超高效液相色谱-串联质谱法同时测定水产制品中 22 种全氟烷基物质

王 智¹, 乔海清¹, 杨 军¹, 付燕秋¹, 汪 浩¹, 姚建华², 高天奇¹, 邓建刚^{1*} (1. 青岛市产品质量检验研究院, 青岛市产品质量检验技术研究所, 青岛 266000; 2. 青岛市华测检测技术有限公司, 青岛 266000)

摘 要:目的 建立超高效液相色谱-串联质谱法同时检测水产制品中 22 种全氟烷基物质(perfluorinated alkyl substances, PFASs)定性定量检测方法。**方法** 选取基质成分复杂的水产制品作为检测目标。样品经乙腈(含 1% 甲酸)提取液涡旋振荡提取,分散固相萃取结合通过式固相萃取柱进行净化, C₁₈色谱柱分离,甲醇和 5 mmol/L 乙酸铵溶液梯度洗脱,多反应监测负离子模式采集,同位素内标法定量。**结果** 22 种 PFASs 在其相应的质量浓度范围内线性关系良好,相关系数大于 0.994,定量限为 0.10~0.25 µg/kg。两种样品中添加定量限、1.0 µg/kg 和 10.0 µg/kg 浓度水平时平均回收率在 71.8%~98.2%之间,相对标准偏差为 3.9%~10.9%。**结论** 该方法抗干扰性强、前处理操作简便、分析速度快、灵敏度高,适用于水产制品中 22 种 PFASs 的快速精确检测。 **关键词:** 超高效液相色谱-串联质谱法;水产制品;全氟烷基物质

Simultaneous determination of 22 kinds of perfluorinated alkyl substances in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry

WANG Zhi¹, QIAO Hai-Qing¹, YANG Jun¹, FU Yan-Qiu¹, WANG Hao¹, YAO Jian-Hua², GAO Tian-Qi¹, DENG Jian-Gang^{1*}

[1. Qingdao Product Quality Testing Research Institute, Qingdao Product Quality Testing Technology Institute, Qingdao 266000, China; 2. Centre Testing International (Qingdao) Co., Ltd., Qingdao 266000, China]

ABSTRACT: Objective To establish a qualitative and quantitative method for the simultaneous determination of 22 kinds of perfluorinated alkyl substances (PFASs) in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry. **Methods** Aquatic products with complex matrix components were selected as the detection target. The samples were extracted by vortex oscillation from 1% formic acid-acetonitrile extract, the disper solid phase extraction was combined with purification through a type solid phase extraction column, the samples were separated by a C₁₈ column, and then eluted by gradient elution with methanol and 5 mmol/L ammonium acetate solution, the samples were collected by multiple reaction monitoring negative ion mode, and quantified by isotope internal standard method. **Results** The linear relationships of the 22 kinds of PFASs were good within the corresponding mass concentrations, with the correlation coefficients greater than 0.994 and the limits

基金项目: 国家市场监督管理总局技术保障专项项目(2020YJ027)

Fund: Supported by the Special Technical Support Project of the State Administration for Market Regulation (2020YJ027)

^{*}通信作者:邓建刚,高级工程师,主要研究方向为食品质量安全与检测。E-mail: gang_6699@163.com

^{*}Corresponding author: DENG Jian-Gang, Senior Engineer, Qingdao Product Quality Testing Research Institute, No.77, Keyuanweisi Road, Laoshan District, Qingdao 266000, China. E-mail: gang_6699@163.com

of quantification were 0.10-0.25 μ g/kg. The recoveries of 2 kinds of samples at spiked levels (the limit of detection, 1.0 μ g/kg, 10.0 μ g/kg) were 71.8%–98.2%, the relative standard deviations were 3.9%-10.9%. **Conclusion** This method has the advantages of strong anti-interference, simple pretreatment operation, fast analysis speed and high sensitivity, and is suitable for the rapid and accurate detection of 22 kinds of PFASs in aquatic products.

KEY WORDS: ultra performance liquid chromatography-tandem mass spectrometry; aquatic products; perfluorinated alkyl substances

0 引 言

全氟烷基物质(perfluorinated alkyl substances, PFASs) 是一类合成含氟有机化合物,从 20 世纪 50 年代就开始广 泛应用于工业和民用产品领域^[1]。该类化合物的耐降解性、 生物累积性等特性使其在水体、土壤等各种环境和生物体 内广泛分布^[2-5],而且有较强的多器官毒性、基因毒性和致 癌毒性^[6-7],多种 PFASs 的相互作用会给人体健康带来更 高的风险^[8]。近期研究表明,在多地区海洋大型哺乳动物 体内^[9-11]及多种淡水生物体内^[1]均发现较高浓度水平的 PFASs。因此,作为新型可持续性有机污染物,PFASs已经 引起国内外高度关注。2009 年 5 月《斯德哥尔摩公约》优 控名单中就增加了全氟辛烷磺酸及其盐类^[12]。作为《斯德 哥尔摩公约》缔约国,我国在完善排放制度和健全法规体 系等方面不断探索和研究^[13]。根据我国生态环境部要求, 自 2019 年 3 月 26 日起我国禁止全氟辛烷磺酸及其盐类除 可接受用途外的生产、流通、使用和进出口^[14]。

