超高效液相色谱-串联质谱法测定野生蘑菇中的 6 种鹅膏肽类毒素

郎 乐,王庆峰*,刘 斌

(吉林省食品检验所,长春 130103)

摘 要:目的 建立超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)测定野生蘑菇中 6 种鹅膏肽类毒素的含量。**方法** 干燥后的样品粉末经水提取后,提取液转移至固相萃取柱净化,采用 ACQUITY UPLC BEH C₁₈色谱柱以 5 mmol/L 的甲酸铵水溶液和甲醇为流动相进行梯度洗脱,流速为 0.3 mL/min,柱温 40 ℃,采用多反应监测模式检测。结果 6 种待测物在色谱图上全部做到基线分离,在 20~1000 µg/kg 的范围内呈现良好的线性关系,检出限均达到 20 µg/kg,不同水平下的加标回收实验中各待测物的平均回收率为 78.2%~95.7%,相对标准偏差为 1.2%~5.2%。结论 该方法操作简单,灵敏度高,重复性好,适用于野生蘑菇中鹅膏肽类毒素的检测。

Determination of 6 kinds of amatoxins and phallotoxins in wild mushrooms by ultra performance liquid chromatography-tandem mass spectrometry

LANG Le, WANG Qing-Feng*, LIU Bin

(Jilin Institute for Food Control, Changchun 130103, China)

ABSTRACT: Objective To establish a method for the determination of 6 kinds of amatoxins and phallotoxins in wild mushrooms by ultra performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS). **Methods** After water extraction, the samples were separated with a ACQUITY UPLC BEH C_{18} colum at the flow rate of 0.3 mL/min by gradient elution using 5 mmol/L ammonium formate aqueous solution and methanol as mobile phases, the temperature of the colum was maintained at 40 °C, and multiple reaction monitoring mode was adopted for detection. **Results** The analytes could be separated with a baseline resolution and showed a good linearity in the range of 20-1000 µg/kg. The limits of detection of 6 kinds of amanitins and phallotoxins were 20 µg/kg. The recoveries of analytes in different levels were 78.2%-95.7%, and the relative standard deviations were 1.2%-5.2%. **Conclusion** This method is simple, sensitive and reproducible, and it is suitable for the determination of peptidotoxin in wild mushroom.

KEY WORDS: amatoxins; phallotoxins; ultra performance liquid chromatography-tandem mass spectrometry; wild mushrooms

^{*}通讯作者:王庆峰,工程师,主要研究方向为食品质量与安全。E-mail: windwqf@163.com

^{*}Corresponding author: WANG Qing-Feng, Engineer, Jilin Institute for Food Control, No. 2699, Yiju Street, Gaoxin District, Changchun 130103, China. E-mail: windwqf@163.com

1 引 言

我国野生蘑菇资源丰富,民众自古就有采集野生蘑 菇食用的传统, 但普通人无法准确区分食用蘑菇和毒蘑菇, 每年因误采食毒蘑菇而中毒的事件屡见不鲜。毒蘑菇中毒 死亡人数占整个食物中毒死亡人数的比例超过 35%^[1],已 经成为我国食物中毒致死事件的主要原因。而90%以上误 食毒蘑菇死亡事件来源于食用鹅膏菌属(Amanita)的蘑菇 所导致,其含有的鹅膏肽类毒素主要有鹅膏毒肽类 (amatoxins)和鬼笔毒肽类(phallotoxins),均属于环肽化合 物^[2]。鹅膏毒肽中又以 α -鹅膏毒肽(α -amanitin, α -AMA)、 β -鹅膏毒肽(β-amanitin, β-AMA)和 γ-鹅膏毒肽(γ-amanitin, y-AMA)3 种毒素毒性最大, 在蘑菇中含量也较高, 为引起 中毒的主要毒素^[3,4]。鬼笔毒肽中常见毒素有二羟基鬼笔毒 肽(phalloidin, POD)、羧基二羟基鬼笔毒肽(phallacidin, PCD) 和羧基三羟基鬼笔毒肽(phallisacin, PSC), 虽然鬼笔毒肽 类毒素不能经由肠道吸收,但含有鬼笔毒肽类毒素的蘑菇 多同时含有鹅膏毒肽,因此一般也同时作为监测目标^[4,5]。

