体外模拟消化过程中胡萝卜中新烟碱类 杀虫剂的生物可及性研究

陈勇宏, 沈晓芳*

(苏州科技大学环境科学与工程学院,苏州 215000)

摘 要:目的 基于体外胃肠道模型研究胡萝卜中啶虫脒、噻虫胺、吡虫啉、噻虫嗪 4 种新烟碱类杀虫剂 (neonicotinoid insecticides, NNIs)的生物可及性,为其风险评估提供依据。**方法** 基于 3 种体外模型和胡萝卜 在消化液中对 NNIs 的吸附过程,采用液相色谱-质谱法分析 4 种 NNIs 的含量,计算胡萝卜中 NNIs 的生物可 及性和吸附量。**结果** 油脂的添加会增加胡萝卜中噻虫胺、噻虫嗪、吡虫啉的生物可及性,分别从(63.3±5.9)%、(60.7±4.5)%、(81.1±9.9)%增加到(79.3±6.1)%、(79.7±7.5)%、(94.3±2.7)%;而消化液中低浓度胆盐和胰酶的存 在会降低 NNIs 的生物可及性。当胰酶质量浓度为 0.25 g/L 时,降幅可达 4.1%(噻虫胺)~26.7%(噻虫嗪)。吸附 实验结果表明,模拟肠液中 4 种 NNIs 的吸附亲和性系数 *K*F 值高于背景溶液。这表明胡萝卜在模拟肠液中有 更高的吸附量,胆盐的加入增强了胡萝卜与 NNIs 的相互作用,降低了其生物可及性。结论 胡萝卜在不同体 外消化模型中 NNIs 生物可及性存在差异,胃肠道中胆盐和胰酶含量的升高在一定程度上会降低 NNIs 的生物 可及性。

关键词: 生物可及性; 新烟碱类杀虫剂; 油脂; 胆盐; 胰酶; 胡萝卜

Bioaccessibility of neonicotinoid insecticides in carrot during simulated digestion *in vitro*

CHEN Yong-Hong, SHEN Xiao-Fang*

(School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China)

ABSTRACT: Objective To explore the bioaccessibility of 4 kinds of neonicotinoid insecticides (NNIs) of acetamiprid, clothianidin, imidacloprid, and thiamethoxam in carrot based on gastrointestinal models *in vitro*, and provide evidences for the risk assessment of the NNIs. **Method** Based on 3 kinds of *in vitro* models and the adsorption process of NNIs by carrot in digestive solution, the content of 4 kinds of NNIs were analyzed by liquid chromatography-mass spectrometry, and the bioaccessibility and adsorption capacity of NNIs in carrot were calculated. **Results** The addition of oil could increase the bioaccessibility of clothianidin, thiamethoxam and imidacloprid in carrot, which increased from $(63.3\pm5.9)\%$, $(60.7\pm4.5)\%$ and $(81.1\pm9.9)\%$ to $(79.3\pm6.1)\%$, $(79.7\pm7.5)\%$ and $(94.3\pm2.7)\%$, respectively. However, the presence of low concentrations of bile salts and pancreatic enzymes in digestive juices could reduce the bioaccessibility of NNIs. When the mass concentration of pancreatic enzymes was 0.25 g/L, the reductions

基金项目: 国家自然科学基金项目(41701545)

Fund: Supported by the National Natural Science Foundation of China (41701545)

^{*}通信作者: 沈晓芳, 博士, 讲师, 主要研究方向为有机污染物的环境行为和归趋等方面的研究。E-mail: xiaofang@mail.usts.edu.cn *Corresponding author: SHEN Xiao-Fang, Ph.D, Lecturer, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China. E-mail: xiaofang@mail.usts.edu.cn

were 4.1% (clothianidin)–26.7% (thiamethoxam). The adsorption experiments results showed that the adsorption affinity coefficients K_F values of 4 kinds of NNIs in simulated intestinal solution were higher than those in the background solution, indicating that carrot had a higher adsorption capacity in the simulated intestinal fluid, and the addition of bile salt enhanced the interaction between carrot and NNIs and reduced its bioaccessibility. **Conclusion** The bioaccessibility of NNIs in carrot varies with different *in vitro* digestion models, and the increase of content of bile salts and pancreatic enzymes in the gastrointestinal tract may reduce the bioaccessibility of NNIs to some extent.

KEY WORDS: bioaccessibility; neonicotinoid insecticides; lipid; bile salt; pancreatic enzyme; carrot

0 引 言

新烟碱类杀虫剂(neonicotinoid insecticides, NNIs)是 一类非离子型极性小分子农药^[1]。该类农药在害虫防治方 面具有优势,但其残留可能导致健康风险,如癌症、慢性 疾病、出生缺陷和不孕不育^[2]。目前,该类农药在各类环 境介质中均有检出,如土壤、灌溉水、蔬菜、谷物,甚至 血浆和尿液^[3-5]。研究表明,孕妇长期接触该类农药会增加 婴儿患无脑病和法洛四联症的概率^[6],长期喷洒该农药的 农民更易患肺功能障碍^[7]。此前,在针对污染物的生态环 境风险评估中,污染物总量(即外暴露剂量)应用较多^[8]。然 而,生物实际可吸收部分与其暴露总量存在差异^[8]。因此, 使用污染物总量作为生态环境风险评估的指标,会高估污 染物的危害^[9]。