水产制品以其较高的营养价值和独特的风味特点一 直受到我国消费者青睐,其安全性备受关注[15],消费市 场对渔产品的全方位质量需求也在不断提高[16]。根据以 往研究情况,目前我国水产品中全氟化合物的含量相对 高于乳、肉、蔬菜和蛋等食品[17],食品接触材料中的 PFASs 也会迁移到食品中^[18],所以水产制品中 PFASs 的 污染情况不容乐观。水产制品不仅高油脂高蛋白, 而且含 有较多的食品添加剂, 基质十分复杂, 这给检测过程带 来较多干扰,需要建立抗干扰性强、快速而精确的检测方 法来满足检测需求。目前食品中全氟烷基物质的相关标 准有 GB 5009.253—2016《食品安全国家标准 动物源性 食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定》、 SN/T 3544—2013《出口食品中全氟辛酸和全氟辛烷磺酸 盐的测定 液相色谱-质谱/质谱法》、SN/T 4588—2016《出 口蔬菜、水果中多种全氟烷基化合物测定 液相色谱-串联 质谱法》和 SN/T 5222—2019《蜂蜜中 20 种全氟烷基化 合物的测定 液相色谱-串联质谱法》等, 没有关于水产制 品类样品中多种全氟烷基物质的检测方法。近年来测定 水产品和肉类等食品中全氟化合物的方法发展较快, 报 道过的提取净化方式有液液萃取、固相萃取及快速处理 等方法^[19-20],但存在操作烦琐、试剂消耗大、脂肪和蛋白

含量较高的复杂基质净化效率较低等问题, 仪器方面多 采用气相色谱仪^[19]、液相色谱仪^[21]、离子色谱仪^[22]、气 相色谱-串联质谱仪[23]及液相色谱-串联质谱仪等进行检 测[24-28],近年来诸如电化学和光学检测等新的检测技术 也在不断涌现,但局限于半定量仅能作为补充和预筛 选[29]。以往报道的检测方法存在要么处理步骤烦琐时间 较长,要么处理方式简单但对于水产制品这类干扰基质 较多的样品净化程度不够的问题。本研究以水产制品为 研究对象,结合国家食品安全监督抽检实施细则(2021年 版)中规定的水产制品分类进行样品类别设计,研究干制 水产品、熟制动物性水产制品、盐渍水产品、鱼糜制品 等不同类别水产制品中 PFASs 的检测方法。本研究采用 分散固相萃取结合通过式固相萃取柱净化方式进行样品 前处理,根据以往报道选择并验证了不同的提取试剂, 选择 C18 萃取剂去除磷脂和蛋白杂质,选择乙二胺-N-丙 基(primary secondary amine, PSA)萃取剂去除糖类、有机 酸及酚类等杂质,选择石墨化碳(graphitized carbon black, GCB)吸附剂去除脂肪酸和色素等干扰物,验证了上述分 散固相萃取材料对 PFASs 的净化效果。通过验证色谱条 件和质谱参数得到最优分离方案,利用超高效液相色谱 法(ultra performance liquid chromatography, UPLC)的高分 离度实现 22 种 PFASs 的快速分离,采用同位素内标法进 行串联质谱定量分析。本研究以期建立既能保证复杂基 质样品的有效净化,又能满足高效率的大批量检测要求 的实验方法,为水产制品等复杂基质中多种全氟烷基物 质的监督抽查和风险监测提供技术支持。

1 材料与方法

1.1 材料与试剂

标准品: 全氟丁酸(perfluorobutanoic acid, PFBA)、全氟戊 酸(perfluoropentanoic acid, PFPeA)、全氟己酸(perfluorohexanoic acid, PFHxA)、全氟庚酸(perfluoroheptanoic acid, PFHpA)、全氟 辛 酸 (perfluorooctanoic acid, PFOA) 、 全 氟 壬 酸 (perfluorononanoic acid, PFNA)、全氟癸酸(perfluorodecanoic acid, PFDA)、全氟十一烷酸(perfluoroundecanoic acid, PFUdA)、 全氟十二烷酸(perfluorododecanoic acid, PFDoA)、全氟十三烷 酸 (perfluorotridecanoic acid, PFTrDA) 、 全 氟 十 四 烷 酸

(perfluorotetradecanoic acid, PFTeDA)、全氟十六烷酸 (perfluorohexadecanoic acid, PFHxDA)、全氟十八烷酸 (perfluorooctadecanoic acid, PFODA)、全氟丁烷磺酸 (perfluoro-1-butanesulfonate, PFBS) 、 全 氟 戊 烷 磺 酸 (perfluoro-1-pentanesulfonate, PFPeS)、全氟己烷磺酸 (perfluoro-1-hexanesulfonate, PFHxS)、全氟庚烷磺酸 (perfluoro-1-heptanesulfonate, PFHpS)、全氟辛烷磺酸 (perfluoro-1-octanesulfonate, PFOS) 、 全 氟 壬 烷 磺 酸 (perfluoro-1-nonanesulfonate, PFNS)、全氟癸烷磺酸 (perfluoro-1-decanesulfonate, PFDS)、全氟十二烷磺酸 (perfluoro-1-dodecanesulfonate, PFDoS)(纯度≥99%, 加拿 大 Wellington Labortories 公司); ¹³C₈-全氟辛酸 (¹³C₈-perfluorooctanoic acid, ¹³C₈-PFOA)、¹³C₈-全氟辛烷磺 酸(¹³C₈-perfluoro-1-octanesulfonate, ¹³C₈-PFOS)(纯度≥99%, 美国 Cambridge Isotope Laboratories 公司); 全氟辛烷磺酰 胺(perfluorodecanesulfonic acid, PFOSA)(纯度≥99%, 英国 LGC 公司); 甲醇、乙腈(色谱纯, 德国 Merck 公司); 甲酸 (色谱纯, 美国 Fluka 公司); 无水硫酸镁、氯化钠(分析纯, 国药集团化学试剂有限公司); C₁₈萃取剂(50 μm)、PSA 萃 取剂(天津博纳艾杰尔公司);石墨化碳(美国 Supelco 公司); Captiva EMR-Lipid 通过式固相萃取柱、0.22 µm 针式过滤 器(美国 Agilent 公司)。