目前,鹅膏肽类毒素检测方法以超高效液相色谱-串 联质谱法(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)为主^[6-11],相比于高效液 相色谱法^[12,13]、毛细管电泳法^[14]、酶联免疫吸附法^[15]等早 期方法,UPLC-MS/MS方法具有分析时间短、抗干扰能力 强、定性定量准确以及检出限低等优点,同时三重四极杆 质谱的仪器普及率高于液相色谱-飞行时间质谱法,具有 推广价值。文献中关于蘑菇中羧基三羟基鬼笔毒肽含量检 测方法的报道相对较少。

本研究建立了 UPLC-MS/MS 法同时测定蘑菇中 6 种 常见鹅膏肽类毒素的含量,为蘑菇中毒事件的诊断及预防 提供了参考依据。

2 材料与方法

2.1 仪器与试剂

Waters Xevo TQ-S 液相色谱-质谱仪(美国 Waters 公司); Allegra 64R 高速冷冻离心机(美国 Beckman 公司); KQ-300VDE 超声波清洗机(昆山市超声仪器有限公司); GENIUS 3 涡旋混合器(德国 IKA 公司); N-EVAP 112 氮 吹仪(美国 Organomation 公司)。

α-鹅膏毒肽、β-鹅膏毒肽、γ-鹅膏毒肽、二羟基鬼笔 毒肽、羧基二羟基鬼笔毒肽及羧基三羟基鬼笔毒肽标准样 品溶液(50 μg/mL,福州勤鹏生物科技有限公司);乙腈、甲 醇(色谱纯,美国 TEDIA 公司);甲酸铵、氨水、甲酸(分析 纯,国药集团试剂有限公司);Oasis HLB 固相萃取小柱(3 cc/60 mg,美国 Waters 公司);0.22 μm 水系滤膜(天津津腾 公司);实验室用水为 Milli-Q 超纯水。 鲜蘑菇为市售野生蘑菇。

2.2 实验方法

2.2.1 标准溶液配制

鹅膏肽类毒素混合标准储备液的配制:分别准确量 取各标准溶液 1 mL 至 50 mL 容量瓶内,用甲醇定容至刻 度,配制成浓度均为 1 μg/mL 的混合标准储备液, -20 ℃ 保存。

鹅膏肽类毒素混合标准工作液的配制:依次取 100 μL、200 μL、500 μL、1 mL、2 mL 混合标准储备液至 5 个 10 mL 的容量瓶内,用初始流动相定容,配制成浓度分 别为 10、20、50、100、200 ng/mL 的混合标准工作液。

 2.2.2 样品前处理 (1)试样制备

将鲜蘑菇样品经低温烘干,取不少于100g干样品打成粉末,混合均匀待用。

(2)提取

称取 0.4 g 粉末样品于 50 mL 塑料离心管中,加入 20 mL 水,于涡旋混合器上混匀 1 min,超声提取 20 min, 10000 r/min 离心 5 min,取上清液 10 mL 待净化。

(3)净化

Oasis HLB 固相萃取柱依次经 2 mL 甲醇、2 mL 1% 甲酸水溶液活化,上述提取液上柱,控制流速在 1~2 drop/s, 上样结束后用 3 mL 10%甲醇水溶液淋洗,抽干后用 2 mL 甲醇洗脱,洗脱液于 40 ℃水浴下氮吹至干,加入 1 mL 甲 醇-水混合溶液(15:85, *V:V*)溶解残渣,涡旋混合 1 min,过 0.22 µm 的滤膜,收集滤液,待上机分析。

2.2.3 液相色谱-串联质谱条件

(1) 液相色谱条件

ACQUITY UPLC BEH C₁₈色谱柱(100 mm×2.1 mm, 1.7 μm), 流动相 A: 5 mmol/L 甲酸铵水溶液, 流动相 B: 甲 醇, 流速: 0.3 mL/min, 进样体积: 5 μL, 柱温: 40 °C。梯度 洗脱程序见表 1。

表 1 梯度洗脱程序

Table 1 Gradient elution procedure							
时间/min	流速/(mL/min)	流动相 A/%	流动相 B/%				
0	0.3	85	15				
1.5	0.3	85	15				
8.0	0.3	55	45				
8.1	0.3	5	95				
9.0	0.3	5	95				
9.1	0.3	85	15				

