理论	测定	理论	测定	精确质量(m/z)	偏差 (ppm)	偏差 (ppm)	
S	克百威(carbofuran)	8.67	8.67	100:13:01	100:14:01	222.1125	0.3	0.87	
Y	丙线磷 (ethoprophos)	10.44	10.43	100:08:09	100:08:09	243.0637	0.23	0.99	
Y	磺吸磷 (demeton-S-methyl sulfon)	5.99	5.99	100:06:09	100:06:09	263.0171	0.83	1.08	
Y	硫线磷 (cadusafos)	11.11	11.11	100:10:10	100:10:09	271.095	0.45	1.67	
Y	苯锈啶 (fenpropidin)	10.53	10.53	100:14:04	100:15:04	304.1131	0.55	0.87	
Y	氟虫腈 (fipronil)	10.58	10.59	100:12:64	100:12:65	434.9314 (-)	0.08	0.88	
Y	双酰草胺 (carbetamide)			100:13:01	100:13:01	237.1234	0	0.76	
Y	吗菌灵 (dodemorph)			100:19:02	100:20:02	282.2791	0.11	0.34	
Y	苯锈啶 (flubendiamide)			100:25:05	100:24:05	683.0306	0	0.55	
Y	伏草隆 (fluometuron)			10:00.5	10:00.6	233.0896	0	0.75	
Y	麦穗宁 (fuberidazole)			12:00.2	12:00.2	185.0709	0.05	0.77	
Y	呋线威 (furathiocarb)			19:05.0	100:20:05	383.1635	0.01	0.84	
N	扑灭通 (prometon)			11:00.5	11:00.5	226.1662	0.13	0.87	
Y	螺甲螨酯 (spiromesifen)			100:25:03	100:22:03	371.2217	0.02	0.56	

表 3 UPLC-Q-Orbitrap 化合物列表方法参数和筛选结果 Table 3 Screen parameters and results of compounds using method of UPLC-Q-Orbitrap

注:Y确证,S怀疑,N假阳性

图 3 三氯杀螨醇(9.43 min)和灭多虫(5.78 min)在茶叶中的 UPLC-Q-Orbitrap 检测结果图谱(上)和样品加标图谱(下)对比 Fig. 3 Results of dicofol and methomyl in tea sample (top) and spiked tea sample (bottom) determined by UPLC-Q-Orbitrap

4 结 论

本研究的农药残留筛选平台通过串接质谱 GC-MS/MS 的应用代替原平台 GPC-GC/MS^[9]、克服 了原 GPC-GC/MS 平台选择性较差的问题,并通过配 置商业农药筛选库和自建库的建立增加了筛选农药 数量,目前为1200多种,同时与原平台相比,配合智 能筛选软件,极大地提高的筛选的速度(24 h/批次)并 降低了数据处理的难度。通过比对结果验证 GC-MS/MS 串联质谱和 UPLC-Q-Orbitrap 高分辨质 谱是农药残留筛选的较为理想的互补技术, 能够兼 顾多农残物化性质的差异,使农药残留的全谱筛选 成为可能,提高筛选结果的可靠性。在青椒样品的测 定中, GC-MS/MS 通过精确的保留时间和多 MRM 离 子对的确证, 共筛出 23 个化合物(包括了低于最低报 告限的化合物), 无假阳性结果; UPLC-Q-Orbitrap 通 过精确分子量、同位素分布和二级碎片匹配度筛选出 14 个化合物,由于敌螨普(dinocap)和磺草唑胺 (metosulam)不在数据库中而漏筛,测定结果详见举 办方网站(本实验室编号为 Lab013)^[15]。在茶叶样品的 筛查中, 仅 methomyl 漏筛, 无假阳性结果。但由于 无保留时间辅助确证以及质谱软电离易受复杂基质 的影响, 本研究发现 UPLC-Q-Orbitrap 方法存在假阳

性或假阴性,所以完善UPLC-Q-Orbitrap的农残数据 库、研究样品基质对筛选结果的影响以及优化对应的 净化方法是下一步农药残留快速筛选工作的重点。

参考文献

- Nollet LML, Rathore HS. Handbook of pesticides-methods of pesticide residues analysis [Z].
- [2] Yang X, Zhang H, Liu Y, *et al.* Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography-mass spectrometry determination of 88 pesticides in berries using SPE and GC–MS [J]. Food Chem, 2011, 127: 855–865.
- [3] Qin GF, Li YB, Chen Y, et al. Pesticide residues determination in China vegetables in 2010~2013 applying gas chromatography with mass spectrometry [J]. Food Research Int, 2015,72:161–167.
- [4] Vuković G, Shtereva D, Bursić V, *et al.* Application of GC-MSD and LC-MS-MS for the determination of priority pesticides in baby foods in Serbian market [J]. LWT - Food Sci Technol, 2012, 49: 312–319.
- [5] Golge O, Kabak B. Determination of 115 pesticide residues in oranges by high-performance liquid chromatography– triple-quadrupole mass spectrometry in combination with QuEChERS method [J]. J Food Compos Anal, 2015, 41: 86–97.
- [6] Rosa M, Romero-González R, Otero RR, *et al.* Determination of 23 pesticide residues in leafy vegetables using gas

chromatography-ion trap mass spectrometry and analyte protectants [J]. J Chromatogr A, 2008,1196–1197: 100–109.

- [7] Juan F, García-Reyes M, Hernando D, et al. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS [J]. Trend Anal Chem, 2007, (26): 828–841.
- [8] Rajski Ł, Gómez-Ramos MM. Large pesticide multiresidue screening method by liquid chromatography-Orbitrap mass spectrometry in full scan mode applied to fruit and vegetables [J]. J Chromatogr A, 2014, 1360: 119–127.
- [9] Hernández F, Sancho JV, Ibáñez M, et al. Investigation of pesticide metabolites in food and water by LC-TOF-MS [J]. Trends Anal Chem, 2008, 27: 862–872.
- [10] Gómez-Pérez ML, Romero-González R. Analysis of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to Orbitrap high resolution mass spectrometry [J]. Talanta, 2015, n131:1–7.
- [11] Portolés T, Mol JGJ, Sancho JV, et al. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization [J]. Anal ChimActa, 2014, 838:76–85.
- [12] JiaW, ChuXG, LingY. High-through put screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry [J]. J Chromatogr A, 2014, 1347:122–128.
- [13] 卢大胜,徐骞,陈冲,等. 植物性样品中农药残留多色谱质谱

筛选和确证体系的研究[J]. 食品安全质量检测学报, 2013, 4(1): 99–107.

Lu DS, Xu Q, Chen C, *et al.* Screening and confirmation of non-target pesticide residues in plant samples using a combined system of GPC-GC-MS, LC-ToF and GC-MS/MS [J]. J Food Saf Qual, 2013, 4(1): 99–107.

- [14] Ferrer C, Lozano A, Agüera A, *et al.* Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables [J]. J Chromatogr A, 2011, 1218:7634–7639.
- [15] European Union Reference Laboratory. European commission proficiency test for pesticide residues in fruits and vegetables screening methods 06 preliminary report [Z]. http://www.eurlpesticides.eu/userfiles/file/PreliminaryReport_SM06.pdf.

(责任编辑: 李振飞)

作者简介

冯 超,技师,主要研究方向为食品 中农药残留分析。 E-mail: fengchao@scdc.sh.cn

汪国权, 主任技师, 主要研究方向为 色谱-质谱在公共卫生领域的分析。 E-mail: wangguoquan@scdc.sh.cn