483 个水产制品样品(包括鱼丸、鱼罐头、鱼片、干海 参、盐渍鱼和海带丝等)于 2020 年 11 月至 2021 年 3 月购 自青岛市超市及大连市、烟台市和上海市等网店。

1.2 仪器与设备

ACQUITY H-CIASS 超高效液相色谱仪配 Xevo TQ-S 串联四极杆质谱仪、ACQUITY UPLC BEH C₁₈ 色谱柱

(100 mm×2.1 mm, 1.7 μm)(美国 Waters 公司); XHF-DY 均质 机(宁波新芝生物公司); Heidolph 旋涡混合器(上海医大仪器 厂); SIGMA 3K15 高速离心机(德国 Sigma 公司); ANPEL DC24H-RT 氮吹仪(上海 ANPEL 公司); ULTRA IO MK2 超纯 水仪(英国 ELGA 公司)。

1.3 实验方法

1.3.1 仪器分析条件

色谱条件: 色谱柱采用 Waters ACQUITY UPLC BEH C₁₈ (100 mm×2.1 mm, 1.7 μm); 柱温: 35 ℃; 流速: 0.30 mL/min; 进样量: 5 μL; 流动相水相: 5 mmol/L 乙酸铵 水溶液; 流动相有机相: 甲醇; 梯度洗脱程序见表 1。

表1 梯度洗脱程序	Table 1	Cond	lition of gradient elution
		表 1	梯度洗脱程序

Table 1	Condition o	i gradient clution		
时间/min	水相/%	有机相/%	曲线	
0	95.0	5.0	6	
1.00	5.0	95.0	6	
3.00	5.0	95.0	6	
3.01	95.0	5.0	6	
6.00	95.0	5.0	1	

质谱条件: 电喷雾离子源(electrospray ionization, ESI), 多反应监测(multiple reaction monitoring, MRM)负离子模 式; 毛细管电压: 2.5 kV; 离子源温度: 140 ℃; 脱溶剂气流 量: 氮气 1000 L/h; 脱溶剂气温度: 350 ℃; 锥孔气流量: 氮气 30 L/h; 碰撞气流量: 氩气 0.15 mL/min。其他质谱参 数见表 2。

表 2 目标化合物主要质谱参数 Table 2 Mass spectrometric parameters of the target compounds						
序号	化合物	CAS 号	母离子(m/z)	子离子(m/z)	碰撞能量/eV	锥孔电压/kV
1	PFBA	375-22-4	213	169.1* 168.9	20 20	8 8
2	PFPeA	2706-90-3	263	219.1* 209.0	20 20	8 11
3	PFHxA	307-24-4	312.9	269.0* 119.1	25 20	8 18
4	PFHnA	DEHnA 375.85.0	363	319.1*	20	15
-	Ппрл	575-65-5		169.2	20	27
E	ΡΕΟΛ		412	369.0*	20	16
	TTOA	555-07-1	415	169.1	20	30

						表 2(续)
序号	化合物	CAS 号	母离子(m/z)	子离子(m/z)	碰撞能量/eV	锥孔电压/kV
		275.05.1	162	419.1*	25	20
6	PFNA	3/5-95-1	463	219.0	25	30
-		225 56 2	512	469.0*	20	20
7	PFDA	335-76-2	513	219.0	20	30
0		2050.04.0	5(2)	519.1*	20	20
8	PFUdA	2058-94-8	563	219.0	20	30
0			(12	569.1*	25	23
9	PFDoA	307-55-1	613	169.0	25	45
10				619.0*	25	23
10	PFIrDA	72629-94-8	663	169.1	25	45
			510	669.1*	25	26
11	PFIeDA	3/6-06-/	/13	169.0	25	55
10			813 7	769.1*	25	25
12	PFHxDA	67905-19-5	813	169.1	25	58
10			010	869.0*	25	25
13	PFODA	16517-11-6	913	169.0	25	60
			• • • •	79.9*	50	48
14	PFBS	45187-15-3	299	99.1	50	35
		25 04 01 4	240.0	79.9*	32	31
15	PFPeS	2706-91-4	348.9	98.9	32	30
			200	79.9*	65	55
16	PFHxS	355-46-4	399	99.1	65	40
17		275.02.0		79.9*	16	34
17	PFHpS	375-92-8	449	99.0	16	34
10	D EO G		100	79.9*	20	55
18	PFOS	1763-23-1	 463 513 563 613 663 713 813 913 299 348.9 399 348.9 399 449 499 549 599 549 599 699 498 507 421 	99.0	20	55
10	DED 10	00500 55 0		80.1*	65	55
19	PFNS	98789-57-2	549	99.1	60	50
20	DEDG	225 77 2	500	79.9*	85	60
20	PFDS	335-77-3	599	99.1	85	52
21		10(0004 54 1	(00)	99.1*	70	57
21	PFDoS	1260224-54-1	699	130.0	70	60
	PEOG		100	77.9*	25	80
22	PFOSA	/54-91-6	498	169.1	25	30
	la prog			79.9*	30	70
23	C ₈ -PFOS	s 1763-23-1	507	99.0	30	65
2.4		101	223.0*	20	16	
24	C ₈ -PFOA	333-67-1	421	376.1	20	16