(2) 质谱条件

离子源: 电喷雾电离正离子模式(ESI+), 多反应监测

(multi-reaction monitoring, MRM)模式,毛细管电压为 3.3 kV, 锥孔电压为 10 V,离子源温度为 150 ℃,脱溶剂气温度为 380 ℃,脱溶剂气流速为 600 L/h,锥孔气流速为 150 L/h。

3 结果与分析

3.1 质谱条件优化

将 6 种鹅膏肽类的混合标准溶液用甲醇稀释成浓度 为 1 mg/L 的工作液,经由质谱的注射泵持续进样,并通过 工作站的 IntelliStart 功能自动优化质谱条件,在正离子模 式下,选取丰度较强、干扰较小的 2 个子离子分别作为定 性及定量离子,6 种鹅膏肽类毒素的质谱参数优化结果见 表 2。

		nhallo	toxins in	MRM r	node		
Table 2	Ma	ss spectrum	paramet	ers of 6	kinds of	f amatoxins	and
表	長2	MRM 模式	下 6 种鹅	<u></u> 膏 肽 类	毒素的原	质谱参数	

化合物	保留时间 /min	监测离子对 (<i>m/z</i>)	碰撞能量 /eV	锥孔电压 /V	
0	3.33	920.5/259.1*	40	4	
β-ΑΜΑ		920.5/85.8	72	4	
	3.88	919.5/259.1*	40	10	
α-ΑΜΑ		919.5/85.8	75	10	
	4.97	903.5/243.0*	40	10	
γ-ΑΜΑ		903.5/323.0	46	10	
D SC	5.93	863.5/173.8*	66	10	
PSC		863.5/157.0	60	10	
NCD	6.75	847.5/173.8*	75	10	
PCD		847.5/157.0	65	10	
DOD	7.66	789.5/173.8*	75	10	
POD		789.5/157.0	60	10	

注:*为定量离子。

3.2 色谱条件优化

因 6 种待测物的分子离子峰均为正离子,实验中尝试 了 UPLC-MS/MS 方法中正离子模式下常用的流动相体系, 如甲酸水溶液、甲酸铵水溶液和乙酸铵水溶液作为水相, 甲醇或乙腈作为有机相,综合比较了各色谱峰的响应值、 分离度和峰形,最终确定了 5 mmol/L 甲酸铵水溶液为水相, 甲醇为有机相的流动相条件。同时,也尝试了文献中报道 的氨水水溶液作为水相的分离条件^[8],结果显示,此体系 下纯溶剂标准溶液的响应值比甲酸铵水溶液体系更高,但 是在实际加标样品的复杂基质下,甲酸铵水溶液体系中的 目标物具有更高的信噪比,对于低浓度的目标物检测更有 优势。 多肽类化合物通常在色谱分离中容易出现峰拖尾和 非特异性吸附问题,实验中在相同流动相条件下分别测试 了 3 种色谱柱的分离效果,分别是 ACQUITY UPLC BEH C_{18} 色谱柱(100 mm×2.1 mm, 1.7 μ m)、ACQUITY UPLC HSS T3 色谱柱(100 mm×2.1 mm, 1.8 μ m)和 CORTECS C_{18} 色谱柱(100 mm×2.1 mm, 2.7 μ m),通过比较最终确定 ACQUITY UPLC BEH C_{18} 色谱柱为本实验条件下的最优 色谱柱。采用优化的色谱分离条件,得到 6 种待测物的总 离子流图,见图 1。

注: 1. β-AMA; 2. α-AMA; 3. γ-AMA; 4. PSC; 5. PCD; 6. POD。 图 1 6种鹅膏肽类毒素的总离子流图(10 ng/mL) Fig.1 Total ion current chromatogram of amatoxins and phallotoxins (10 ng/mL)