食物从人类口腔咀嚼后经食道进入肠胃消化,在消 化的过程中,有机污染物会从食物基质中释放至消化液 中,随后经上皮细胞、静脉转移至靶器官,进而发挥毒性 作用[10]。因此,只有从基质中释放并被人体吸收的那一部 分有机污染物才能对人体健康造成危害。生物可及性 (bioaccessibility, BA)是指通过体外消化道模拟污染物经各 消化阶段后从食物基质中溶出至消化液的部分占总量的 比例[11-12],现已被广泛应用于环境污染物的健康风险 评估[13-14]。目前,应用较广泛的体外消化模型主要有 4 种:模拟人体胃肠微生物生态系统法(simulate the human gastro-intestinal microbial ecosystem, SHIME)、体外胃肠道 提取法(in-vitro gastrointestinal extraction method, IVG)、生 理学提取试验(the physiologically based extraction test, PBET)和欧洲研究小组统一生物可及性方法(the unified BARGE method, UBM)。SHIME 法由 MOLLY 等^[15]提出用 于模拟人体胃肠微生物生态系统,最早用于多环芳烃生物 可及性测量。IVG 法最早由 RODRIGUEZ 等^[16]用于测定砷 在矿山土壤中的生物可及性, 该方法由胃和肠两个阶段组 成,与其他方法相比,其消化液 pH 较低,但有较高的固液 比(S/L)。在一定的 S/L 比范围内, S/L 比越低, 生物可及性 越高^[9]。PBET 法最早由 RUBY 等^[17]提出用于测定土壤样 品中 Pb 和 As 的生物可及性,与 IVG 法相比, PBET 法的小 肠阶段的反应时间更长, 而 UBM 法是在胃液相和肠液相

前加入了唾液相,以模拟人体口腔摄入^[18]。在早期研究中, SHI 等^[19]用 SHIME 法研究了不同食品中 NNIs 的生物可及 性,结果表明啶虫脒的生物可及性较高(55.27%~90.92%), 噻虫嗪较低(39.44%~55.75%)。然而,不同消化模型的测定 结果可能存在差异[20-21]。有研究者将同一污染物的体外生 物可及性和体内生物可利用性数据进行相关性分析时,发 现 UBM 法具有显著相关性(r=0.79), 但 PBET 法和 IVG 法 的相关性较差。ZHUANG 等^[20]采用 4 种体外消化模型测 定水稻中 Cd 的生物可及性,并与体内生物可利用性对比 发现,不同体外消化模型的结果差异较大,且与生物可利 用性相关性普遍较弱(r²=0.0006~0.52)。污染物的生物可及 性受模拟消化液成分的影响较大,消化液中的胆盐和酶是 生物可及性的重要影响因素[22]。因此,有必要应用不同体 外模型测定 NNIs 的生物可及性,并分析模型中消化液成 分对结果的影响。另外, SHIME 法中营养液含有果胶等膳 食成分,同样也会影响 NNIs 的生物可及性^[15]。因本研究 聚焦消化液成分对 NNIs 生物可及性的影响, 因此只选用 UBM、IVG 和 PBTE 3 种消化模型进行对比研究。此外, 通 过分析基质对污染物的吸附作用及消化液成分对吸附的影 响,可以为分析不同模型中消化液成分对生物可及性结果 的影响提供支撑。

胡萝卜维生素 A 含量高、生熟皆可食用且食用范围广, 广受消费者欢迎。谭颖等[23]研究了北京市场上 49 种蔬菜 和 24 种水果中的 NNIs 含量发现,水果和蔬菜中均有 5 种 以上 NNIs 残留, 吡虫啉和啶虫脒的检出率高达 100%。其 中, 胡萝卜中啶虫脒的残留量高达 0.78 ng/g, 吡虫啉的浓 度为 0.32 ng/g, 虽然该浓度尚未超过 GB 2763—2019《食 品安全国家标准 食品中农药最大残留限量》的限量值(吡 虫啉 0.2 mg/kg、啶虫脒 0.5 mg/kg), 但有研究发现约 3%的 人群因食用蔬果暴露于 NNIs 的非致癌风险商值大于 0.1, 这表明儿童等易感人群的 NNIs 膳食暴露仍存在潜在危 害^[23]。因此, 有必要对胡萝卜中 NNIs 的生物可及性进行 研究。本研究以胡萝卜为基质,首先探究了 UBM、IVG 和 PBTE 3 种消化模型中 NNIs 的生物可及性。因与 IVG 和 PBET 相比, UBM 法增加了口腔消化部分, 更能反映食品 消化过程。因此, 以 UBM 法为模型分析了消化道环境对 果蔬中 NNIs 牛物可及性的影响。最后,结合模拟胃液和肠