注:*表示定量离子对;¹³C₈-PFOS为全氟辛烷磺酸类化合物的内标;¹³C₈-PFOA为全氟辛酸类和全氟辛烷磺酰胺类化合物的内标。

1.3.2 标准曲线

本方法采用标准曲线校正,同位素内标法定量。将22 种 PFASs标准物质用甲醇配制成质量浓度100 μg/mL的混 合标准储备液,再用甲醇稀释配制成200 ng/mL的标准中 间液。将两种内标化合物用甲醇配制成质量浓度为 2 μg/mL 的混合标准储备液,再用甲醇稀释成质量浓度为 200 μg/L 的混合内标工作液。移取适量标准中间液用甲醇 稀释配制成质量浓度为0.1~10.0 μg/L浓度范围的系列标准 工作液,现配现用。并使每份标准溶液中含 2 ng/L 内标化 合物。以待测物的质量浓度为横坐标(X,μg/L),定量离子质 量色谱峰面积与内标峰面积的比值为纵坐标(Y),绘制内标曲线。

1.3.3 样品预处理

样品提取:干制水产品按相应产品标准的规定方法进行泡发后取样,其他类水产制品取可食部分进行匀浆处理或制成粉末。称取 2.00 g 均质样品于 50 mL 离心管中,加入内标物(¹³C₈-PFOA、¹³C₈-PFOS 各 2 ng)和 2 mL 超纯水,涡旋混合 1 min 后,加入 2 g 无水硫酸镁和 1 g 氯化钠,加入乙腈(含 1%甲酸)10 mL 涡旋振荡提取 10 min。以 9000 r/min离心 5 min,待净化。

样品净化:上清液移入另一离心管中加入 60 mg PSA和30 mg GCB充分涡旋混合后9000 r/min离心5 min, 取上清液5 mL 经通过式固相萃取柱净化。含有机酸和色 素等杂质较少的样品可不加入 PSA和 GCB,直接取上清 液 5 mL 经通过式固相萃取柱净化。净化后的提取液经 40 ℃氮吹至干,用甲醇定容至 1.0 mL,通过 0.22 µm 针式 过滤器过滤后上机分析。

1.3.4 数据处理

试样中 22 种 PFASs 成分含量按式(1)计算:

$$X_{i} = \frac{C_{i} \times V \times F}{m} \tag{1}$$

式(1)中:

*X*_i——试样中 PFASs 的含量, ng/g; *C*_i——样品溶液中 PFASs 含量, μg/L;

V——样品溶液定容体积, mL;

F——样品溶液稀释倍数;

m——称量样品质量,g。

2 结果与分析

2.1 样品前处理方法的优化

2.1.1 提取剂的选择

对于水产品和肉制品等样品中 PFASs 的提取多采用 甲醇、乙腈/水、乙腈和甲基叔丁基醚等^[19,24-25]提取剂进行 提取。考虑到水产制品普遍具有高蛋白、高脂肪等特点,本 方法分别用乙腈(含 1%甲酸)、甲醇(含 1%甲酸)和 90%乙 腈/水溶液进行了提取,用回收率来比较不同提取液对目 标化合物的提取效率。结果显示,乙腈(含1%甲酸)提取效 果最好,在2 µg/L 添加水平下,目标化合物的回收率在 70.2%~108.4%之间,提取效果优于其他两种,因此选择乙 腈(含1%甲酸)作为提取溶剂。

2.1.2 净化方式的优化

对于复杂基质中 PFASs 的净化方式以往多采用固相 萃取柱和分散固相萃取,但固相萃取柱需要经过活化、淋 洗、洗脱等操作,步骤烦琐耗时较长。分散固相萃取速度 较快但净化效果有限。本方法采用通过式固相萃取柱结合 分散固相萃取,对C18萃取剂、PSA 萃取剂和GCB等不同 的分散固相萃取材料进行比较。结果显示, C18萃取剂主要 用于去除酯类杂质,其作用与通过式固相萃取剂相近但 净化效果不如后者,通过比较研究发现,C18 萃取剂的使 用对结果无明显改善,所以最终只选择了 PSA 和 GCB 这 两种分散固相萃取材料。通过 PSA 萃取剂去除有机酸和 碳水化合物等杂质,利用 GCB 去除色素,再结合通过式 固相萃取柱去除蛋白和酯类物质,既能较短时间内完成 净化,又能保证净化效果。本方法以鱼罐头为样品对 PSA 萃取剂和 GCB 的不同重量比例(1:1、2:1、3:1)进行了回 收率验证,结果表明,在重量比为 2:1 条件下鱼罐头中 PFASs 的回收率在 75.2%~103.1%之间, 回收率优于其他 两种比例且成本较低,背景干扰相对较小,最终选择 60 mg PSA 和 30 mg GCB (2:1)分散固相萃取后再经通过式 固相萃取柱进行净化。