目标物中 α-鹅膏毒肽(m/z=918.4)与 β-鹅膏毒肽 (m/z=919.4)具有相同的骨架结构,仅在取代基上有-NH₂ 与-OH 的不同,分子量相差 1 Da,质谱条件下具有相同 的子离子^[4]。按照 ¹³C 在自然界中的天然丰度计算,α-鹅 膏毒肽中 ¹³C 的丰度为 43%,其[M+1]同位素与β-鹅膏毒 肽具有完全相同的定性/定量离子对,这就要求 α-鹅膏毒 肽和 β-鹅膏毒肽必须在色谱上做到基线分离,否则 α-鹅 膏毒肽的 ¹³C 同位素会对β-鹅膏毒肽造成串扰,严重影响 定量的准确性。

3.3 前处理条件优化

3.3.1 提取条件优化

由于 6 种鹅膏肽类毒素均为多肽类化合物,因此在 水、甲醇和乙腈中都有较好的溶解度,但不同提取溶剂对 于基质的选择性有很大区别。实验中在预先加标的空白 样品中分别以超纯水、甲醇、乙腈、甲醇+水、乙腈+水、 甲醇+10%甲酸水溶液、乙腈+10%甲酸水溶液作为提取溶 剂,对目标物进行提取,并将提取液用超纯水稀释 100 倍, 以最大限度消除基质效应带来的影响。通过质谱分析不 同提取条件下的回收率与信噪比,最终确定提取溶剂为 超纯水。

3.3.2 固相萃取条件优化

蘑菇中含有较多的多糖、氨基酸、多肽及有机酸等复

杂基质,在水提取的条件下这些干扰物不能直接除去,一 般采用固相萃取的方法,对提取液进行净化。6种目标物 分子虽骨架相似,但不同取代基(-OH、-NH₂、-CH₃及 -COOH)导致目标物的酸度系数(pKa)存在较大差异,在离 子交换机制的固相萃取柱上无法同时获得令人满意的回收 率^[4]。实验中采用了亲水亲脂平衡机制的固相萃取柱,并 对淋洗条件在通用条件的基础上进行了进一步优化, 比较 了含有 5%、10%、15%及 20% 甲醇的水溶液作为淋洗液时 的净化效果, 通过考察色谱图上最先出峰的 β-鹅膏毒肽的 回收率来评估不同淋洗强度的影响。结果显示,5%甲醇水 溶液与 10%甲醇水溶液作为淋洗液时, β-鹅膏毒肽的回收 率均在 90%以上, 而 15%甲醇水溶液作为淋洗液时 β-鹅膏 毒肽的回收率显著降低,均在 60%以下,20%甲醇水溶液 作为淋洗液时 β-鹅膏毒肽的回收率低于 10%。因此选择 10%甲醇水溶液作为净化过程中的淋洗液,不仅保证目标 物的回收率,又能最大限度地去除杂质。

3.4 方法的线性范围及检出限

6 种鹅膏肽类毒素的线性方程、线性范围和线性相关 系数见表 3。依据特征离子色谱峰的 *S/N*≥3 确定方法的检 出限(limit of detection, LOD)。结果表明, 6 种鹅膏肽类毒素 在 20~1000 μg/kg 的范围内呈现良好的线性关系, 线性相关 系数均大于 0.997, 说明本方法适用于目标物的定量检测。

表 3 6 种鹅膏肽类毒素的线性方程、相关系数和检出限 Table 3 Linear equations, correlation coefficients and LODs of 6 kinds of amatoxins and phallotoxins

		-		
化合物	线性方程	线性范围 /(µg/kg)	相关 系数	检出限 /(µg/kg)
α-AMA	<i>Y</i> =72.4 <i>X</i> +34.7	20~1000	0.9995	20
β -AMA	<i>Y</i> =52.6 <i>X</i> +8.3	20~1000	0.9999	20
γ-ΑΜΑ	<i>Y</i> =58.4 <i>X</i> +63.0	20~1000	0.9972	20
PSC	<i>Y</i> =35.3 <i>X</i> +44.2	20~1000	0.9977	20
PCD	<i>Y</i> =52.1 <i>X</i> +46.6	20~1000	0.9989	20
POD	<i>Y</i> =127.1 <i>X</i> +66.2	20~1000	0.9996	20

3.5 回收率及精密度实验

以空白蘑菇干粉为样品,在20、50和200μg/kg3个 水平下进行加标回收实验,每个样品平行测定6次并计算 相对标准偏差(relative standard deviation, RSD),结果如表 4 所示,不同水平下各待测物的平均回收率为 78.2%~95.7%,相对标准偏差为1.2%~5.2%,说明本方法 重复性好,准确度高,符合检测要求。