液中胡萝卜对 NNIs 的吸附研究,分析消化道成分对基质 与 NNIs 相互作用的影响,为探究消化道模拟液成分对 NNIs 生物可及性的影响提供依据。

1 材料与方法

1.1 材料与试剂

胡萝卜(农大姐妹)、玉米油(金龙鱼,100%脂肪)购自苏 州本地连锁超市。

啶虫脒(Ace)、噻虫胺(Clo)、吡虫啉(Imi)、噻虫嗪 (Thim)(纯度>95%, 美国 Standford Chemicals 公司); NaCl、 KCl、NaH₂PO₄、KSCN、Na₂SO₄、NaHCO₃、MgCl₂、NaOH、 NH₄Cl、NaN₃、CaCl₂、尿素、柠檬酸钠、苹果酸钠、乙酸、 葡萄糖、葡萄糖醛酸、果胶、木质素(优级纯)、乙腈(色谱 纯)(上海泰坦科技股份有限公司); α-淀粉酶(2000 U/g)、粘 蛋白牛血清蛋白、胃蛋白酶(2500 U/mg)、脂肪酶(500 U/g) [西格玛奥德里奇(上海)贸易有限公司]; 牛黄胆酸钠、盐酸 葡萄糖、盐酸、胰酶(1000 U/mg)(优级纯,上海麦克林生化 科技有限公司); QuEChERS 净化管[内含 25 mg N-丙基乙 二胺(primary secondary amine, PSA)、25 mg C₁₈、150 mg MgSO₄,上海安谱实验科技股份有限公司]。

1.2 仪器与设备

KQ-300VDE 型三频数控超声波清洗器(昆山超声仪 器有限公司); TSQU3000 三重四极杆串联液相色谱质谱 联用仪、C₁₈液相色谱柱(100 mm×2.1 mm, 1.7 μm)(美国 Thermo Fisher Scientific 公司); VORTEX-5 调速多用振荡器 (科析仪器有限公司); SQP 电子分析天平[0.01 mg, 赛多利 斯科学仪器(北京)有限公司]; TTL-DCI 氮吹仪[毕克气体仪 器贸易(上海)有限公司]; FD-1A-50 实验室真空冷冻干燥机 [台式–50°C,北京博医康技术有限责任公司]; HTHZ-92A 恒温震荡箱(上海跃进医疗器械有限公司); TGL-15B 高速 离心机(吉特实验仪器厂); LC-20AT 岛津高效液相色谱仪 [岛津(中国)有限公司]; NANO ZSE Malvern potential analyzer Zeta 电位分析仪(英国马尔文公司); TST-FW100 粉 碎机(天津泰斯特仪器有限公司)。

1.3 实验方法

1.3.1 体外消化实验

洗净的胡萝卜经粉碎机粉碎至细小颗粒状,于-20℃ 冰箱中冷冻4h以上,待完全冷冻后,置于真空冷冻干燥机中, 以-45℃、<20 Pa进行冷冻干燥。待完全脱水后(约2d左右), 将冷冻干燥后的胡萝卜用研钵完全碾碎呈粉末状。

PBET 法实验流程参照 TILSTON 等^[24]的方法。模 拟胃液反应前在 37℃条件下预热,按 1:100 (g:mL)的固 液比在离心管中分别加入 0.3 g的胡萝卜粉末和 30 mL 模拟胃液,用盖子密封。用恒温摇床在 37℃下以 80 r/min 的转速搅拌反应 1 h。反应结束后,通过滴加 NaHCO₃ 溶液调节 pH 至 7.1±0.1,随后分别按 1.75 g/L 和 0.5 g/L的质量浓度加入胆盐和胰酶,将胃溶液转化为小 肠溶液。最后,将瓶子重新密封并在 37℃下以 80 r/min 的 转速振荡 4 h。

IVG 法实验流程参照 RODRIGUEZ 等^[16]的方法。模拟 胃液中含胃蛋白酶、NaCl质量浓度分别为10 g/L 和8.77 g/L。 在离心管中按固液比1:150 (g:mL)加入0.3 g胡萝卜和45 mL 模拟胃液。采用恒温摇床在 37℃下以 80 r/min 的转速反 应 1 h 后,加入胆盐和胰酶使其质量浓度分别为 3.5 g/L 和 0.35 g/L,调节溶液 pH 至 5.5,模拟小肠消化阶段。摇床 条件不变,继续反应 1 h 后实验结束。

UBM 法实验流程参照 WRAGG 等^[18]的方法。口腔、胃 和小肠 3 个消化阶段固液比分别为 1:15、1:37.5、1:97.5 (g:mL)。 在口腔消化阶段,将 4.5 mL 模拟唾液准确添加到含有 0.3 g胡萝卜的离心管中,振摇离心管充分混合基质和消化 液。在摇床中以温度(37±2)℃、转速 80 r/min条件反应 5 min 后,进入胃部消化阶段,加入 6.75 mL 模拟胃液并用 HCl 调节 pH 至 1.2,密封后放入恒温摇床,在温度(37±2)℃、转速 80 r/min条件下反应 1 h。在胃液反应完成后,添加 13.5 mL 十二指肠模拟液和 4.5 mL 胆汁模拟液。封好盖后,将食物 基质和消化道模拟液混合。采用 HCl 或 NaOH 将所得悬液 的 pH 调整至 6.3±0.5。最后,在(37±2)℃、转速 80 r/min 的恒温摇床中反应 4 h。

采用 UBM 法进行油脂、胆盐和胰酶的影响实验。在油脂添加实验中,在配制基质时,在胡萝卜中加入2mL 玉米油作为脂质添加,混合后静置 1 h,其余步骤同上述UBM 法实验流程。在胆盐的影响实验中,胆盐浓度分别变为0、1、2、3、4 g/L;在胰酶的影响实验中,胰酶浓度分别变为0、0.25、0.50、0.75、1.00、1.25 g/L,其余步骤同上述 UBM 法实验流程。