2.2 色谱条件的优化

本方法利用 UPLC 的高解析度特点,能够实现短时间内 22种 PFASs 的有效分离。根据相关报道^[24]采用 AtlantisT 3-C₁₈ 色谱柱和 CAPCELL AQ-C₁₈反相色谱柱时存在峰型差和出峰 较晚问题,本研究考察了 ACQUITY UPLC BEH C₁₈ (100 mm ×2.1 mm, 1.7 μ m)和 ACQUITY UPLC BEH C₁₈ (50 mm× 2.1 mm, 1.7 μ m)两种型号的色谱柱,结果显示 100 mm 的色 谱柱具有更好的分离效果,能够在 6 min 内有效分离 22 种 PFASs,峰型对称且与干扰杂质峰有效分离。因此选择 ACQUITY UPLC BEH C₁₈ (100 mm×2.1 mm, 1.7 μ m)色谱柱 梯度洗脱方式作为色谱条件。在鱼丸空白样品中进行 22 种 PFASs 5 μ g/kg浓度水平加标实验,其色谱峰结果详见图 1。

图 1 鱼丸空白加标样品中 22 种 PFASs 的 MRM 色谱图(5 µg/kg) Fig.1 MRM chromatograms of a blank fish ball sample spiked with 22 kinds of PFASs (5 µg/kg)

不同的流动相系统对色谱行为的影响显著,以往的 方法研究中常选择乙腈-乙酸铵体系^[19,24]和甲醇-乙酸铵体 系^[27-28]等,本方法对乙腈-乙酸铵和甲醇-乙酸铵两种流动相 体系进行了比较。结果显示,乙腈-乙酸铵体系虽峰型较好, 但灵敏度降低,甲醇-乙酸铵体系峰型对称且灵敏度较高。 据报道流动相中加入乙酸铵可以提高 PFASs 离子化效率, 减少拖尾,但乙酸铵浓度较高对质谱检测有抑制作用^[28]。所 以本方法选择甲醇-5 mmol/L 乙酸铵水溶液作为流动相。

2.3 质谱条件的优化

在ESI源负离子模式下将 PFASs 的混合标准溶液注入 质谱进行方法调谐,对毛细管电压、锥孔电压、碰撞电压、 脱溶剂气温度等关键质谱参数进行调整,以信号响应值为 依据确定各化合物的最佳质谱条件。其中毛细管电压对各 化合物的响应值影响较大,最终确定 2.5 kV 为毛细管电压, 其他质谱参数详见表 2。

2.4 方法灵敏度、线性范围、准确度与精密度

用 PFASs 混合标准溶液及内标配制系列浓度曲线,进行 线性回归分析,22 种 PFASs 中 PFBA、PFPeA、PFBS、PFHxS、 PFNA、PFOS、PFDS、PFHpS、PFPeS、PFNS 和 PFDoS 在 0.1~10.0 µg/L 质量浓度范围内、PFHpA、PFHxA、PFOA、 PFDA、PFUdA、PFDoA、PFTrDA、PFTeDA、PFHxDA、PFODA 和 PFOSA 在 0.25~10.00 µg/L 质量浓度范围内线性关系良好, 相关系数均大于 0.994,结果详见表 3。 分别在鱼丸和鱼罐头样品中添加定量限、1.0 和 10.0 μg/kg浓度水平的标准物质做加标回收实验,每个浓度 水平平行测定 6 次。结果显示平均回收率为 71.8%~98.2%, 相 对 标 准 偏 差 (relative standard deviations, RSDs) 为 3.9%~10.9%,结果详见表 4,结果说明本方法的准确度与精 密度良好,能够满足测定要求。在空白样品中添加低浓度水 平标准溶液,测定结果以信噪比(*S/N*)≥10 确定各组分定量 限,结果详见表 3,各组分定量限为 0.10~0.25 μg/kg。