表 4 回收率和精密度检测结果(n=6) Table 4 Results of precision and recovery tests (n=6)

	$20 \ \mu g/kg$		$50 \ \mu g/kg$		200 µg/kg	
化合物	回收率/ %	RSD/ %	回收率/ %	RSD/ %	回收率/ %	RSD/ %
α-AMA	78.2	4.5	84.7	3.8	89.2	2.3
β -AMA	81.4	3.6	89.4	5.2	94.1	1.2
γ-ΑΜΑ	85.6	3.0	82.4	2.5	90.6	1.6
PSC	84.9	4.1	92.0	2.8	92.6	3.1
PCD	79.0	2.8	95.6	3.6	90.9	2.8
POD	89.6	1.7	88.5	4.4	95.7	1.9

3.6 实际样品测定

应用本文所建立的方法,对采集到的4个野生鹅膏菌 属蘑菇样品进行检测,其中2个样本检测出了较高含量的 鹅膏肽类毒素,含量水平与文献报道值相接近^[4],另外2 个样本未检出毒素,检测结果详见表5。

4 结 论

本文建立了超高效液相色谱-串联质谱多反应监测模 式下对野生蘑菇中的6种鹅膏肽类毒素进行定性和定量分 析的检测方法。该方法能够快速、准确地对蘑菇样品中的 鹅膏肽类毒素进行定量测定,可用于鉴别野生蘑菇是否有 毒,还可用于蘑菇中毒事件的确证分析。

表 5 实际野生蘑菇样品检测结果(mg/kg 干重) Table 5 Detection results of actual wild mushrooms

(mg/kg dry wt.)								
序号	名称	α-AMA	β -AMA	γ-ΑΜΑ	PSC	PCD	POD	
1	灰花纹鹅膏 Amanita fuliginea Hongo	7103.3	1146.0	N.D.*	122.4	694.5	1332.7	
2	致命鹅膏 Amanita exitialis	3556.2	1486.3	N.D.	791.9	854.8	N.D.	
3	红黄鹅膏 Amanita hemibapha	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
4	土红鹅膏 Amanita. rufoferruginea Hongo	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	

注:*表示未检出或数值低于检出限。

参考文献

[1] 陈作红,杨祝良,图力古尔,等. 毒蘑菇识别与中毒防治[M]. 北京: 科学出版社,2016.

Chen ZH, Yang ZL, Tu LGE, et al. Poisonous mushrooms: recognition and poisoning treatment [M]. Beijing: Science Press, 2016.

- [2] 包海鹰,图力古尔,李玉. 蘑菇的毒性成分及其应用研究现状[J]. 吉林农业大学学报, 1999, 21(4): 107–113.
 Bao HY, Tu LGE, Li Y. Mushroom toxins and its present of utilizational research [J]. J Jilin Agric Univ, 1999, 21(4): 107–113.
- [3] 陈作红,胡劲松. 鹅膏肽类毒素检测方法的历史与现状[J]. 食品科学, 2014, 35(8): 11-16.
 Chen ZH, Hu JS. Historical development and present situation of detection methods for amanita peptide toxins [J]. Food Sci, 2014, 35(8): 11-16.
- [4] 张烁. 鹅膏肽类毒素检测方法建立及其在鹅膏菌属中分布研究[D]. 北 京: 中国疾病预防控制中心, 2017.

Zhang S. The development of analytical methods for amanita cyclopeptide toxins and the study of their distribution in amanita mushrooms [D]. Beijing: Chinese Center for Disease Control and Prevention, 2017.

[5] 魏佳会. 鹅膏菌毒素的分离、鉴定及生物样本中的定量分析量[D]. 锦州: 锦州医科大学, 2017.

Wei JH. The isolation, identification and quantative analysis in biological sample of toxins in amanita species [D]. Jinzhou: Jinzhou Medical University, 2017.

[6] 刘阳, 栾杰, 林佶. 超高效液相色谱-串联质谱法快速测定云南野生致 命鹅膏菌中的毒伞肽和毒肽毒素[J]. 食品安全质量检测学报, 2017, 8(10): 3756–3761.