1.3.2 样品前处理与分析

消化结束后,取上清液10 mL,加入乙腈10 mL,使用振 荡器充分混合。加入5gNaCl,4000 r/min 离心5 min。取5 mL 上清液,用0.75gMgSO₄、0.25gPSA、0.25gC₁₈清洁后,取 2 mL 氮吹至近干,加入1 mL 70%乙腈溶液,涡旋1 min 后用 0.22 µm PTFE 有机膜过滤,转移至棕色色谱进样瓶,待测^[25]。

样品检测条件: 柱温 30℃, 流动相流速 0.2 mL/min。流 动相为0.1%甲酸水(A)+乙腈(B)溶液, 等度洗脱程序: 0~7 min, 70% B。4 种 NNIs 的检出限分别为啶虫脒 0.04 µg/L、噻虫 胺 0.08 µg/L、吡虫啉 0.09 µg/L、噻虫嗪 0.13 µg/L。定量限 啶虫脒 0.13 µg/L、噻虫胺 0.24 µg/L、吡虫啉 0.28 µg/L、噻 虫嗪 0.43 µg/L, 加标回收率为 72.0%(吡虫啉)~92.6%(啶虫 脒), 相对标准偏差<10%, 方法满足检测要求。

采用 GB/T 5510—2011《粮油检验粮食、油料脂肪酸 值测定》所用方法对上清液的脂肪酸含量进行滴定。对食 糜进行离心处理(4000 r/min、10 min),取 2.5 mL 上清液于 离心管中,加入5滴0.04%酚酞乙醇溶液,用0.01 mol/L的 NaOH 溶液滴定,每次滴加后摇匀使其充分混合,溶液变 成粉红色且超过 30 s 不变色即为滴定终点。记录消耗的 NaOH 体积。生物可及性反应结束后,上清液在25℃下用 马尔文电位粒度仪测定 Zeta 电位。

1.3.3 吸附实验

生物可及性是污染物在消化液中解吸的过程, 基质本身对污染物的吸附强弱也是影响生物可及性的因素。而 胃蛋白酶和胆盐是胃和肠液两个阶段主要的成分, 有必要 探究这两种成分对污染物吸附的影响。根据离子强度、胃 蛋白酶和胆汁盐含量模拟人体胃肠道成分, 设置模拟胃液 和模拟肠液^[26]。模拟胃液为含 0.1 mol/L NaCl 和 800 mg/L 胃蛋白酶的盐酸溶液(pH 2.0)。模拟肠液为含 0.12 mol/L NaCl、0.02 mol/L Na₂CO₃ (pH 7.5)的中性缓冲溶液, 胆 汁盐浓度为 500 mg/L(代表人体禁食状态)。背景溶液为 含 0.01 mol/L CaCl₂水溶液, 在所有溶液中加入 200 mg/L 的 NaN₃以抑制农药的微生物降解。

用上述溶液配制 4 种 NNIs 的单标溶液,进行吸附热力 学实验,质量浓度范围为 0.5、1.0、2.0、5.0、10.0 mg/L。称 取 0.1 g 食物基质于锥形瓶中,分别加入 10 mL 不同浓度的 单标溶液。在 37℃、80 r/min 的条件下吸附 24 h(全程避光), 吸附平衡后,在 4000 r/min 离心,取上清液 1.0 mL,用液 相色谱法测定上清液中农药的质量浓度。

1.4 数据处理

所有试验均设置 3 组平行。结果以平均值±标准偏差 表示。使用 SPSS 2020 软件进行统计学分析,并使用 Origin 2021 软件绘制图形。其中,胡萝卜中 NNIs 生物可及性按 照公式(1)计算:

$$BA\% = \frac{C_1 V}{C_2 M} \times 100\%$$
(1)

其中, C_1 为胃肠液中 NNIs 的质量浓度(mg/L); V是胃肠液的体积(mL); C_2 是基质中的加标浓度(mg/kg); M是基质的重量(g)。

以吸附前后溶液中啶虫脒、噻虫胺、吡虫啉、噻虫嗪 的浓度差值计算吸附量,如公式(2)所示:

$$q = \frac{(C_0 - C_t)v}{m} \tag{2}$$

其中,q为基质的吸附量(mg/g); C_0 代表 NNIs 溶液的初始质 量浓度(mg/L); C_t 是不同时间下溶液中 NNIs 的质量浓度 (mg/L);v为溶液体积(L);m为基质投加量(g)。

本研究选择 Freundlich 吸附等温模型进行吸附热力学 实验,如公式(3)所示:

$$q_{\rm e} = K_{\rm F} C_{\rm e}^{1/n} \tag{3}$$

其中, q_e为平衡时基质对 NNIs 的吸附量(mg/g); C_e为吸附 平衡时 NNIs 的质量浓度(mg/L); n 为指数系数(无量纲); K_F 代表吸附亲和性系数[(mg/kg)/(mg/L)^{1/n}]。

2 结果与分析

2.1 不同体外消化模型条件下 NNIs 的生物可及性

由图 1 可知, 4 种 NNIs 的生物可及性分别为 31.6%~ 81.0%(啶虫脒)、20.2%~62.7%(噻虫胺)、26.3~51.5%(噻虫 嗪)和 21.2~85.4%(吡虫啉)。在 UBM、PBET 和 IVG 3 种体 外消化模型中, 啶虫脒、噻虫胺的生物可及性均存在显著 差异。IVG 法胡萝卜中 NNIs 的生物可及性最低, 其次是 PBET 法, 而 UBM 法最高。