	• • •	1		11: 14 6 414 41	COOL: 1 CDEAG
表 3	22 种 PFASs	的线性范围、	回归方程、	相关系数和定量限	

Table 5 Li	Table 5 Elinear ranges, regression equations, correlation coefficients and mints of quantitation of 22 kinds of reasons					
化合物	线性范围/(μg/L)	回归方程	相关系数(r)	定量限/(µg/kg)		
PFBA	0.1~10.0	<i>Y</i> =0.107024 <i>X</i> +0.14179	0.998815	0.10		
PFPeA	0.1~10.0	<i>Y</i> =0.100064 <i>X</i> +0.00472	0.998853	0.10		
PFBS	0.1~10.0	<i>Y</i> =0.481905 <i>X</i> +0.10115	0.999245	0.10		
PFHpA	0.25~10.00	<i>Y</i> =0.0788913 <i>X</i> +0.01450	0.998313	0.25		
PFHxS	0.1~10.0	<i>Y</i> =0.635881 <i>X</i> +0.014244	0.999653	0.10		
PFHxA	0.25~10.00	<i>Y</i> =0.194514 <i>X</i> +0.0523412	0.997781	0.25		
PFOA	0.25~10.00	<i>Y</i> =0.103678 <i>X</i> +0.0343127	0.998034	0.25		
PFNA	0.1~10.0	<i>Y</i> =0.0275602 <i>X</i> +0.001794	0.998133	0.25		
PFOS	0.1~10.0	<i>Y</i> =0.766576 <i>X</i> +0.098636	0.999657	0.10		
PFDA	0.25~10.00	Y=0.056391X-0.003524	0.998783	0.25		
PFUdA	0.25~10.00	<i>Y</i> =0.102155 <i>X</i> +0.009059	0.997269	0.25		
PFDS	0.1~10.0	<i>Y</i> =0.860263 <i>X</i> +0.048053	0.998615	0.10		
PFDoA	0.25~10.00	<i>Y</i> =0.0536934 <i>X</i> +0.004738	0.998030	0.25		
PFTrDA	0.25~10.00	<i>Y</i> =0.0541849 <i>X</i> -0.001187	0.995640	0.25		
PFTeDA	0.25~10.00	Y=0.0218498X-0.009098	0.994737	0.25		
PFHxDA	0.25~10.00	Y=0.0718024X-0.006240	0.998400	0.25		
PFODA	0.25~10.00	<i>Y</i> =0.107525 <i>X</i> +0.005113	0.997218	0.25		
PFHpS	0.1~10.0	<i>Y</i> =0.194514 <i>X</i> +0.052341	0.997781	0.10		
PFPeS	0.1~10.0	<i>Y</i> =1.23804 <i>X</i> +0.091755	0.999183	0.10		
PFOSA	0.25~10.00	<i>Y</i> =0.0761557 <i>X</i> -0.018315	0.996058	0.25		
PFNS	0.1~10.0	<i>Y</i> =0.856569 <i>X</i> +0.057385	0.998014	0.10		
PFDoS	0.1~10.0	<i>Y</i> =0.516015 <i>X</i> +0.082145	0.997208	0.10		

2.5 样品检测应用

本方法参考国家食品安全监督抽检实施细则(2021 年版)中的样品分类方法进行样品类别设计,共采集 483 个样品,其中干制水产品 55 个、熟制动物性水产制品 181 个、水产动物类罐头 127 个、盐渍水产品 23 个、鱼糜制 品 88 个、其他水产制品 9 个。检测结果发现,22 种 PFASs 中,PFBA、PFOA 和 PFOS 检出率较高,分别为 37.06%、 41.20%和 43.27%,其他化合物检出率范围介于 0~24.22% 范围内。PFOA 在水产动物类罐头中最高值为 43.96 µg/kg; PFOS 在干制水产品中最高值为 51.09 µg/kg; PFBA 在熟 制动物性水产制品中最高值为 7.51 µg/kg; PFHxA 在盐渍 水产品中最高值为 12.12 µg/kg。其他 18 种组分含量在未 检出~0.44 µg/kg 范围内,整体在较低含量范围内。通过对 样品的检测应用说明本方法适用于多种水产制品样品的 精确定量检测,实用性较强。

表 4 样品加标回收率结果(n=6) Table 4 Recovery results of spiked samples (n=6)

	沃加浓度	鱼罐头	、	鱼丸	
目标物	标加权皮	平均回收率	RSDs/	平均回收率	RSDs
	/(µg/kg)	/%	%	/%	/%
	0.10	84.5	8.8	84.4	9.9
PFBA	1.00	82.1	10.6	81.4	8.8
	10.00	84.8	8.0	89.3	10.3
	0.10	85.6	9.1	86.1	9.6
PFPeA	1.00	79.8	9.8	86.8	8.7
	10.00	90.2	10.6	86.2	9.7
	0.25	82.2	9.2	73.8	9.2
PFHxA	1.00	90.5	8.1	81.1	8.3
	10.00	88.6	8.4	87.6	7.3
	0.25	82.0	6.1	86.1	9.2
PFHpA	1.00	78.3	7.9	78.8	9.5
-	10.00	93.5	6.4	91.2	10.3
	0.25	75.7	7.3	77.0	8.1
PFOA	1.00	79.4	7.9	80.5	9.0
	10.00	87.8	6.6	86.9	8.1

				-	表 4(续)
	法扣补审	鱼罐头		鱼丸	
目标物	添加浓度 /(µg/kg)	平均回收率 /%	RSDs/ %	平均回收率 /%	RSDs /%
	0.25	83.0	7.7	88.2	8.2
PFNA	1.00	84.8	8.2	83.6	9.1
	10.00	88.8	9.5	82.0	10.5
	0.25	84.0	9.2	87.2	10.1
PFDA	1.00	81.4	8.6	88.0	9.0
	10.00	89.2	9.8	86.1	9.2
	0.25	81.9	7.9	82.3	10.3
PFUdA	1.00	79.9	8.6	90.7	8.3
	10.00	89.3	10.5	86.6	9.0
	0.25	78.9	8.3	91.1	7.3
PFDoA	1.00	86.0	83	88.9	10.1
11 Don	10.00	90.5	9.2	94.3	7.8
	0.25	81.9	7.9	81.5	9.8
	1.00	81.9	87	87.3	9.0 8.0
ITIDA	10.00	81.8	7.6	02.2	0.0
	0.25	87.0	7.0	92.2	9.2
	0.25	87.9	9.0	87.5	10.5
PFIEDA	1.00	87.2	8.2	93.5	/.1
	10.00	92.0	7.8	98.0	6.3
	0.25	77.2	10.2	72.1	9.3
PFHXDA	1.00	82.1	8.6	79.9	9.1
	10.00	93./	5.2	88.8	/.3
DEODA	1.00	80.8 85.5	0.5	//.0 80.5	10.0
PFODA	10.00	01.1	9.5	80.5 86 0	0.2
	0.10	91.1	7.5	80.2 70.1	0.1
DEDC	0.10	80.9 72.7	9.5	/9.1	9.2
PFBS	1.00	12.1	9.2	84.1	9.1
	10.00	96.2	8.2	93.6	8.2
DED C	0.10	74.8	9.6	84.5	6.8
PFPeS	1.00	82.1	8.3	77.8	7.9
	0.10	90.6	/./ 8 2	93.5 78.1	0.1
PEHyS	1.00	78.0	0.2 9.0	72.6	7.5 8.2
111173	10.00	85.9	9.0 8.2	84.5	9.0
	0.10	86.0	6.3	77.5	8.2
PFHpS	1.00	96.8	7.9	75.1	8.2
1	10.00	88.8	6.8	93.1	6.6
	0.10	78.5	9.2	86.5	8.4
PFOS	1.00	89.3	8.5	82.3	7.0
	10.00	98.2	6.3	96.3	5.1
	0.10	76.1	6.3	78.6	8.8
PFNS	1.00	80.2	6.0	80.8	7.2
	10.00	86.1	5.2	93.5	5.3
DEDC	0.10	71.8	7.1	79.1	6.2
rrus	10.00	/0.U 88.6	8.2 6.3	82.8 88 0	4.0 5 2
	0.10	73.7	6.8	72.8	6.9
PFDoS	1.00	81.7	5.7	80.4	5.8
	10.00	86.0	6.0	86.3	6.1
	0.25	75.5	4.8	73.9	4.4
PFOSA	1.00	78.2	3.9	76.3	4.1
	10.00	82.3	5.3	77.9	5.1