Liu Y, Luan J, Lin J. Rapid determination of amanitins and phallotoxins in Yunnan *Amanita exitialis* by ultra performance liquid chromatography-tandem mass spectrometry [J]. J Food Saf Qual, 2017, 8(10): 3756–3761.

- [7] 冯建明, 陈卓, 梁建强, 等. 超高效液相色谱-串联质谱法测定野生蘑菇中 2 类肽类毒素的含量[J]. 西北药学杂志, 2013, 28(4): 351-354.
 Feng JM, Cheng Z, Liang JQ, *et al.* Determination of peptides toxinums in true mushroom by UPLC-MS [J]. Northwest Pharm J, 2013, 28(4): 351-354.
- [8] 周贻兵,李磊,吴玉田,等. 超高效液相色谱-串联质谱法测定野生蘑菇中的 3 种鹅膏毒肽[J]. 现代预防医学, 2018, 45(22): 4144-4147.
 Zhou YB, Li L, Wu YT, *et al.* Determination of three amatoxins in wild mushrooms by UPLC-MS/MS [J]. Mod Prev Med, 2018, 45(22): 4144-4147.
- [9] 雒婉霞, 王冉冉, 王庆国, 等. 超高效液相色谱串联质谱法检测毒蕈中 5 种鹅膏多肽类毒素[J]. 疾病预防控制通报, 2018, 33(5): 84–87.
 Luo WX, Wang RR, Wang QG, *et al.* Determination of five amatoxins in toxic mushrooms by UPLC-MS/MS [J]. Bull Dis Control Prev, 2018, 33(5): 84–87.

[10] 肖绍震,林锋,傅武胜,等. 血浆和尿液中6种鹅膏毒肽和鬼笔毒肽的 超高效液相色谱-串联质谱法测定[J]. 食品科学,2018,39(22): 312-318.

Xiao SZ, Lin F, Fu WS, *et al.* Determination of amatoxins and phallotoxins in plasma and urine by ultra performance liquid chromatography-tandem mass spectrometry [J]. Food Sci, 2018, 39(22): 312–318.

- [11] 张秀尧,蔡欣欣. 超高效液相色谱三重四极杆质谱联用法快速检测尿 液和血浆中鹅膏毒肽和鬼笔毒肽[J]. 分析化学, 2010, 38(1): 39–44. Zhang XR, Cai XX. Rapid determination of amatoxins and phallotoxins in plasma and urine by UPLC-MS/MS [J]. Chin J Anal Chem, 2010, 38(1): 39–44.
- [12] 张秀尧,蔡欣欣,张晓艺,等. 超高效液相色谱-二极管阵列检测法快速测定毒蘑菇中 5 种毒肽[J]. 浙江预防医学, 2016, 28(2): 214–216.
 Zhang XR, Cai XX, Zhang XY, *et al.* Rapid determination of five toxic peptides in toxic mushrooms by UPLC-DAD [J]. Zhejiang Prev Med, 2016, 28(2): 214–216.
- [13] 徐小民,张京顺,蔡增轩,等.在线液相色谱-二极管阵列检测器-串联 质谱法检测野生菌中鹅膏毒肽和鬼笔毒肽[J].色谱,2017,35(6): 613-619.

Xu XM, Zhang JS, Cai ZX, *et al.* Determination of amanitins and phallotoxins in wild mushrooms by online liquid chromatography-diode array detector-tandem mass spectrometry [J]. Chin J Chromatogr, 2017, 35(6): 613–619.

- [14] Robinson FV, Jaimes SJ, Garcia AL, et al. Determination of α-and β-amanitin in clinical urine samples by capillary zone electrophoresis [J]. J Pharm Biomed Anal, 2008, 47: 913–917.
- [15] Abuknesha RA, Maragkou A. A highly sensitive and specific enzyme immunoassay for detection of β -amanitin in biological fluids [J]. Anal Bioanal Chem, 2004, 379(5–6): 853–860.

(责任编辑: 韩晓红)

作者简介

郎 乐,高级工程师,主要研究方向 为食品质量与安全。 E-mail: langle2000@163.com

王庆峰,中级工程师,主要研究方向为 食品质量与安全。 E-mail: windwqf@163.com