IVG 法中 NNIs 的生物可及性低于 PBET 法和 UBM 法,这可能与消化时间和固液比有关。UBM 和 PBET 法中 胃肠道消化时间均在4h, 拥有相似的固液比, 而IVG法中 的固液比高达 1:150 (g:mL), 消化时间则为 1 h^[27]。其次, 3 种外消化模型的消化液成分在不同阶段存在明显差异。 ZENG 等^[28]发现 α-淀粉酶等消化酶的存在增强了多环芳烃 和卤化阻燃剂的生物可及性,其中 α -淀粉酶起主要作用, 这是因为相比于其他酶,α-淀粉酶具有更高的疏水性。同样, 在 XIAO 等^[29]的研究中发现吡虫啉、噻虫嗪和甲氨基阿维 菌素苯甲酸盐的生物可及性随消化液中α-淀粉酶含量的增 加而增加, 增幅在 4.90%到 23.81%之间。这可能是因为食 物中的淀粉在被小肠吸收为葡萄糖之前,会在口腔阶段被 唾液 α-淀粉酶水解, 增加了食物的食糜量。在胃消化阶段, UBM 法和 PBET 法中含胃蛋白酶和粘蛋白, IVG 法则仅含 胃蛋白酶,粘蛋白的存在可能会促进基质中 NNIs 在消化 道模拟液中的释放,从而提高其生物可及性。在小肠消化 阶段, 胰酶和胆盐是3种方法共同的成分, 在3种方法中, 胆盐浓度从大到小依次为 IVG、PBET、UBM, 胰酶浓度则

注: 不同小写字母表示同一种化合物在不同模型下的 生物可及性具有显著性差异(P<0.05)。

Fig.1 Bioaccessibility of NNIs in carrot under 3 kinds of digestive models (*n*=3)

与之相反,胰酶在消化道的作用是消化脂肪,不认为会对果蔬的消化产生影响。对比胆盐浓度,浓度最低的 UBM 法拥有最高的生物可及性,可能与是因为胆盐与 NNIs 在基质上存在竞争吸附,更多的 NNIs 被释放到消耗中^[30]。

2.2 油脂对胡萝卜中 NNIs 生物可及性的影响

油脂添加对胡萝卜中 NNIs 的生物可及性影响结果如 图 2 所示。4 种 NNIs 中,添加油脂后噻虫胺、噻虫嗪的生 物可及性显著增加(P<0.05)。在无油脂的情况下,噻虫胺、 噻虫嗪、吡虫啉的生物可及性分别为(63.3±5.9)%、 (60.7±4.5)%、(81.1±9.9)%,在添加油脂后的增加到 (79.3±6.1)%、(79.7±7.5)%、(94.3±2.7)%;而啶虫脒生物可 及性由(90.3%±3.4)%降低到(82.1%±3.0)%。以往研究^[31] 已表明脂质对有机物的生物可及性存在影响,高脂肪含 量的动物性食品中多氯联苯的生物可及性高于大米和卷 心菜中该类物质的生物可及性。类似地,ZHANG等^[32]发现,在模拟消化系统中添加植物油,有利于多环芳烃从 土壤向消化液的分配。这可能是因为当胡萝卜与脂质共 摄入时,由于脂质相具有强疏水性,油脂的存在增加了 有机污染物的溶解度,促进了食品颗粒中 NNIS 的解吸, 增加了其生物可及性^[32]。

2.3 不同胆盐和胰酶浓度下 NNIs 的生物可及性

图 3 为不同胆盐和胰酶质量浓度下 NNIs 的生物可及 性。当胆盐质量浓度为 0~3 g/L 时,随着胆盐质量浓度的升 高,啶虫脒和噻虫胺的生物可及性逐渐降低;随着胆盐浓度 的进一步提高,除噻虫嗪外,其余 NNIs 的的生物可及性又 有增加趋势(图 3A)。这可能与产生的胶束和胆盐的吸附作 用有关,以往的研究指出胶束的存在会增加疏水性有机污 染的生物可及性,这是因为胶束对污染物有增溶作用^[33]。但 胆盐与污染物之间也可能存在竞争作用,基质上能吸附污 染物的点位减少,从而降低污染物的生物可及性^[30]。

注:不同小写字母表示同一种化合物在不同处理组中的生物可及 性具有显著性差异(P<0.05)。

图 2 油脂对胡萝卜中 NNIs 生物可及性的影响(*n*=3) Fig.2 Effects of oil on bioaccessibility of NNIs in carrot (*n*=3)

当胰酶为 0.25 g/L 时, 农药在肠液中的生物可及性低 于未添加胰酶时, 4 种 NNIs 的生物可及性分别降低了 24.2%(啶虫脒)、4.1%(噻虫胺)、26.7%(噻虫嗪)、19.1%(吡 虫啉)。这可能与胰酶有助于化学裂解或水解有关,有研究 检测了在不同胰酶浓度了下毒死蜱和噻虫嗪代谢物(3,5,6-三氯-2-吡啶醇和噻虫脒)的含量,发现当胰酶存在时,两种 代谢物的含量显著增加^[29]。由图 3B 还可看出,随着胰酶浓 度进一步提高,胡萝卜中 4 种 NNIs 的生物可及性呈现增加 趋势,这可能是因为溶液中产生的混合胶束促进了 NNIs 分 配到消化液中,从而增加了生物可及性^[33-34]。在肠反应阶段, 脂质被消化分解产生脂肪酸,本研究测定了溶液滴定消耗 NaOH 的量,以反映溶液中脂肪酸的产生情况。实验结果如 图 4 所示。