3 结论与讨论

本研究建立了水产制品中 22 种 PFASs 的超高效液相色 谱-串联质谱法。利用分散固相萃取结合通过式固相萃取柱的 净化方式,无需进行活化平衡及洗脱等步骤,实现了复杂基 质快速高效的前处理过程。利用超高效液相色谱-串联质谱法 的高解析度、高灵敏度特点在 6 min 内同时对 22 种 PFASs 进行有效分离和定性定量分析。该方法通过方法学验证其各 项指标均符合检测要求,抗干扰性强、操作简便、分析速度 快、灵敏度高,适用于大批量水产制品的快速精确检测。

参考文献

- YANG S, XU F, WU F, *et al.* Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China [J]. Sci Total Environ, 2014, 470-471: 677–683.
- [2] SINCLAIR GM, LONG SM, JONES O. What are the effects of PFAS exposure at environmentally relevant concentrations [J]. Chemosphere, 2020, 258: 127340.
- [3] NB A, BS B, MV C, et al. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil [J]. Environ Int, 2021, 155: 106600.
- [4] LI JY, SUN J, LI PY. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review [J]. Environ Int, 2022, 158: 106891.
- [5] PODDER A, SADMANI AHMA, REINHART D, et al. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects [J]. J Hazard Mater, 2021, 419: 126361.
- [6] ZHAO SY, ZHU LY, LIU L, et al. Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms (*Eisenia fetida*) in soil [J]. Environ Pollut, 2013, 179: 45–52.
- [7] KIM S, THAPAR I, BROOKS BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS) [J]. Environ Pollut, 2021, 279: 116929.
- [8] OJO AF, PENG C, NG JC. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures [J]. J Hazard Mater, 2020, 407(4):124863
- [9] SCIANCALEPORE G, PIETROLUONGO G, CENTELLEGHE C, et al. Evaluation of per- and poly-fluorinated alkyl substances (PFAS) in livers of bottlenose dolphins (*Tursiops truncatus*) found stranded along the northern Adriatic Sea [J]. Environ Pollut, 2021, 291: 118186.
- [10] WANG Q, RUAN YY, JIN LJ, et al. Target, nontarget, and suspect screening and temporal trends of per- and polyfluoroalkyl substances in marine mammals from the South China Sea [J]. Environ Sci Technol, 2021, 55(2): 1045–1056.
- [11] TAYLOR S, TERKILDSEN M, STEVENSON G, et al. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds [J]. Sci Total Environ, 2021, 786: 147446.
- [12] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的 一些研究进展[J]. 中国科学: 化学, 2010, 40(2): 99–123.
 WANG YW, CAI YQ, JIANG GB. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Sci Sin (Chim), 2010, 40(2): 99–123.

- [13] 郭建勋,高明骏. 中国履行《斯德哥尔摩公约》的制度借鉴[J]. 华中农业大学学报(社会科学版), 2016, 126(6): 136–141.
 GUO JX, GAO MJ. System reference of China's performance of *Stockholm Convention* [J]. J Huazhong Agric Univ (Soc Sci Ed), 2016, 126(6): 136–141.
- [14] 生态环境部.关于禁止生产、流通、使用和进出口林丹等持久性有机 污染物的公告[EB/OL]. [2019-03-11]. http://www.mee.gov.cn/ xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html [2021-04-26].
 Ministry of Ecological Environment. Announcement on banning the production, circulation, use, import and export of lindane and other persistent organic pollutants [EB/OL]. [2019-03-11]. http://www.mee.gov. cn/xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html [2021-04-26].
- [15] 赵彤,周慧敏. 浅淡水产制品质量安全问题[J]. 品牌与标准化, 2016, 4: 63-64.

ZHAO T, ZHOU HM. A brief comment on the quality and safety of aquatic products [J]. Brand Stand, 2016, 4: 63–64.