图 3 不同质量浓度胆盐(A)和胰酶(B)条件下胡萝卜中 NNIs 的生物可及性(*n*=3) Fig.3 Bioaccessibility of NNIs in carrots at different mass concentrations of bile salts (A) and pancreatic enzymes (B) (*n*=3)

注:不同小写字母表示不同浓度处理组具有显著性差异(P<0.05)。A、B分别为不同胆盐和胰酶浓度时滴定消耗的 NaOH 量; C、D分别为不同胆盐和胰酶浓度下溶液中颗粒的 Zata 电位。

图 4 不同胆盐和胰酶浓度下的氢氧化钠消耗量和 Zata 电位(n=3)

Fig.4 Sodium hydroxide consumptions and Zata potentials at different concentrations of bile salt and pancreatic enzyme (n=3)

由图4A可知,当胆盐质量浓度在0~0.2 g/L时,消化液 中 NaOH 随胆盐浓度升高而增加,这是因为胆盐可以吸附 在油滴表面上,为脂肪酶的消化提供活性位点,从而促进油 脂分解产生脂肪酸^[35]。胰酶是淀粉酶、脂肪酶和蛋白酶的 混合物,用于消化脂质。当 pH 为 6~7 时,脂质可在肠道内 被脂肪酶消化形成游离脂肪酸。在肠液中存在胆盐时,释放 的游离脂肪酸可聚集形成混合胶束^[36]。由图 4B 中可知,当 消化液中胰酶质量浓度的增加时,滴定消耗 NaOH 的量也 随之增加,这表明胰酶的存在提高了玉米油的脂解程度。更 多的脂质被消化产生游离脂肪酸,这有利于混合胶束形成。

生物可及性与 Zeta 电位绝对值呈负相关。Zeta 电位的绝对值增加, 表明排斥力增加, 系统更加稳定, 颗粒分散程度增加^[33]。该结果很好地解释了胆盐浓度对 NNIs 生物可及性的影响。在胆盐浓度为 0~3 g/L 的范围内, 随着胆盐浓度增加, 颗粒的分散度较高, 更多的位点可被 NNIs 利用, 相互作用增强, 从而降低了其生物可及性(图 3); 随着胆盐浓度的进一步提高, 颗粒的 Zeta 电位不再降低, 而额外增加的胆盐在颗粒间具有架桥作用,导致颗粒的分散度降低, 从而导致可利用的位点减少, 农药的生物可及性又有所提高^[34](图 3)。胰酶质量浓度超过 0.75 g/L 时, Zeta 电位绝对值减小, 此环境下利于颗粒聚集, 溶液中可能产生胶束,

这与疏水性有污染物的结果类似,由于在胶束的外侧存在 亲水尾,NNIs 具有亲水性,可能是二者之间的相互作用导 致了生物可及性的增加。

2.4 胃肠道模拟液条件下基质对 NNIs 的吸附作用

对胡萝卜基质在背景溶液、模拟胃液、模拟肠液中对 4种 NNIs 的吸附作用进行探究,等温线拟合曲线图见图 5, Freundlich 模型拟合参数见表 1。结果显示,胃肠液中胡萝卜 对 4 种烟碱类农药的吸附都是非线性的。

消化系统中污染物的解吸过程可能会导致人体暴露 增加,尤其是在溶液化学条件不断变化时。在模拟胃液中, 4种 NNIs 的 *K*_F值高于背景溶液中的 *K*_F值。这可能和胃 液 pH 较低有关。在酸性条件下, NNIs 可以和游离水形成 氢键,如图 6 所示。已知胃中环境为弱酸性,一部分烟碱 类农药会与胃中的游离水结合,导致烟碱类农药在胃中 的浓度增大,由于细胞的反渗透作用,胃部的烟碱类农 药的吸收量会增多,即对人体危害性增大^[37]。在模拟肠液 中,噻虫胺、噻虫嗪、吡虫啉的 *K*_F值要高于背景溶液中 的*K*_F值,这说明胡萝卜在模拟肠液中有更高的吸附量, 肠道模拟液增加了 NNIs 和基质的相互作用,从而降低了 基质中农药的释放,使 NNIs 的生物可及性降低^[38]。

图 5 背景溶液、模拟胃液和模拟肠液中 4 种 NNIs 在胡萝卜上的吸附等温线 Fig.5 Adsorption isotherms of 4 kinds of NNIs on carrot in background solution, simulated gastric fluid and simulated intestinal fluid

表 1 不同溶液环境下 NNIs 在胡萝卜上吸附等温线的 Freundlich 模型拟合参数 Table 1 Freundlich model fitting parameters of adsorption isotherm for NNIs on carrots under different solution conditions

模拟消化液	n				$K_{\rm F}/[({ m mg/kg})/({ m mg/L})^{1/{ m n}}]$			
	啶虫脒	噻虫胺	噻虫嗪	吡虫啉	啶虫脒	噻虫胺	噻虫嗪	吡虫啉
背景溶液	2.315	1.253	1.254	1.788	0.251	0.126	0.245	0.064
模拟胃液	3.268	1.476	2.199	1.512	0.294	0.164	0.562	0.178
模拟肠液	1.495	3.080	1.840	3.549	0.105	0.628	1.192	0.560

С

-C

Н

0

H

Ή

第9期

D

注: A 为吡虫啉; B 为噻虫嗪; C 为噻虫胺; D 为啶虫脒。 图 6 4 种 NNIs 与水的氢键示意图 Fig.6 Schematic diagrams of hydrogen bond between 4 kinds of NNIs and water

C1

N

其次,图 3 的结果指出,当胆盐质量浓度增加时生物可 及性会出现降低。而吸附实验所用模拟肠液不含有脂质和胰酶, 且浓度远低于图 3 实验中的高胆盐浓度,不具备胶束形成的可 能性。但生物可及性增加了,这说明了在高浓度胆盐的与基质 之间存在竞争吸附的可能性,更多污染物被释放到胃肠液中。

Η

Ή

3 结 论

本研究探究了不同体外消化模型及消化道环境对 NNIs 生物可及性的差异,并探究了消化道环境对胡萝卜 中 NNIs 生物可及性的影响,发现 UBM 法中 NNIs 的生物 可及性要高于 PBET 法和 IVG 法。对于不同的消化道环境, 低浓度下的胰酶和胆盐降低了 NNIs 的生物可及性,而高 浓度时则有增加的趋势。对比不同消化液中 NNIs 在胡萝 卜上吸附的差异,相比背景溶液,模拟肠液中胡萝卜对 NNIs 有更高的吸附量。这说明不同的消化道环境会影响生 物可及性。然而消化道环境中也存在其他酶类,生物可及 性并非受单一因素影响。在今后有关 NNIs 生物可及性的 研究中,可以考虑不同成分的基质、烹煮或油炸等加工方 式、胃肠道中微生物的作用等,并结合动物体内实验为参 照,为人体健康风险评估提供依据。

参考文献

- 程浩森,成凌,朱腾义,等.新烟碱类农药在土壤中环境行为的研究进展[J] 程浩森,成凌,朱腾义,等.新烟碱类农药在土壤中环境行为的研究进展[J].中国环境科学,2020,40(2):736–747.
 CHEN HM, CHENG L, ZHU TY, *et al.* Research progress on environmental behaviors of neonicotinoids in the soil [J]. China Environ Sci, 2020, 40(2): 736–747.
- [2] THOMPSON DA, LEHMLER HJ, KOLPIN DW, et al. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health [J]. Environ Sci Proc Imp, 2020, 22(6): 1315–1346.
- [3] WU C, DONG F, MEI X, et al. Isotope-labeled internal standards and grouping scheme for determination of neonicotinoid insecticides and their metabolites in fruits, vegetables and cereals–A compensation of matrix effects [J]. Food Chem, 2020, 311: 125871.
- [4] LI D, ZHANG H, CHANG M, et al. Neonicotinoid insecticide and their metabolite residues in fruit juices: Implications for dietary intake in China [J]. Chemosphere, 2020, 261: 127682.
- [5] WANG Y, FU Y, WANG Y, et al. A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples [J]. Food Chem: X, 2022, 15: 100375.
- [6] YANG W, CARMICHAEL SL, ROBERTS EM, et al. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California [J]. Am J Epidemiol, 2014, 179(6): 740–748.
- [7] CALDERÓNSEGURA ME, GOMEZ-ARROYO S, VILLALOBOS-PIETRINI R, et al. Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news [J]. J Toxicol, 2012, 2012: 612647.
- [8] COLLINS CD, CRAGGS M, GARCIAALCEGA S, et al. Towards a unified approach for the determination of the bioaccessibility of organic pollutants [J]. Environ Int, 2015, 78: 24–31.
- [9] LU M, LI G, YANG Y, et al. A review on *in-vitro* oral bioaccessibility of organic pollutants and its application in human exposure assessment [J]. Sci Total Environ, 2021, 752: 142001.
- [10] KOCH I, REIMER K. Bioaccessibility extractions for contaminant risk assessment [J]. Compr Sample Prep, 2012: 487–507.
- [11] 李娜, 耿照梦, 郭莹莹, 等.水产品中重金属生物可给性与生物有效性研究进展[J]. 食品安全质量检测学报, 2022, 13(5): 1367–1373.

LI N, GENG ZM, GUO YY, *et al.* Research progress of bio-accessibility and bioavailability of heavy metals in aquatic products [J]. J Food Saf Qual, 2022, 13(5): 1367–1373.