[16] 叶元土.水产食品产业链发展关键问题的思考与发展机遇[J]. 饲料工业, 2021, 42(6): 1-8.
 YE YT. Analysis of development opportunities and core elements of

aquatic food industry chain [J]. Feed Ind, 2021, 42(6): 1-8. [17] 郑翌, 冷桃花, 潘煜辰, 等. 全氟化合物在食品中的污染情况及检测方 法研究进展[J]. 食品工业科技, 2019, 10: 314-319. ZHENG Y, LENG TH, PAN YC, *et al.* Research progress on contamination and determination methods of perfluorinated compounds in food [J]. Sci Technol Food Ind, 2019, 10: 314-319.

- [18] 丁林玉, 雷素珍, 曾红亮. 全氟和多氟化合物的危害及在食品中的污染研究进展[J]. 食品工业科技, 2020, 20: 336–341.
 DING LY, LEI SZ, ZENG HL. Research progress on the harm of perfluoroalkyl and polyfluoroalkyl substances and their contamination in food [J]. Sci Technol Food Ind, 2020, 20: 336–341.
- [19] 徐双双,王尉,汤桦,等. 全氟辛酸和全氟辛烷磺酸的提取和检测技术应用[J]. 分析仪器, 2020, 6: 1–6.
 XU SS, WANG W, TANG H, *et al.* Extraction and detection of perfluorooctanoic acid and perfluorooctanesulfonic acid [J]. Anal Instrum, 2020, 6: 1–6.
- [20] 王飞,李晓明,李建勇. 食品中全氟化合物检测前处理技术研究进展
 [J]. 食品研究与开发, 2016, 37(14): 192–196.
 WANG F, LI XM, LI JY. Progress on pretreatment technology of perfluorinated compounds in food [J]. Food Res Dev, 2016, 37(14): 192–196.
- [21] OHYA T, KUDO N, SUZUKI E, et al. Determination of perfluofinatedcarboxylic acids in biological samples by high-performance liquid chromatography [J]. J Chromatogr B, 1998, 720(1/2): 1–7.
- [22] ABE T, BABA H, ITOH E, et al. Separation of perfluoroalkylsulfinic acids and perfluoroalkylsulfonic acids by ion-exclusion chromatography [J]. J Chromatogr A, 2001, 920(1/2): 173–180.
- [23] LV G, WANG LB, LI SC, et al. Determination of perfluorinated compounds in packaging materials and textiles using pressurized liquid extraction with gas chromatography-mass spectrometry [J]. Anal Sci, 2009,

(25): 425–429.

[24] 冷桃花, 王亮, 郑翌. 高效液相色谱-串联质谱法测定婴幼儿米粉中 12 种全氟烷基化合物[J]. 食品安全质量检测学报, 2019, 10(23): 8087-8092.

LENG TH, WANG L, ZHENG Y. Determination of 12 perfluorinated compounds in rice powder for infants and young children by high performance liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2019, 10(23): 8087–8092.

- [25] 刘少颖,金铨,任韧,等.超高效液相色谱-串联质谱法测定鱼肉全氟 羧酸化合物[J].预防医学,2020,32(12):1204–1207. LIU SY, JIN Q, REN R, et al. Determination of perfluorocarboxylic acids in fish by ultra performance liquid chromatography tandem mass spectrometry [J]. Prev Med, 2020, 32(12): 1204–1207.
- [26] 国佼, 郭萌萌, 吴海燕,等. 双固相萃取柱净化-超快速液相色谱-串联 质谱法同时测定贝类组织中全氟羧酸及其前体物质[J]. 食品科学, 2017, 38(20): 248–255.

GUO J, GUO MM, WU HY, *et al.* Simultaneous determination of perfluorinatedacids and their precursors in bivalve shellfish by double SPE columns purification and ultra fast liquid chromatography-tandem mass spectrometry [J]. Food Sci, 2017, 38(20): 248–255.

- [27] 何建丽, 彭涛, 谢洁, 等. 高效液相色谱-串联质谱法测定动物肝脏中20 种全氟烷基类化合物[J]. 分析化学, 2015, 43(1): 40–48.
 HE JL, PENG T, XIE J, *et al.* Development of a QuEChERs method for determination of 20 perfluorinated compounds in animal liver by HPLC-MS/MS [J]. Chin J Anal Chem, 2015, 43(1): 40–48.
- [28] 冯沙, 蓝芳, 吴晓萍, 等. 分散固相萃取-高效液相色谱-串联质谱法测定白酒中全氟化合物[J]. 食品科学, 2013, 34(22): 143–149.
 FENG S, LAN F, WU XP, *et al.* Determination of 15 pertuorinated compounds in Chinese spirit by dispersive solid phase extraction and HPLC-MS-MS [J]. Food Sci, 2013, 34(22): 143–149.
- [29] 方程,张红平,罗云龙.全氟和多氟烷基化合物的分析检测[J].分析 科学学报,2021,37(4):451-458.

FANG C, ZHANG HP, LUO YL. Analysis and detection of perfluorinated and polyfluoroalkyl substances [J]. J Anal Sci, 2021, 37(4): 451–458.

(责任编辑:张晓寒郑 丽)

作者简介

王 智,硕士,高级工程师,主要研究 方向为食品质量安全与检测。 E-mail: qdzjywangzhi@163.com

邓建刚,高级工程师,主要研究方向 为食品质量安全与检测。 E-mail: gang_6699@163.com