- [12] WANG M, ZHOU J, PALLARÉS N, et al. Evaluation of heavy metals, mycotoxins and mineral bioaccessibility through *in vitro* static digestion models of rainbow trout (*Oncorhynchus mykiss*) and sole (*Dover sole*) side stream extracts obtained by pressurized liquid extraction [J]. Food Chem, 2023, 419: 136054.
- [13] VILLEGAS CAM, ZAGURY GJ. Incorporating oral, inhalation and dermal bioaccessibility into human health risk characterization following exposure to chromated copper arsenate (CCA)-contaminated soils [J]. Ecotox Environ Saf, 2023, 249: 114446.
- [14] DUTRA MDP, SILVA A, FERREIRA ED, et al. Bioaccessibility of phenolic compounds from Brazilian grape juices using a digestion model with intestinal barrier passage [J]. Food Biosci, 2023, 52: 102501.
- [15] MOLLY K, WOESTYNE MV, VERSTRAETE W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem [J]. Appl Microbiol Biotechnol, 1993, 39: 254–258.
- [16] RODRIGUEZ RR, BASTA NT, CASTEEL SW, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media [J]. Environ Sci Technol, 1999, 33(4): 642–649.
- [17] RUBY MV, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test [J]. Environ Sci Technol, 1996, 30(2): 422–430.
- [18] WRAGG J, CAVE M, BASTA N, *et al.* An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil [J]. Sci Total Environ, 2011, 409(19): 4016–4030.
- [19] SHI YH, XIAO JJ, LIU YY, et al. Interactions of food matrix and dietary components on neonicotinoid bioaccessibility in raw fruit and vegetables [J]. Food Funct, 2019, 10(1): 289–295.
- [20] ZHUANG P, SUN S, ZHOU X, et al. Bioavailability and bioaccessibility of cadmium in contaminated rice by *in vivo* and *in vitro* bioassays [J]. Sci Total Environ, 2020, 719: 137453.
- [21] LI K, LI C, YU NY, et al. In vivo bioavailability and in vitro bioaccessibility of perfluorooctanoic acid (PFOA) in food matrices: Correlation analysis and method development [J]. Environ Sci Technol, 2015, 49(1): 150–158.
- [22] YU Y, HAN S, ZHANG D, *et al.* Factors affecting the bioaccessibility of polybrominated diphenylethers in an *in vitro* digestion model [J]. J Agric Food Chem, 2009, 57(1): 133–139.
- [23] 谭颖, 张琪, 赵成, 等. 蔬菜水果中的新烟碱类农药残留量与人群摄食 暴露健康风险评价[J]. 生态毒理学报, 2016, 11(6): 67–81. TAN Y, ZHANG Q, ZHAO C, *et al.* Neonicotinoid pesticide residues in vegetables and fruits and health risk assessment of population ingestion exposure [J]. J Ecotox, 2016, 11(6): 67–81.
- [24] TILSTON EL, GIBSON GR, COLLINS CD. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH [J]. Environ Sci Technol, 2011, 45(12): 5301–5308.
- [25] RAHMAN MM, El-ATY AM, CHOI JH, et al. Consequences of the

- [26] DU P, ZHAO J, MASHAYEKHI H, et al. Adsorption of bovine serum albumin and lysozyme on functionalized carbon nanotubes [J]. J Phys Chem C, 2014, 118(38): 22249–22257.
- [27] JAMES K, PETERS RE, LAIRD BD, et al. Human exposure assessment: A case study of 8 PAH contaminated soils using *in vitro* digestors and the juvenile swine model [J]. Environ Sci Technol, 2011, 45(10): 4586–4593.
- [28] ZENG Y, FAN Y, YAN X, et al. In vitro oral and inhalation bioaccessibility of hydrophobic organic contaminants (HOCs) in airborne particles and influence of relevant parameters [J]. Environ Res, 2019, 170: 134–140.
- [29] XIAO JJ, FU YY, YE Z, et al. Analysis of the pesticide behavior in Chaenomelis speciosa and the role of digestive enzyme in vitro oral bioaccessibility [J]. Chemosphere, 2019, 231: 538–545.
- [30] LI W, ZHAO J, ZHAO Q, et al. Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the *in vitro* gastrointestinal system [J]. Sci Total Environ, 2016, 566: 50–56.
- [31] SHEN H, STARR J, HAN J, et al. The bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods [J]. Environ Int, 2016, 94(9): 33–42.
- [32] ZHANG Y, PIGNATELLO JJ, TAO S, et al. Bioaccessibility of PAHs in fuel soot assessed by an *in vitro* digestive model: Effect of including an absorptive sink [J]. Env Sci Technol, 2015, 49(6): 3905–3912.
- [33] JIN H, SHANG L, XUE Y, et al. Lipolytic behavior and bioaccessibility of curcumin nanoemulsions stabilized by rice bran protein hydrolysate [J]. LWT-Food Sci Technol, 2023, 179: 114616.
- [34] SHEN H, STARR J, HAN J, et al. The bioaccessibility of polychlorinated

biphenyls (PCBs) and polychlorinated dibenzo-*p*-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods [J]. Environ Int, 2016, 94: 33–42.

- [35] XIAO Y, NIE M, ZHAO H, et al. Citrus flavanones enhance the bioaccessibility of β-carotene by improving lipid lipolysis and incorporation into mixed micelles [J]. J Funct Foods, 2021, 87: 104792.
- [36] RAHMAN A, BARROWMAN J, RAHIMTULA A. The influence of bile on the bioavailability of polynuclear aromatic hydrocarbons from the rat intestine [J]. Can J Phys Pharm, 1986, 64(9): 1214–1218.
- [37] HASSAN MF, ELTOHAMY O, KAMEL M. Treatment success of transobturator tape compared with tension free vaginal tape for stress urinary incontinence at 24 months: A randomized controlled trial [J]. J Obstet Gyneco, 2014, 118(35): 10503–10514.
- [38] ZHENG FY, CHEN LH, LI SX, et al. Effect of edible plants combination on mineral bioaccessibility and bioavailability, using *in vitro* digestion and liposome-affinity extraction [J]. Food Res Int, 2013, 53(1): 174–179.

(责任编辑: 郑 丽 韩晓红)

作者简介

陈勇宏,硕士研究生,主要研究方向为 果蔬中新烟碱类农药生物可及性方向研究。 E-mail: chenyonghong971111@163.com

沈晓芳,博士,讲师,主要研究方向为有 机污染物的环境行为和归趋等方面的研究。 E-mail: xiaofang@mail.usts.edu.cn